Flavivirus Infectious Clones Issue Date: 2013-11-06 Construction, Characterization and Application of Flavivirus Infectious Clones

Total Page:16

File Type:pdf, Size:1020Kb

Flavivirus Infectious Clones Issue Date: 2013-11-06 Construction, Characterization and Application of Flavivirus Infectious Clones Cover Page The handle http://hdl.handle.net/1887/22114 holds various files of this Leiden University dissertation Author: Jiang, Xiaohong Title: Construction characterization and application of Flavivirus infectious clones Issue Date: 2013-11-06 Construction, Characterization and Application of Flavivirus Infectious Clones Xiaohong Jiang ISBN: 978-90-8891-733-2 Cover design: Xiaohong Jiang, Joe Zhou and Kerry Zhang (K&A Inc.) The image on the front cover is a schematic representation of the landmarks in Shanghai, China, which is sketched out by the use of predicted RNA structural elements in the 3’-UTR of flaviviruses as illustrated in the thesis. Layout and printing: Proefschriftmaken.nl || Uitgeverij BOXPress Published by: Uitgeverij BOXPress, ’s-Hertogenbosch Construction, Characterization and Application of Flavivirus Infectious Clones Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 6 november 2013 klokke 11:15 uur door Xiaohong Jiang geboren te Shanghai, China in 1983 PROMOTIECOMMISSIE Promotor: Prof. Dr. W.J.M. Spaan Copromotor: Dr. P.J. Bredenbeek Overige leden: Prof. Dr. E.J. Snijder Prof. Dr. R.C. Hoeben Dr. D. Franco (Katholieke Universiteit Leuven) Prof. Dr. J.H. Neyts (Katholieke Universiteit Leuven) 献给我挚爱的父母 5 6 CONTENTS Chapter 1 General Introduction 9 Chapter 2 Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs 31 Chapter 3 Molecular and immunological characterization of a DNA launched yellow fever virus 17D infectious clone 55 Chapter 4 An infectious Modoc virus cDNA as a tool to study conserved 3’-UTR RNA elements in flaviviruses with no known vector 79 Chapter 5 Mutagenesis and biochemical analysis of the XRN-1 stalling signal for subgenomic flavivirus (sf)RNA production 105 Chapter 6 Trans-complementation of ellowy fever virus cytopathogenicity by cells expressing subgenomic flavivirus (sf)RNA 127 Chapter 7 Epilogue 145 Summary 159 Samenvatting 163 Curriculum vitae 167 7 8 Chapter 1 Introduction 9 CHAPTER 1 Prologue: Virus Viruses, derived from the Greek word ‘poison’, are a group of obligatory parasites that hijack the hosts’ resources to produce their progeny. Indeed, viruses are notorious for the threats they pose to human beings, as the name suggests. From smallpox, one of human kind’s greatest scourges, to HIV, an enemy that tactfully disarms the human immune system; from the 1918 influenza pandemic to the 2003 SARS outbreak; viruses have often been associated with disease and death. This reputation is, in a sense, well deserved; however, the advent of genomics era has started to enrich our perception of these ‘killers’. The omnipresence and abundance of viruses turn out to go far beyond our wildest guess. In fact, viruses are so pervasive that they essentially infect any form of life, and even parasitizing other viruses [1]. Moreover, viruses have been proposed to play major roles in the global ecosystem [2], have influenced and are still shaping the evolution of cellular life forms, with elements of viral origin embedded in host genomes. The extent of their infiltration into the human genome is surprising yet undeniable [3;4]. We are, for better or worse, living in a virosphere with viruses lurking within us. Virus particles, or virions, consist of nucleic acids, the genetic material, as well as a protein coat, known as the capsid; in some cases, this nucleocapsid is further wrapped by an envelope of lipids. Different from ribosome-encoding organisms, i.e., bacteria, archaea, and eukarya, which all have DNA as their genetic material, viruses (defined as capsid-encoding organisms [5]) can also use RNA molecules to convey their genetic information. The genomic RNA for some viruses like reoviruses is double-stranded, while most of the RNA viruses possess single-stranded RNAs of either positive or negative polarity. Viruses with genomic RNA complementary to mRNA are denoted negative-strand RNA viruses, whereas those with genomic RNA of mRNA polarity are classified as positive-strand or plus-strand RNA (+ssRNA) viruses. The topics covered in this thesis are revolving around a group of +ssRNA viruses, the flaviviruses. Flavivirus: Phylogeny Flaviviruses form a genus within the Flaviviridae family that also includes the genera Pestivirus and Hepacivirus, as well as the newly proposed Pegivirus genus [6]. The Flavivirus genus comprises more than 70 viruses, which, based on phylogenetic analysis, can be grouped into three clusters of related viruses that are in general distinguished by their route of transmission: (i) mosquito-borne, (ii) tick-borne, and (iii) no known vector (NKV) flaviviruses [7]. The first two clusters of flaviviruses are transmitted by arthropods, 10 INTRODUCTION mosquitoes and ticks, respectively. They are exemplified by important human pathogens like dengue virus (DENV), Japanese encephalitis virus (JEV), West Nile virus (WNV), yellow fever virus (YFV) and tick-borne encephalitis virus (TBEV). The third cluster comprises a less-well studied group of viruses for which no arthropod vector has been implicated in transmission. These viruses have been exclusively isolated from bats (such as, Montana myotis leukoencephalitis virus [MMLV] [8] and Rio Bravo virus [RBV] [9]) and rodents (for example, Modoc virus [MODV] [10] and Apoi virus [APOIV]). In addition to the viruses assigned to any of the above-mentioned clusters within the Flavivirus genus, there are a few viruses that are currently considered tentative species of this genus. This group of viruses, such as cell fusing agent virus (CFAV), Kamiti River virus (KRV) and Culex flavivirus (CxFV), have all been exclusively isolated from mosquitoes or insect cell lines [11-13]. There is no evidence that these viruses are able to infect a vertebrate host and therefore they are referred to as insect-specific flaviviruses. Flavivirus: General Features Flaviviruses share similarities in virion morphology, genome organization and replication strategy. The enveloped viral particles are composed of a lipid bilayer surrounding a nucleocapsid that consists of a single-stranded, positive-sense genome RNA complexed with multiple copies of a basic capsid (C) protein [14]. 7 The genomic RNA is approximately 11 kb in length with a 5’ type I cap, m GpppAmpN2, while lacking a 3’ poly(A) tail. As other positive-strand RNA viruses, the flavivirus genome plays various roles in the viral life cycle: (i) directing the synthesis of viral proteins by ribosomes, (ii) serving as a template for the production of negative-strand RNA, and (iii) as the genetic material to be encapsidated into progeny virions. The genome is translated into a large polyprotein that is co- and post-translationally processed into functional viral proteins by cellular and viral proteases (Fig.1). The N-terminal third of the polyprotein yields the viral structural proteins: core (C), membrane (prM/M), and envelope (E) that participate in virus entry and assembly. The C-terminal two-thirds of the polyprotein is cleaved into at least seven nonstructural (NS) proteins, namely NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5, which have been implicated directly or indirectly in viral RNA replication, evasion of the innate immune response, as well as virus assembly [14-21]. NS1 is a multifunctional glycoprotein that is localized to the replication complexes, expressed on the plasma membrane of infected cells and secreted into the extracellular milieu. The intracellular form of NS1 was proposed to interact with NS4A and NS4B and plays an important role in regulating negative-strand RNA synthesis, whereas its extracellular 11 CHAPTER 1 Figure 1. Flavivirus Genome Organization The flavivirus genome encompasses a single open reading frame that is flanked by ′5 and 3′ untranslated regions (UTRs), within which high-ordered RNA structures are formed. Stem loop (SL) structures are indicated with dots representing the loop and short lines for stems. Location of the conserved sequences (CS) and the upstream AUG region (UAR) that are involved in cyclization of the genomic RNA are indicated. The polyprotein is co- and post- translationally cleaved into three structural proteins (in green) and seven nonstructural proteins (in red). Putative functions of these proteins during infection are described. aa, amino acids; C, capsid protein; E, envelope; M, membrane; RdRp, RNA-dependent RNA-polymerase (Adapted from Cell Host & Microbe, 2009 Apr 23;5(4):318-28, Fernandez-Garcia MD, Mazzon M, Jacobs M, Amara A., reprinted with permission) form was implicated in immune evasion [22-27]. NS2A is a small hydrophobic protein that is essential for virus replication and assembly and may also modulate the host innate immune response [17;18;28;29]. NS2B, another small membrane-associated protein, is a cofactor for the NS2B-NS3 serine protease that mediates cleavage of NS2A/NS2B, NS2B/NS3, NS3/NS4A, NS4A/NS5 junction, and generates the C-termini of mature C and NS4A [14]. In addition to its protease activity, NS3 also contains RNA helicase, nucleotide triphosphatase and RNA triphosphatase activities [30-33]. Both NS4A and NS4B are small hydrophobic proteins that co-localize to ER-derived membrane structures presumed to be the site of replication [34]. NS5, a large and highly conserved flaviviral protein, functions as an RNA-dependent RNA polymerase and contains methyltransferase activity that is required for the formation of a 5’ type I cap as well as internal adenosine 2’-O methylation of the viral genome [14;35-37]. Flaviviruses enter the cell by receptor-mediated endocytosis via clathrin-coated pits [38;39]. The viral particles are subsequently trafficked to prelysosomal endocytic compartments where low pH induces a conformational change in the envelope protein, triggering the fusion between the viral and the endosomal membranes [38;40-43]. The nucleocapsid is thus released into the cytoplasm, where membrane-associated translation- 12 INTRODUCTION replication complexes are formed [34;44;45].
Recommended publications
  • Flavivirus: from Structure to Therapeutics Development
    life Review Flavivirus: From Structure to Therapeutics Development Rong Zhao 1,2,†, Meiyue Wang 1,2,†, Jing Cao 1,2, Jing Shen 1,2, Xin Zhou 3, Deping Wang 1,2,* and Jimin Cao 1,2,* 1 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; [email protected] (R.Z.); [email protected] (M.W.); [email protected] (J.C.); [email protected] (J.S.) 2 Department of Physiology, Shanxi Medical University, Taiyuan 030001, China 3 Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; [email protected] * Correspondence: [email protected] (D.W.); [email protected] (J.C.) † These authors contributed equally to this work. Abstract: Flaviviruses are still a hidden threat to global human safety, as we are reminded by recent reports of dengue virus infections in Singapore and African-lineage-like Zika virus infections in Brazil. Therapeutic drugs or vaccines for flavivirus infections are in urgent need but are not well developed. The Flaviviridae family comprises a large group of enveloped viruses with a single-strand RNA genome of positive polarity. The genome of flavivirus encodes ten proteins, and each of them plays a different and important role in viral infection. In this review, we briefly summarized the major information of flavivirus and further introduced some strategies for the design and development of vaccines and anti-flavivirus compound drugs based on the structure of the viral proteins. There is no doubt that in the past few years, studies of antiviral drugs have achieved solid progress based on better understanding of the flavivirus biology.
    [Show full text]
  • Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones
    Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones Bliss M. Beernink*,1, Katerina L. Holan*,1, Ryan R. Lappe1, Steven A. Whitham1 1 Department of Plant Pathology and Microbiology, Iowa State University * These authors contributed equally Corresponding Author Abstract Steven A. Whitham [email protected] Agrobacterium-based inoculation approaches are widely used for introducing viral vectors into plant tissues. This study details a protocol for the injection of maize Citation seedlings near meristematic tissue with Agrobacterium carrying a viral vector. Beernink, B.M., Holan, K.L., Lappe, R.R., Recombinant foxtail mosaic virus (FoMV) clones engineered for gene silencing and Whitham, S.A. Direct Agroinoculation of Maize Seedlings by Injection with gene expression were used to optimize this method, and its use was expanded Recombinant Foxtail Mosaic Virus and to include a recombinant sugarcane mosaic virus (SCMV) engineered for gene Sugarcane Mosaic Virus Infectious Clones. J. Vis. Exp. (168), e62277, expression. Gene fragments or coding sequences of interest are inserted into a doi:10.3791/62277 (2021). modified, infectious viral genome that has been cloned into the binary T-DNA plasmid vector pCAMBIA1380. The resulting plasmid constructs are transformed into Date Published Agrobacterium tumefaciens strain GV3101. Maize seedlings as young as 4 days February 27, 2021 old can be injected near the coleoptilar node with bacteria resuspended in MgSO4 DOI
    [Show full text]
  • Recombinant and Chimeric Viruses
    Recombinant and chimeric viruses: Evaluation of risks associated with changes in tropism Ben P.H. Peeters Animal Sciences Group, Wageningen University and Research Centre, Division of Infectious Diseases, P.O. Box 65, 8200 AB Lelystad, The Netherlands. May 2005 This report represents the personal opinion of the author. The interpretation of the data presented in this report is the sole responsibility of the author and does not necessarily represent the opinion of COGEM or the Animal Sciences Group. Dit rapport is op persoonlijke titel door de auteur samengesteld. De interpretatie van de gepresenteerde gegevens komt geheel voor rekening van de auteur en representeert niet de mening van de COGEM, noch die van de Animal Sciences Group. Advisory Committee Prof. dr. R.C. Hoeben (Chairman) Leiden University Medical Centre Dr. D. van Zaane Wageningen University and Research Centre Dr. C. van Maanen Animal Health Service Drs. D. Louz Bureau Genetically Modified Organisms Ing. A.M.P van Beurden Commission on Genetic Modification Recombinant and chimeric viruses 2 INHOUDSOPGAVE RECOMBINANT AND CHIMERIC VIRUSES: EVALUATION OF RISKS ASSOCIATED WITH CHANGES IN TROPISM Executive summary............................................................................................................................... 5 Introduction............................................................................................................................................ 7 1. Genetic modification of viruses .................................................................................................9
    [Show full text]
  • The Molecular Characterization and the Generation of a Reverse Genetics System for Kyasanur Forest Disease Virus by Bradley
    The Molecular Characterization and the Generation of a Reverse Genetics System for Kyasanur Forest Disease Virus by Bradley William Michael Cook A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Master of Science Department of Microbiology University of Manitoba Winnipeg, Manitoba, Canada Copyright © 2010 by Bradley William Michael Cook 1 List of Abbreviations: AHFV - Alkhurma Hemorrhagic Fever Virus Amp – ampicillin APOIV - Apoi Virus ATP – adenosine tri-phosphate BAC – bacterial artificial chromosome BHK – Baby Hamster Kidney BSA – bovine serum albumin C1 – C-terminus fragment 1 C2 – C-terminus fragment 2 C - Capsid protein cDNA – comlementary Deoxyribonucleic acid CL – Containment Level CO2 – carbon dioxide cHP - capsid hairpin CNS - Central Nervous System CPE – cytopathic effect CS - complementary sequences DENV1-4 - Dengue Virus DIC - Disseminated Intravascular Coagulation (DIC) DNA – Deoxyribonucleic acid DTV - Deer Tick Virus 2 E - Envelope protein EDTA - ethylenediaminetetraacetic acid EM - Electron Microscopy EMCV – Encephalomyocarditis Virus ER - endoplasmic reticulum FBS – fetal bovine serum FP - fusion peptide GGEV - Greek Goat Encephalitis Virus GGYV - Gadgets Gully Virus GMP - Guanosine mono-phosphate GTP - Guanosine tri-phosphate HBV- Hepatitis B Virus HDV – Hepatitis Delta Virus HIV - Human Immunodeficiency Virus IFN – interferon IRES – internal ribosome entry sequence JEV - Japanese Encephalitis Virus KADV - Kadam Virus kDa -
    [Show full text]
  • Western Equine Encephalitis Virus Is a Recombinant Virus (RNA Recombination/Alphavirus/Evolution of RNA Viruses) CHANG S
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 5997-6001, August 1988 Evolution Western equine encephalitis virus is a recombinant virus (RNA recombination/Alphavirus/evolution of RNA viruses) CHANG S. HAHN, SHLOMO LUSTIG*, ELLEN G. STRAUSS, AND JAMES H. STRAUSSt Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125 Communicated by James Bonner, April 14, 1988 ABSTRACT The alphaviruses are a group of 26 mosquito- virus; O'Nyong-nyong virus; and Ross River virus. Sindbis borne viruses that cause a variety of human diseases. Many of and Semliki Forest viruses have been intensively studied as the New World alphaviruses cause encephalitis, whereas the models for alphavirus replication (7). Sindbis virus is widely Old World viruses more typically cause fever, rash, and distributed, being found in Europe, India, southeast Asia, arthralgia. The genome is a single-stranded nonsegmented Australia, and Africa. Close relatives of this virus, such as RNA molecule of + polarity; it is about 11,700 nucleotides in Ockelbo virus in Europe (8) and Babanki virus in Africa, length. Several alphavirus genomes have been sequenced in cause disease in humans characterized by fever, rash, and whole or in part, and these sequences demonstrate that alpha- arthritis. Chikungunya and O'Nyong-nyong viruses have viruses have descended from a common ancestor by divergent caused large epidemics in Africa of a dengue-like disease also evolution. We have now obtained the sequence of the 3'- characterized by fever, rash, and arthralgia. Ross River virus terminal 4288 nucleotides of the RNA of the New World is the causative agent of epidemic polyarthritis in Australia Alphavirus western equine encephalitis virus (WEEV).
    [Show full text]
  • Recombinant Influenza H9N2 Virus with a Substitution of H3
    www.nature.com/scientificreports OPEN Recombinant infuenza H9N2 virus with a substitution of H3 hemagglutinin transmembrane Received: 4 September 2017 Accepted: 30 November 2017 domain showed enhanced Published: xx xx xxxx immunogenicity in mice and chicken Yun Zhang , Ying Wei, Kang Liu, Mengjiao Huang, Ran Li, Yang Wang, Qiliang Liu, Jing Zheng, Chunyi Xue & Yongchang Cao In recent years, avian infuenza virus H9N2 undergoing antigenic drift represents a threat to poultry farming as well as public health. Current vaccines are restricted to inactivated vaccine strains and their related variants. In this study, a recombinant H9N2 (H9N2-TM) strain with a replaced H3 hemagglutinin (HA) transmembrane (TM) domain was generated. Virus assembly and viral protein composition were not afected by the transmembrane domain replacement. Further, the recombinant TM-replaced H9N2-TM virus could provide better inter-clade protection in both mice and chickens against H9N2, suggesting that the H3-TM-replacement could be considered as a strategy to develop efcient subtype- specifc H9N2 infuenza vaccines. H9N2 avian infuenza virus was frst isolated in turkeys in 19661. Since then, it became prevalent in poultry farming worldwide, resulting in egg production reduction and high mortality when co-infected with other path- ogens2,3. Also, it could cross host-species barrier and cause human infections as reported in China4,5. Tough it is not highly pathogenic as H5N1, researches revealed that it could re-assort with multiple other infuenza subtypes and thus be “gene donor” for H5N1 and H7N9 viruses6–8. Terefore, control of the H9N2 infuenza virus is of great concern. Vaccination utilizing vaccine strains and their relevant variants is the main strategy to control H9N2 pan- demics in the poultry industry of China.
    [Show full text]
  • Advances in Developing Therapies to Combat Zika Virus: Current Knowledge and Future Perspectives Ashok Munjal
    Old Dominion University ODU Digital Commons Bioelectrics Publications Frank Reidy Research Center for Bioelectrics 8-2017 Advances in Developing Therapies to Combat Zika Virus: Current Knowledge and Future Perspectives Ashok Munjal Rekha Khandia Kuldeep Dharma Swati Sachan Kumaragurubaran Karthik See next page for additional authors Follow this and additional works at: https://digitalcommons.odu.edu/bioelectrics_pubs Part of the Public Health Commons, Virology Commons, and the Virus Diseases Commons Repository Citation Munjal, Ashok; Khandia, Rekha; Dharma, Kuldeep; Sachan, Swati; Karthik, Kumaragurubaran; Tiwari, Ruchi; Malik, Yashpal S.; Kumar, Deepak; Singh, Raj K.; Iqbal, Hafiz M. N.; and Joshi, Sunil K., "Advances in Developing Therapies to Combat Zika Virus: Current Knowledge and Future Perspectives" (2017). Bioelectrics Publications. 132. https://digitalcommons.odu.edu/bioelectrics_pubs/132 Original Publication Citation Munjal, A., Khandia, R., Dhama, K., Sachan, S., Karthik, K., Tiwari, R., . Joshi, S. K. (2017). Advances in developing therapies to combat zika virus: Current knowledge and future perspectives. Frontiers in Microbiology, 8, 1469. doi:10.3389/fmicb.2017.01469 This Article is brought to you for free and open access by the Frank Reidy Research Center for Bioelectrics at ODU Digital Commons. It has been accepted for inclusion in Bioelectrics Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Authors Ashok Munjal, Rekha Khandia, Kuldeep Dharma,
    [Show full text]
  • Exploratory Re-Encoding of Yellow Fever Virus Genome: New In- Sights for the Design of Live-Attenuated Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/256610; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exploratory re-encoding of Yellow Fever Virus genome: new in- sights for the design of live-attenuated viruses Short title: Exploratory re-encoding of Yellow Fever Virus genome R. Klitting1*, T. Riziki1, G. Moureau1, G. Piorkowski1, E. A. Gould1, X. de Lamballerie1 1Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France *Corresponding Author E-mail: [email protected] (RK) bioRxiv preprint doi: https://doi.org/10.1101/256610; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Virus attenuation by genome re-encoding is a pioneering approach for generating effective live-attenuated vaccine candidates. Its core principle is to introduce a large number of synonymous substitutions into the viral genome to produce stable attenuation of the targeted virus. Introduction of large numbers of mutations has also been shown to maintain stability of the attenuated phenotype by lowering the risk of reversion and recombination of re-encoded genomes. Identifying mutations with low fitness cost is pivotal as this increases the number that can be introduced and generates more stable and attenuated viruses. Here, we sought to identify mutations with low deleterious impact on the in vivo replication and virulence of yellow fever virus (YFV).
    [Show full text]
  • HIV Virology and Pathogenetic Mechanisms of Infection: a Brief Overview I Ence Exper
    ANN IST SUPER SANITÀ 2010 | VOL. 46, NO. 1: 5-14 5 DOI: 10.4415/ANN_10_01_02 HIV virology and pathogenetic mechanisms ENCE of infection: a brief overview I EXPER (a) (b) (b) (a) L Emanuele Fanales-Belasio , Mariangela Raimondo , Barbara Suligoi and Stefano Buttò A C (a)Centro Nazionale AIDS, Istituto Superiore di Sanità, Rome, Italy I N (b)Centro Operativo AIDS, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, I CL Istituto Superiore di Sanità, Rome, Italy TO NG I Summary. Studies on HIV virology and pathogenesis address the complex mechanisms that result TEST in the HIV infection of the cell and destruction of the immune system. These studies are focused L on both the structure and the replication characteristics of HIV and on the interaction of the A M virus with the host. Continuous updating of knowledge on structure, variability and replication I N of HIV, as well as the characteristics of the host immune response, are essential to refine virologi- A cal and immunological mechanisms associated with the viral infection and allow us to identify key molecules in the virus life cycle that can be important for the design of new diagnostic assays FROM and specific antiviral drugs and vaccines. In this article we review the characteristics of molecular structure, replication and pathogenesis of HIV, with a particular focus on those aspects that are RCH important for the design of diagnostic assays. A Key words: HIV, virus replication, antigenic variation, virulence. ESE R Riassunto (La virologia dell’HIV e i meccanismi patogenetici dell’infezione: una breve panoramica). Gli studi sulla virologia e la patogenesi dell’HIV sono importanti per comprendere i complessi meccanismi che regolano l’infezione della cellula da parte del virus e la distruzione del sistema immunitario.
    [Show full text]
  • View of the Manuscript
    Virology Journal BioMed Central Research Open Access Vaccinia virus lacking the deoxyuridine triphosphatase gene (F2L) replicates well in vitro and in vivo, but is hypersensitive to the antiviral drug (N)-methanocarbathymidine Mark N Prichard*1, Earl R Kern1, Debra C Quenelle1, Kathy A Keith1, Richard W Moyer2 and Peter C Turner2 Address: 1Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA and 2Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA Email: Mark N Prichard* - [email protected]; Earl R Kern - [email protected]; Debra C Quenelle - [email protected]; Kathy A Keith - [email protected]; Richard W Moyer - [email protected]; Peter C Turner - [email protected] * Corresponding author Published: 5 March 2008 Received: 24 January 2008 Accepted: 5 March 2008 Virology Journal 2008, 5:39 doi:10.1186/1743-422X-5-39 This article is available from: http://www.virologyj.com/content/5/1/39 © 2008 Prichard et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The vaccinia virus (VV) F2L gene encodes a functional deoxyuridine triphosphatase (dUTPase) that catalyzes the conversion of dUTP to dUMP and is thought to minimize the incorporation of deoxyuridine residues into the viral genome. Previous studies with with a complex, multigene deletion in this virus suggested that the gene was not required for viral replication, but the impact of deleting this gene alone has not been determined in vitro or in vivo.
    [Show full text]
  • REVIEW Viral Vectors for Gene Delivery and Gene Therapy Within the Endocrine System
    103 REVIEW Viral vectors for gene delivery and gene therapy within the endocrine system D Stone, A David, F Bolognani, P R Lowenstein and M G Castro Molecular Medicine and Gene Therapy Unit, Room 1.302, Stopford Building, School of Medicine, University of Manchester, Oxford Road, Manchester M13 9PT, UK (Requests for offprints should be addressed to M G Castro; Email: [email protected]) (F Bolognani is now at INIBIOLP-Histology B, Faculty of Medicine, National University of La Plata, Argentina) Abstract The transfer of genetic material into endocrine cells and use in gene transfer and gene therapy applications. As differ- tissues, both in vitro and in vivo, has been identified as critical ent viral vector systems have their own unique advantages for the study of endocrine mechanisms and the future treat- and disadvantages, they each have applications for which ment of endocrine disorders. Classical methods of gene they are best suited. This review will discuss viral vector transfer, such as transfection, are inefficient and limited systems that have been used for gene transfer into the mainly to delivery into actively proliferating cells in vitro. endocrine system, and recent developments in viral vector The development of viral vector gene delivery systems is technology that may improve their use for endocrine beginning to circumvent these initial setbacks. Several kinds applications – chimeric vectors, viral vector targeting and of viruses, including retrovirus, adenovirus, adeno-associated transcriptional regulation of transgene expression. virus, and herpes simplex virus, have been manipulated for Journal of Endocrinology (2000) 164, 103–118 Introduction ing of transgenes within mammalian cells is an area of rapid development.
    [Show full text]
  • Antiviral Product Development — Conducting and Submitting Virology Studies to the Agency
    Guidance for Industry Antiviral Product Development — Conducting and Submitting Virology Studies to the Agency U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) June 2006 Clinical Antimicrobial Guidance for Industry Antiviral Product Development — Conducting and Submitting Virology Studies to the Agency Additional copies are available from: Office of Training and Communications Division of Drug Information, HFD-240 Center for Drug Evaluation and Research Food and Drug Administration 5600 Fishers Lane Rockville, MD 20857 (Tel) 301-827-4573 http://www.fda.gov/cder/guidance/index.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) June 2006 Clinical Antimicrobial TABLE OF CONTENTS I. INTRODUCTION............................................................................................................. 1 II. BACKGROUND ............................................................................................................... 2 III. NONCLINICAL VIROLOGY STUDIES ...................................................................... 3 A. Mechanism of Action Studies........................................................................................................3 B. Antiviral Activity ...........................................................................................................................4 1. Antiviral Activity in Vitro.................................................................................................................4
    [Show full text]