Download Sound Reevaluation Study Report

Total Page:16

File Type:pdf, Size:1020Kb

Download Sound Reevaluation Study Report Sound Reevaluation Study Evansville Regional Airport (EVV) Evansville, IN Prepared as part of the 2010 EA Sound Reevaluation Prepared for: Evansville Vanderburgh Airport Authority District 7801 Bussing Dr. Evansville, IN 47725 Prepared by: 300 South Meridian Street Indianapolis, IN 46225 Phone: (317) 786-0461 CHA Project Numbers: 30431 May 2016 Evansville Regional Airport Sound Reevaluation Study Contents INTRODUCTION ................................................................................................................................................................ 1 1.1 STUDY AND DATA SOURCES ................................................................................................................................................ 1 FORECAST UPDATE OVERVIEW ........................................................................................................................................ 2 2.1 BASELINE FORECAST .......................................................................................................................................................... 3 2.2 RECOMMENDED OPERATIONS FORECAST .............................................................................................................................. 4 2.3 FLEET MIX FORECASTS....................................................................................................................................................... 5 SOUND EXPOSURE UPDATE ............................................................................................................................................. 6 3.1 NOISE METHODOLOGY ...................................................................................................................................................... 6 3.2 INTRODUCTION TO NOISE TERMINOLOGY .............................................................................................................................. 6 Integrated Noise Model (INM) ......................................................................................................................................... 6 Noise Exposure Maps ....................................................................................................................................................... 6 Decibel (dB) and A-Weight Sound Pressure Level (dBA) ................................................................................................... 6 Day-Night Average Sound Level (DNL) ............................................................................................................................. 7 Maximum A-Weighted Sound Level (Lmax) ..................................................................................................................... 7 3.3 AIRPORT OPERATIONAL DATA INPUTS FOR NOISE CONTOUR DEVELOPMENT ................................................................................ 7 Aircraft Operations ........................................................................................................................................................... 8 Aircraft Fleet Mix .............................................................................................................................................................. 9 Stage Length ..................................................................................................................................................................... 9 Runway Utilization ........................................................................................................................................................... 9 Flight Tracks ................................................................................................................................................................... 10 3.4 PREPARED NOISE EXPOSURE MAPS .................................................................................................................................... 13 2015 and 2020 Noise Exposure Maps ............................................................................................................................ 13 Land Use Compatibility ................................................................................................................................................... 13 SUPPLEMENTAL COMMUNITY MEASUREMENTS ........................................................................................................... 17 STUDY CONCLUSIONS..................................................................................................................................................... 18 5.1 PEAK AND AVERAGE NOISE .............................................................................................................................................. 18 5.2 AIRPORT IMPROVEMENT ALTERNATIVES .............................................................................................................................. 19 Primary Runway Designation and Operations ............................................................................................................... 19 Airfield Operational Procedures ..................................................................................................................................... 19 Runway 22 Hold Position ................................................................................................................................................ 20 TABLES FIGURES | Page i May 2016 Evansville Regional Airport Sound Reevaluation Study Evansville Regional Airport Sound Reevaluation Introduction Based on discussions with FAA, it was recommended that the Airport Sponsor (Evansville Regional Airport – EVV) study existing and future sound levels and potential impacts as part of a formal Reevaluation of the Environmental Assessment (EA) for the Runway 4-22 Runway Safety Area (RSA) Improvement project. This decision was based on the expectation that an update to the activity level would be necessary, an anticipated transition in fleet mix from smaller to larger aircraft, new schedule commercial service, and the relative proximity of sound impact threshold to local communities. As such, the Evansville-Vanderburgh Airport Authority District (EVAAD) conducted this update to the Airport Noise component of the 2010 Final EA Program. For the purposes of this study, the Reevaluation was performed in accordance with guidance provided in FAA Order 5050.4B, NEPA Implementing Instructions for Airport Actions. As documented in the EA, the airport sound contours were anticipated to shift to the northeast based on completion of the RSA project. The previous sound evaluation identified that existing sound impacts were not occurring prior to the project (based on the DNL 65 dB sound contour), and that impacts were not anticipated after construction of the preferred alternative as identified in the Environmental Assessment (EA). However, the EA documented that sound levels would increase in the area to the northeast, but would not exceed federal levels of significance. As the RSA project was completed, noise complaints have been received from locations where higher noise levels were anticipated in association with the runway shift. This indicated neighborhoods in close proximity to the runway were experiencing increased sound levels from arriving/departing aircraft as well as airfield ground operations. As such, the EVAAD conducted this update to the sound evaluation based on the current (2015) and projected (2020) activity levels and revised location of Runway 4-22. This action is consistent with the Finding of No Significant Impact (FONSI) issued by FAA on June 18, 2010. The FONSI includes Mitigation measure No. 7 as follows: “The Airport Authority will work with the airport neighbors and local community to establish new noise management (remedial and preventative) measures to reduce the extent of aircraft noise” 1.1 Study and Data Sources Information factored into the Sound Reevaluation efforts include all elements associated with the development of the input data required for the FAA Integrated Noise Model (INM). This includes data from a variety of sources to calculate current and projected aircraft operations, fleet mix, and flight routes to and from the Airport, flight paths to the airfield, industry trends in fleet mix transitions, and local/regional corporate and recreational aviation activity trends. The data and assumptions used to define baseline conditions and future activity trends were derived from the following data sources: | Page 1 May 2016 Evansville Regional Airport Sound Reevaluation Study Integrated Noise Model (INM) – The INM is a computer model that evaluates aircraft noise impacts in the vicinity of airports. INM is used by FAA under FAR Part 150 Noise Compatibility Planning and FAA Order 1050 Environmental Assessments and Environmental Impact Statements. A more detailed description of the noise model will be provided in subsequent sections. FAA 14 CFR Part 150 “Airport Noise Compatibility Planning” – Official FAA guidelines that prescribes the procedures, standards, and methodology governing the development, submission, and review of airport noise exposure maps and airport noise compatibility programs, including the process for evaluating and approving or disapproving those programs. This includes measuring noise at airports and surrounding areas and determining the exposure of individuals to noise that result from airport operations. FAA Terminal Area Forecast (TAF) - TAF activity estimates
Recommended publications
  • 2017-SR20-Domestic-Pricelist.Pdf
    2017 $389,900 Base weight 2120 lbs | Useful Load 1030 lbs Cabin payload with 3 hr. trip fuel and 45 min. reserve 776 lbs. SR20 STANDARD FEATURES AIRFRAME & POWERPLANT AVIONICS Lycoming IO-390-C3B6 215 HP Engine Cirrus Perspective+™ by Garmin® Cockpit Cirrus Airframe Parachute System® (CAPS®) 10” Screens 3-Blade Propeller GMA 350c All-Digital Bluetooth® Audio Panel Airbag Seatbelts (Front Seats) QWERTY Keyboard Controller Single Movement Power Lever Dual WAAS GPS/Comm/Nav Radios Dual Side Yoke Engine & Fuel Monitoring 60/40 Flex Seating™ Seats up to 5 Garmin Pilot – 1 year subscription included Four USB Power Ports Dual Alternators Advanced Wheel Fairings 406 MHz ELT High Performance Brakes ADS-B In Weather & Traffic Tubeless Tires ADS-B Out Transponder Surface Illumination Lights FliteCharts® & SafeTaxi® *US only. Subscription required. Spectra™ Wingtip Lighting GFC 700 Autopilot including Standard Leather Interior Electronic Stability & Protection (ESP) Tinted Windows Dual ADAHRS 2 Year Spinner-to-Tail Warranty Hypoxia Check/Automated Descent Mode Blue Level Button Autopilot Stall Protection TRAINING 3 Day Transition Training Package SR20 PACKAGES CIRRUS SELECT $39,900 Cirrus Select adds the Enhanced Vision System (EVS) displayed on big 12” screens and eTAWS2. EVS creates an image of what is outside the aircraft by using infrared technology to turn night into day. eTAWS is a TAWS-B terrain warning system with greater predictive precision information based on your flight path, and if terrain is ahead, gives you early warning aural alerts. Weight Δ: 5 lbs. ALERTS, AWARENESS & ASSISTANCE $28,900 Fly with increased precision and awareness with Synthetic Vision Technology (SVT™).
    [Show full text]
  • MSP 2019 Annual Noise Contour Report Metropolitan Airports Commission
    Minneapolis St. Paul International Airport (MSP) 2019 Annual Noise Contour Report Comparison of the 2019 Actual and the 2007 Forecast Noise Contours February 2020 MAC Community Relations Office and HNTB Corporation MSP 2019 Annual Noise Contour Report Metropolitan Airports Commission Table of Contents ES EXECUTIVE SUMMARY .................................................................................................. 1 ES.1 BACKGROUND ...................................................................................................................... 1 ES.2 AIRPORT NOISE LITIGATION AND CONSENT DECREE .............................................................. 1 ES.3 MSP 2020 IMPROVEMENTS EA/EAW ..................................................................................... 2 ES.4 THE AMENDED CONSENT DECREE ......................................................................................... 2 ES.5 2019 NOISE CONTOURS ......................................................................................................... 3 ES.6 AMENDED CONSENT DECREE PROGRAM ELIGIBILITY ............................................................. 3 ES.7 AMENDED CONSENT DECREE PROGRAM MITIGATION STATUS ............................................. 5 1. INTRODUCTION AND BACKGROUND ................................................................................. 9 1.1 CORRECTIVE LAND USE EFFORTS TO ADDRESS AIRCRAFT NOISE ............................................ 9 1.2 2007 FORECAST CONTOUR .................................................................................................
    [Show full text]
  • Aviation Activity Forecasts BOWERS FIELD AIRPORT AIRPORT MASTER PLAN
    Chapter 3 – Aviation Activity Forecasts BOWERS FIELD AIRPORT AIRPORT MASTER PLAN Chapter 3 – Aviation Activity Forecasts The overall goal of aviation activity forecasting is to prepare forecasts that accurately reflect current conditions, relevant historic trends, and provide reasonable projections of future activity, which can be translated into specific airport facility needs anticipated during the next twenty years and beyond. Introduction This chapter provides updated forecasts of aviation activity for Kittitas County Airport – Bowers Field (ELN) for the twenty-year master plan horizon (2015-2035). The most recent FAA-approved aviation activity forecasts for Bowers Field were prepared in 2011 for the Airfield Needs Assessment project. Those forecasts evaluated changes in local conditions and activity that occurred since the previous master plan forecasts were prepared in 2000, and re-established base line conditions. The Needs Assessment forecasts provide the “accepted” airport-specific projections that are most relevant for comparison with the new master plan forecasts prepared for this chapter. The forecasts presented in this chapter are consistent with Bowers Field’s current and historic role as a community/regional general aviation airport. Bowers Field is the only airport in Kittitas County capable of accommodating a full range of general aviation activity, including business class turboprops and business jets. This level of capability expands the airport’s role to serve the entire county and the local Ellensburg community. The intent is to provide an updated set of aviation demand projections for Bowers Field that will permit airport management to make the decisions necessary to maintain a viable, efficient, and cost-effective facility that meets the area’s air transportation needs.
    [Show full text]
  • What's Your Business Aircraft Worth Today?
    BR Buying & Selling 2 JuLY17.qxp_Layout 1 19/06/2017 14:54 Page 1 BOARDROOM T BUYING & SELLING What’s Your Business Aircraft Worth Today? Points of Value Specific to Cessna’s Larger Cabin Business Jets Senior Certified Aircraft Appraiser Jeremy Cox continues his Citation customers looking to step up into the forthcoming series spotlighting aircraft makes and models and their value Citation Hemisphere, and who typically have a requirement for points in today’s market. This month, the focus is on Cessna’s additional range over what the Longitude offers. larger business jet models… A brief comparison between the Longitude and the $16.35m Citation Latitude shows a longer cabin in the Longitude, while hile the Business Aviation community awaits the its cross-section is the same as that of the Latitude. That extra certification and first deliveries of Cessna’s length is put to good use, as the Longitude will accommodate W future $35m flagship model, the Citation 12 passengers (over the nine of the Latitude). It will also fly Hemisphere, sometime after 2020, how does about 800nm further and 30 knots faster. the owner of a stand-up cabin Citation already Topping the longer-established in-production models of the on the market evaluate its worth? larger Citation product range are the Citation Sovereign and the Citation X. Overview of Cessna’s Larger Model Jets The imminent flagship of Cessna’s Citation fleet is the There are three versions of the Citation Sovereign, including: $23.995m Citation Longitude (expected to begin delivering late 2017/early 2018), which provides performance and cabin • Citation Sovereign (original model): Powered by PW306C enhancements over the ‘game-changing’ Citation Latitude.
    [Show full text]
  • Warbirds Over Wanaka the Pearse Project Cirrus Adventure: the Long Way to Brisbane
    KiwiFlyer TM Magazine of the New Zealand Aviation Community Issue 45 2016 #2 $ 6.90 inc GST ISSN 1170-8018 Warbirds Over Wanaka The Pearse Project Cirrus Adventure: The long way to Brisbane Products, Services, News, Events, Warbirds, Recreation, Training and more. KiwiFlyer Issue 45 2016 #2 From the Editor In this issue Welcome to KiwiFlyer #45. We hope you’ll find 7. The Pearse Project plenty of good reading within. Ivan Mudrovich has spent more than a decade creating a faithful interpretation of Richard There’s more than a few owners of GA and Pearse’s 1903 aircraft. Chris Gee attended the recreational aircraft who will have thought at some attempts to get it airborne. time “I could fly to Australia”. And then added “if I wanted to” and then left it at that. Satisfying 10. Cirrus Adventure: The long way to Brisbane to think that you could, but in reality all a bit too Lance Weller wanted to relocate his Cirrus from risky and difficult, and for that matter, hardly cost NZ to Brisbane and chose a route through efficient. Albeit that Lance Weller had the additional Noumea and PNG. He tells the adventure here. motive of relocating his Cirrus to Brisbane, Lance is indeed someone who headed off on an international 16. EAA AirVenture Oshkosh with Gaye Pardy flight(s) ‘because he could’. Far from taking the This years Gaye Pardy Travel tour to Oshkosh traditional route via Norfolk and Lord Howe Islands, will be their 30th. All aviation enthusiasts should Lance and co-pilot Garth Jensen made the journey go at least once.
    [Show full text]
  • Cirrus SR20/SR22/SR22T Integrated Avionics System Cockpit Reference Guide
    Cirrus SR20/SR22/SR22T Integrated Avionics System Cockpit Reference Guide FLIGHT INSTRUMENTS EIS NAV/COM/TRANSPONDER/AUDIO PANEL AUTOMATIC FLIGHT CONTROL SYSTEM GPS NAVIGATION FLIGHT PLANNING PROCEDURES HAZARD AVOIDANCE ADDITIONAL FEATURES ABNORMAL OPERATION ANNUNCIATIONS & ALERTS APPENDIX INDEX Copyright © 2008-2010 Garmin Ltd. or its subsidiaries. All rights reserved. This manual reflects the operation of System Software version 0764.08 or later for the Cirrus SR20, SR22, and SR22T. Some differences in operation may be observed when comparing the information in this manual to earlier or later software versions. Garmin International, Inc., 1200 East 151st Street, Olathe, Kansas 66062, U.S.A. Tel: 913/397.8200 Fax: 913/397.8282 Garmin AT, Inc., 2345 Turner Road SE, Salem, OR 97302, U.S.A. Tel: 503/391.3411 Fax 503/364.2138 Garmin (Europe) Ltd, Liberty House, Bulls Copse Road, Hounsdown Business Park, Southampton, SO40 9RB, U.K. Tel: 44/0870.8501241 Fax: 44/0870.8501251 Garmin Corporation, No. 68, Jangshu 2nd Road, Shijr, Taipei County, Taiwan Tel: 886/02.2642.9199 Fax: 886/02.2642.9099 For after-hours emergency, aircraft on ground (AOG) technical support for Garmin panel mount and integrated avionics systems, please contact Garmin’s AOG Hotline at 913.397.0836. Web Site Address: www.garmin.com Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express written permission of Garmin. Garmin hereby grants permission to download a single copy of this manual and of any revision to this manual onto a hard drive or other electronic storage medium to be viewed for personal use, provided that such electronic or printed copy of this manual or revision must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited.
    [Show full text]
  • Bombardier Learjet 35A
    Contact Pilot Maintenance Us Fact Sheet Fact Sheet Share Next Bombardier Learjet 35A Professional Pilot and Technician Training Programs Updated 10/16 Contact Pilot Maintenance Us Fact Sheet Fact Sheet Share Prev Next FlightSafety offers comprehensive, professional training on Bombardier’s full line of business aircraft, including the Learjet 35A. Our highly qualified and experienced instructors, advanced-technology flight simulators and integrated training systems help ensure proficiency and safety. Pilot training for the Learjet 35A is available at FlightSafety’s Learning Centers in Atlanta, Georgia and Tucson, Arizona. Maintenance technicians train for the Learjet 35A at our Tucson Learning Center. Innovation With One Purpose: Training Corporate Aviation Professionals for Safety and Proficiency FlightSafety International is the world’s leading aviation training organization. The leader in experience. The leader in technological innovation. The leader in global reach. FlightSafety serves the world’s aviation community providing total aviation training for pilots, maintenance technicians and other aviation professionals. We serve business, commercial, general and military aviation with training for virtually Experienced all fixed-wing aircraft and helicopters. We live, breathe and ThinkSafety. Instructors, FlightSafety provides training for the Bombardier Global series, Bombardier Challenger and Bombardier Learjet. Superior We offer business aviation pilots and maintenance technicians of Bombardier aircraft the resources to achieve proficiency
    [Show full text]
  • Investigating Optimal Replacement of Aging Air Force Systems
    R Investigating Optimal Replacement of Aging Air Force Systems Edward G. Keating, Matthew Dixon Prepared for the United States Air Force Project AIR FORCE Approved for public release; distribution unlimited The research reported here was sponsored by the United States Air Force under Contract F49642-01-C-0003. Further information may be obtained from the Strategic Planning Division, Directorate of Plans, Hq USAF. Library of Congress Cataloging-in-Publication Data Keating, Edward G. (Edward Geoffrey), 1965- Investigating optimal replacement of aging Air Force systems / Edward G. Keating, Matthew C. Dixon. p. cm. Includes bibliographical references. “MR-1763.” ISBN 0-8330-3483-9 (pbk. : alk. paper) 1. United States. Air Force—Procurement—Mathematical models. 2. KC–135 (Tanker aircraft) 3. Lear jet aircraft. 4. Jet transports—United States—Maintenance and repair— Mathematical models. I. Dixon, Matthew C. II. Title. UG1123.K43223 2003 358.4'1621—dc22 2003020469 RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND® is a registered trademark. RAND’s publications do not necessarily reflect the opinions or policies of its research sponsors. © Copyright 2003 RAND All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND. Published 2003 by RAND 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 1200 South Hayes Street, Arlington, VA 22202-5050 201 North Craig Street, Suite 202, Pittsburgh, PA 15213-1516 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Email: [email protected] iii Preface Whether to maintain or replace an aging system is a common decision.
    [Show full text]
  • Cessna Citation X
    The Conklin & de Decker Report Cessna Citation X Created on August 21, 2019 by Doug Strangfeld © 2019 Conklin & de Decker Associates, Inc PO BOX 121184 1006 North Bowen, Suite B Arlington, TX 76012 www.conklindd.com Data version: V 19.1 Cessna Citation X RANGE 2,890 nm SPEED 525 kts PASSENGERS 8 people Cost ACQUISITION COST ANNUAL COST VARIABLE COST FIXED COST $9,200,000 $2,424,365 $3,834/hr $890,791 MAX PAYLOAD 2,375 lb ENGINES 2 Rolls Royce AE 3007C1 TOTAL CABIN AREA 538 cu ft AVIONICS Honeywell Primus Elite WINGSPAN 63.9 ft APU Standard Assumptions This report uses custom assumptions that differ from Conklin & de Decker default values for Annual Utilization (Hours), Fuel Price (Jet A). ANNUAL UTILIZATION (DISTANCE) 188,400 nm FUEL PRICE (JET A) $4.45/gal ANNUAL UTILIZATION (HOURS) 400 hrs LABOR COST $136/hr AVERAGE SPEED (STANDARD TRIP) 471 kts ACQUISITION COST $9,200,000 Cessna Aircraft Company Canadian Air Force ordered an additional 180 T-50s. The Cessna-Roos Aircraft Company was incorporated on September 7, 1927, by During WWII, Cessna expanded from a company that employed 200 people in 1940 to Clyde V. Cessna and Victor Roos. One month later, Roos resigned and sold his 6,074 by 1944. At the end of the war, Cessna was able to continue producing aircraft interest back to Cessna. Later that year, the company was renamed the Cessna to sustain a short-lived demand for small aircraft that could be used for short flights. Aircraft Company. Cessna continued work on the "A" series of aircraft he had begun Cessna entered the business aircraft market in 1954 with production of the T-37, its during his partnership with Walter Beech, Lloyd Stearman and the Travel Air Aircraft first jet-powered aircraft.
    [Show full text]
  • National Transportation Safety Board
    National Transportation Safety Board Airport Runway Accidents, Serious Incidents, Recommendations, and Statistics Deadliest Runway Accidents ● Tenerife, Canary Islands, March 27, 1977 (583 fatalities). The world’s deadliest runway accident occurred on March 27, 1977, when Pan Am (PAA) flight 1736, a Boeing 747, and KLM4805, a Boeing 747, collided on runway 12 at Tenerife, Canary Islands, killing 583 passengers and crew. KLM4805 departed runway 12 without a takeoff clearance colliding with PAA1736 that was taxiing on the same runway during instrument meteorological conditions. The Spanish government determined the cause was: “The KLM aircraft had taken off without take-off clearance, in the absolute conviction that this clearance had been obtained, which was the result of a misunderstanding between the tower and the KLM aircraft. This misunderstanding had arisen from the mutual use of usual terminology which, however, gave rise to misinterpretation. In combination with a number of other coinciding circumstances, the premature take-off of the KLM aircraft resulted in a collision with the Pan Am aircraft, because the latter was still on the runway since it had missed the correct intersection.” ● Lexington, Kentucky, August 27, 2006 (49 fatalities). The deadliest runway accident in the United States occurred on August 27, 2006, at about 0606 eastern daylight time when Comair flight 5191, a Bombardier CL-600-2B19, N431CA, crashed during takeoff from Blue Grass Airport, Lexington, Kentucky. The flight crew was instructed to take off from runway 22 but instead lined up the airplane on runway 26 and began the takeoff roll. The airplane ran off the end of the runway and impacted the airport perimeter fence, trees, and terrain.
    [Show full text]
  • Insurance Certificate (PDF)
    3353 Peachtree St N.E., Ste. 1000 Atlanta, GA 30326 Certificate of Insurance Certificate Holder: Wyvern Consulting Ltd. 10 N Main Street, Suite B Yardley, PA 19067 Named Insured: DELTA PRIVATE JETS, INC. 82 COMAIR BOULEVARD ERLANGER, KY 41018 Policy Period: July 15, 2017 to July 15, 2018 Policy Number: 1000223023-02 Issuing Company: STARR INDEMNITY & LIABILITY COMPANY This is to certify that the policy listed herein have been issued providing coverage for the listed insured as further described. This certificate of insurance is not an insurance policy and does not amend, extend, or alter the coverage afforded by the policy listed herein. Notwithstanding any requirement, term or condition of any contract, or other document with respect to which this certificate of insurance may be concerned or may pertain, the insurance afforded by the policy listed on this certificate is subject to all the terms, exclusions, and conditions of such policy. Year Make and Model Reg No Insured Value Deductibles Liability Limit NIM/IM ANY AIRCRAFT OWNED/OPERATED BY THE NAMED $150,000,000 CSL INSURED AND COVERED UNDER THIS POLICY. Including Passengers THE CERTIFICATE HOLDER IS A CHARTER CUSTOMER OF THE NAMED INSURED AND IS INCLUDED AS AN ADDITIONAL INSURED AS RESPECTS THE OPERATIONS OF THE NAMED INSURED. THE CERTIFICATE HOLDER IS A CHARTER CUSTOMER AND IS PROVIDED A WAIVER OF SUBROGATION AS RESPECTS THE ABOVE REFERENCED AIRCRAFT. THE CERTIFICATE HOLDER WILL BE PROVIDED WITH THIRTY (30) DAYS (TEN (10) DAYS IF FOR NON-PAYMENT OF PREMIUM) NOTICE OF CANCELLATION OR MATERIAL CHANGE. WORKMANSHIP EXCLUSION – THE INSURANCE EXTENDED BY THIS ENDORSEMENT SHALL NOT APPLY TO, AND NO PERSON OR ORGANIZATION NAMED IN THE SCHEDULE SHALL BE INSURED FOR BODILY INJURY OR PROPERTY DAMAGE WHICH ARISES FROM THE DESIGN, MANUFACTURE, MODIFICATION, REPAIR, SALE, OR SERVICING OF THE AIRCRAFT BY THAT PERSON OR ORGANIZATION By Certificate Number: CC261 Issued By and Date: July 1, 2017 (WH) Starr 10020 (6/06) CURRENT AIRCRAFT FLEET As of: 07/15/2017 NAMED INSURED: Delta Private Jets, Inc.
    [Show full text]
  • Aircraft Tire Data
    Aircraft tire Engineering Data Introduction Michelin manufactures a wide variety of sizes and types of tires to the exacting standards of the aircraft industry. The information included in this Data Book has been put together as an engineering and technical reference to support the users of Michelin tires. The data is, to the best of our knowledge, accurate and complete at the time of publication. To be as useful a reference tool as possible, we have chosen to include data on as many industry tire sizes as possible. Particular sizes may not be currently available from Michelin. It is advised that all critical data be verified with your Michelin representative prior to making final tire selections. The data contained herein should be used in conjunction with the various standards ; T&RA1, ETRTO2, MIL-PRF- 50413, AIR 8505 - A4 or with the airframer specifications or military design drawings. For those instances where a contradiction exists between T&RA and ETRTO, the T&RA standard has been referenced. In some cases, a tire is used for both civil and military applications. In most cases they follow the same standard. Where they do not, data for both tires are listed and identified. The aircraft application information provided in the tables is based on the most current information supplied by airframe manufacturers and/or contained in published documents. It is intended for use as general reference only. Your requirements may vary depending on the actual configuration of your aircraft. Accordingly, inquiries regarding specific models of aircraft should be directed to the applicable airframe manufacturer.
    [Show full text]