Authorship and Inventorship: an Analysis of Publishing and Patenting Norms and Their Consequences at American Universities Stephanie Chen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infection and Immunity
INFECTION AND IMMUNITY VOLUME 56 0 JANUARY 1988 0 NUMBER 1 J. W. Shands, Jr., Editor in Chief Dexter H. Howard, Editor (1991) (1989) University of California University ofFlorida, Gainesville Peter F. Bonventre, Editor (1989) Los Angeles, Calif. Phillip J. Baker, Editor (1990) University of Cincinnati Stephen H. Leppla, Editor (1991) National Institute ofAllergy and Cincinnati, Ohio U.S. Army Medical Research Institute Infectious Diseases Roy Curtiss III, Editor (1990) of Infectious Diseases Bethesda, Md. Washington University Frederick, Md. Edwin H. Beachey, Editor (1988) St. Louis, Mo. Stephan E. Mergenhagen, Editor (1989) VA Medical Center National Institute ofDental Research Memphis, Tenn. Bethesda, Md. EDITORIAL BOARD Julia Albright (1989) Stanley Falkow (1988) Jerry R. McGhee (1988) Charles F. Schachtele (1988) Leonard t. Altman (1989) Joseph Ferretti (1989) Floyd C. McIntire (1988) Julius Schachter (1989) Michael A. Apicella (1988) Richard A. Finkelstein (1989) John Mekalanos (1989) Patrick Schlievert (1990) Neil R. Baker (1989) Vincent A. Fischetti (1989) Jiri Mestecky (1989) June R. Scott (1990) Alan Barbour (1989) David FitzGerald (1989) Suzanne M. Michalek (1989) Philip Scott (1988) John B. Bartlett (1988) Robert Fitzgerald (1989) David C. Morrison (1989) Gerald D. Shockman (1989) Joel B. Baseman (1988) James D. Folds (1988) Steven Mosely (1990) W. A. Simpson (1988) Robert E. Baughn (1990) Peter Gemski (1988) Antony J. Mukkada (1990) Phillip D. Smith (1988) Gary K. Best (1988) Robert Genco (1988) Robert S. Munford (1989) Ralph Snyderman (1988) Jenefer Blackwell (1988) Ronald J. Gibbons (1988) Juneann W. Murphy (1990) Maggie So (1989) Arnold S. Bleiweis (1990) Jon Goguen (1989) H. Nikaido (1989) P. Frederick Sparling (1990) William H. -
Improving Diagnostic Strategies for Latent Tuberculosis Infection in Populations at Risk for Developing Active Disease
Improving diagnostic strategies for latent tuberculosis infection in populations at risk for developing active disease Laura Muñoz López Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License. UNIVERSIDAD DE BARCELONA Facultad de Medicina IMPROVING DIAGNOSTIC STRATEGIES FOR LATENT TUBERCULOSIS INFECTION IN POPULATIONS AT RISK FOR DEVELOPING ACTIVE DISEASE Memoria presentada por LAURA MUÑOZ LOPEZ Para optar al grado de Doctor en Medicina Barcelona, marzo de 2017 El Dr. Miguel Santín, proFesor asociado de la Facultad de Medicina de la Universidad de Barcelona y Médico Adjunto del Servicio de EnFermedades InFecciosas del Hospital Universitario de Bellvitge, hace constar que la tesis titulada “Improving diagnostic strategies For latent tuberculosis infection in populations at risk for developing active disease” que presenta la licenciada Laura Muñoz, ha sido realizada bajo su dirección en el campus de Bellvitge de la Facultad de Medicina, la considera Finalizada y autoriza su presentación para que sea deFendida ante el tribunal que corresponda. En Barcelona, marzo de 2017 Dr. Miguel Santín A mis padres A mi gran Familia The research presented in this thesis has been carried out thanks to the Fondo de Investigaciones Sanitarias Ministerio de Ciencia e Innovación Beca P-FIS 10/00443 AGRADECIMIENTOS Las primeras palabras de agradecimiento son sin duda para el director de esta tesis. Sin las ideas, horas de trabajo y paciencia de Miguel Santín ninguno de los estudios que componen esta tesis, ni por supuesto la propia tesis, hubiesen visto la luz. -
CHAPTER 104 an ACT Designating Streptomyces Griseus As the New
CHAPTER 104 AN ACT designating Streptomyces griseus as the New Jersey State Microbe and supplementing chapter 9A of Title 52 of the Revised Statutes. WHEREAS, Streptomyces griseus is a soil-based microorganism that was first discovered in New Jersey in 1916 by Dr. Selman Waksman and Dr. Roland Curtis; and WHEREAS, Soon after its discovery, the microbe drew international acclaim for its groundbreaking use as an antibiotic; and WHEREAS, In 1943, a research team from Rutgers University, led by Dr. Waksman with Albert Schatz and Elizabeth Bugie, used Streptomyces griseus to create streptomycin, the world’s first antibiotic for tuberculosis; and WHEREAS, The original discovery paper for streptomycin, entitled “Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative Bacteria,” was co- authored by Dr. Waksman, Dr. Schatz, and Elizabeth Bugie, and published in the Proceedings of the Society for Experimental Biology and Medicine; and WHEREAS, After clinical trials showed that streptomycin cured ailing tuberculosis patients, Merck & Company, a New Jersey-based pharmaceutical company, quickly made the drug available to the public; and WHEREAS, Prior to this discovery, tuberculosis was one of the deadliest diseases in human history and the second leading cause of death in the United States; and WHEREAS, Within 10 years of streptomycin’s release, tuberculosis mortality rates in the U.S. fell to a historic low, with only 9.1 tuberculosis-related deaths per 100,000 people in 1955 compared to the rate of 194 deaths per 100,000 people in 1900; and WHEREAS, According to a June 1947 New York Times article, streptomycin had “become one of the two wonder drugs of medicine” and offered the “promise to save more lives than were lost in both World Wars”; and WHEREAS, Dr. -
Antimicrobial Resistance and the Role of Vaccines
PROGRAM ON THE GLOBAL DEMOGRAPHY OF AGING AT HARVARD UNIVERSITY Working Paper Series Antimicrobial Resistance and the Role of Vaccines David E. Bloom, Steven Black, David Salisbury, and Rino Rappuoli June 2019 PGDA Working Paper No. 170 http://www.hsph.harvard.edu/pgda/working/ Research reported in this publication was supported in part by the National Institute on Aging of the National Institutes of Health under Award Number P30AG024409. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. SPECIAL FEATURE: INTRODUCTION Antimicrobial resistance and the role of vaccines SPECIAL FEATURE: INTRODUCTION David E. Blooma, Steven Blackb, David Salisburyc, and Rino Rappuolid,e,1 Stanley Falkow (Fig. 1) dedicated his life’s work to being reported (6). These health consequences will the study of bacteria and infectious disease. He have damaging social and economic sequelae, such was a leader in the discovery of the mechanisms as lost productivity due to increased morbidity and of antibiotic resistance and among the first to mortality, and even social distancing, as fear of inter- recognize and raise the alarm about the problem of multidrug resistance. The articles of this Spe- personal contact grows. ’ cial Feature on Antimicrobial Resistance and the Although projections of AMR s future burden Role of Vaccines are dedicated to his memory depend on several assumptions and are therefore (Box 1). uncertain, the idea that the health and economic consequences of AMR will become significant is rea- Rising antimicrobial resistance (AMR) is one of the sonable. In 2014, the Review on Antimicrobial Resis- greatest health challenges the world currently faces. -
Milestones and Personalities in Science and Technology
History of Science Stories and anecdotes about famous – and not-so-famous – milestones and personalities in science and technology BUILDING BETTER SCIENCE AGILENT AND YOU For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 1 Agilent Technologies is committed to the educational community and is willing to provide access to company-owned material contained herein. This slide set is created by Agilent Technologies. The usage of the slides is limited to teaching purpose only. These materials and the information contained herein are accepted “as is” and Agilent makes no representations or warranties of any kind with respect to the materials and disclaims any responsibility for them as may be used or reproduced by you. Agilent will not be liable for any damages resulting from or in connection with your use, copying or disclosure of the materials contained herein. You agree to indemnify and hold Agilent harmless for any claims incurred by Agilent as a result of your use or reproduction of these materials. In case pictures, sketches or drawings should be used for any other purpose please contact Agilent Technologies a priori. For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 2 Table of Contents The Father of Modern Chemistry The Man Who Discovered Vitamin C Tags: Antoine-Laurent de Lavoisier, chemical nomenclature Tags: Albert Szent-Györgyi, L-ascorbic acid He Discovered an Entire Area of the Periodic Table The Discovery of Insulin Tags: Sir William Ramsay, noble gas Tags: Frederick Banting, -
Microbiology Immunology Cent
years This booklet was created by Ashley T. Haase, MD, Regents Professor and Head of the Department of Microbiology and Immunology, with invaluable input from current and former faculty, students, and staff. Acknowledgements to Colleen O’Neill, Department Administrator, for editorial and research assistance; the ASM Center for the History of Microbiology and Erik Moore, University Archivist, for historical documents and photos; and Ryan Kueser and the Medical School Office of Communications & Marketing, for design and production assistance. UMN Microbiology & Immunology 2019 Centennial Introduction CELEBRATING A CENTURY OF MICROBIOLOGY & IMMUNOLOGY This brief history captures the last half century from the last history and features foundational ideas and individuals who played prominent roles through their scientific contributions and leadership in microbiology and immunology at the University of Minnesota since the founding of the University in 1851. 1. UMN Microbiology & Immunology 2019 Centennial Microbiology at Minnesota MICROBIOLOGY AT MINNESOTA Microbiology at Minnesota has been From the beginning, faculty have studied distinguished from the beginning by the bacteria, viruses, and fungi relevant to breadth of the microorganisms studied important infectious diseases, from and by the disciplines and sub-disciplines early studies of diphtheria and rabies, represented in the research and teaching of through poliomyelitis, streptococcal and the faculty. The Microbiology Department staphylococcal infection to the present itself, as an integral part of the Medical day, HIV/AIDS and co-morbidities, TB and School since the department’s inception cryptococcal infections, and influenza. in 1918-1919, has been distinguished Beyond medical microbiology, veterinary too by its breadth, serving historically microbiology, microbial physiology, as the organizational center for all industrial microbiology, environmental microbiological teaching and research microbiology and ecology, microbial for the whole University. -
The NIH Human Microbiome Project Authors: the NIH HMP Working Group (
Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press The NIH Human Microbiome Project Authors: the NIH HMP Working Group (http://nihroadmap.nih.gov/hmp/members.asp) ABSTRACT: The Human Microbiome Project ( HMP), funded as an initiative of the NIH Roadmap for Biomedical Research (http://nihroadmap.nih.gov), is a multi-component community resource. The goals of the HMP are (1) to take advantage of new, high-throughput technologies to characterize the human microbiome more fully by studying samples from multiple body sites from each of at least 250 “normal” volunteers; (2) to determine whether there are associations between changes in the microbiome and health/disease by studying several different medical conditions; and (3) to provide both a standardized data resource and new technological approaches to enable such studies to be undertaken broadly in the scientific community. The ethical, legal, and social implications of such research are being systematically studied as well. The ultimate objective of the HMP is to demonstrate that there are opportunities to improve human health through monitoring or manipulation of the human microbiome. The history and implementation of this new program are described here. INTRODUCTION: It has been known for some time that the human body is inhabited by at least ten times more bacteria than the number of human cells in the body, and that the majority of those bacteria are found in the human gastrointestinal tract (Savage 1977). Throughout the history of microbiology, most human studies have focused on the disease-causing organisms found on or in people; fewer studies have examined the benefits of the resident bacteria. -
Affiliates Letter the Official Newsletter for FEMS Affiliates
ALSO IN THIS ISSUE PUBLICATIONS / GRANTS CORNER / FEMS MEMBERS / OPPORTUNITIES / DEADLINES AFFILIATES LETTER THE OFFICIAL NEWSLETTER FOR FEMS AFFILIATES Meet FEMS Delegate Don’t miss Anastasiya Sidarenka an update Dr. Anastasiya Sidarenka It seems miles away, but soon the is FEMS Delegate of the countdown for FEMS 2019 will will Belarussian Non-governmental begin. Don’t want to miss an update Association of Microbiologists. on everything the Congress has to As an experienced researcher offer? Then sign up now for the FEMS in the area of microbial Congress newsletter. physiology and genetics, she is the principle investigator on the projects aimed at molecular detection of plant pathogenic bacteria and fungi and application of microorganisms for plant protection from diseases. Her research interests also in- clude the study of human gut microbiota and microbiota of extreme Antarctic ecosystems. In 2017, the first time after a long stalemate period in the history of Be- larusian Microbiological Society (BNAM) organized the Congress of Mi- crobiologists of Belarus. This marker event rallied microbiologists from different parts of the country to discuss the current state and identify key trends for the development of microbiological science in Belarus, share successes and challenges facing members in their research work, consolidate the efforts for solving important public problems. BNAM has been a full Member of FEMS since 2010 and is currently led by a group of dedicated Belarussian scientists. We asked Dr Anastasiya Sidarenka what it means -
Biographical Notes on Scientists Involved in the Asilomar Process M.J
International Dimensions of Ethics Education in Science and Engineering Case Study Series: Asilomar Conference on Laboratory Precautions Appendix D: Biographical Notes on Scientists involved in the Asilomar Process M.J. Peterson Version 1, June 2010 Edward A. Adelberg (1920-2009). PhD Yale 1949. Chair of Yale Department of Microbiology 1961-64 and 1970-72; a founding member of Yale Department of Genetics. Deputy Provost for the Biomedical Sciences, 1983-91. Specialist in plasmid biochemistry of E. coli. Ephraim Anderson (1911-2006). M.D., Durham University. Served in the Royal Army Medical Corps during World War II where he developed interests in Epidemiology. Researcher in Enteric Laboratory of the British Public Health Laboratory Service 1947, Deputy Director 1952, Director 1954-1978. Came to public notice for tracing sources of typhoid outbreaks in Zermatt (1963) and Aberdeen (1964). Built on earlier work by Japanese researchers to demonstrate the plasmid-based pathways by which bacteria could spread antibiotic resistance to others and became the world’s leading expert on antibiotic resistance. Also prominent in efforts to limit use of antibiotics in raising animals. Fellow of the Royal Society 1968; Companion of the Order of the British Empire 1976. Eric Ashby, Baron Ashby (1904-1992). Lecturer in Botany, Imperial College London 1931-35; Reader in Botany Bristol University 1935-37; Professor of Botany University of Sydney 1938-1946; Chair of Botany, University of Manchester 1947-50. Turned to administration as President and Vice-Chancellor of Queen's University, Belfast 1950-59; Master of Clare College in Cambridge University 1959-67 and Vice-Chancellor of Cambridge University 1967-1969. -
History of Microbiology Milton Wainwright University of Sheffield Joshua Lederbergl the Rockefeller University
History of Microbiology Milton Wainwright University of Sheffield Joshua Lederbergl The Rockefeller University I. Observations without Application ness of the nature and etiology of disease, with the II. The Spontaneous Generation Controversy result that the majority of the traditional killer dis- III. Tools of the Trade eases have now been conquered. Similar strides IV. Microorganisms as Causal Agents of have been made in the use of microorganisms in Disease industry. and more recently attempts are being made V. Chemotherapy and Antibiosis to apply our knowledge of microbial ecology and VI. Microbial Metabolism and Applied physiology to help solve environmental problems. A Microbiology dramatic development and broadening of the subject VII. Nutrition, Comparative Biochemistry, and of microbiology has taken place since World War II. Other Aspects of Metabolism Microbial genetics, molecular biology, and bio- VIII. Microbial Genetics technology in particular have blossomed. It is to be IX. Viruses and Lysogeny: The Plasmid hoped that these developments are sufficiently op- Concept portune to enable us to conquer the latest specter of X. Virology disease facing us, namely AIDS. Any account of the XI. Mycology and Protozoology, history of a discipline is. by its very nature, a per- Microbiology’s Cinderellas sonal view: hopefully, what follows includes all the XII. Modern Period major highlights in the development of our science. The period approximating 1930-1950 was a ‘vi- cennium” of extraordinary transformation of micro- Glossary biology, just prior to the landmark publication on the structure of DNA by Watson and Crick in 1953. Antibiotics Antimicrobial agents produced b) We have important milestones for the vicennium: living organisms Jordan and Falk (1928) and “System of Bacteriol- Bacterial genetics Study of genetic elements and ogy” (1930) at its start are magisterial reviews of hereditary in bacteria prior knowledge and thought. -
Nature Medicine Essay
LASKER~KOSHLAND SPECIAL ACHIEVEMENT IN MEDICAL SCIENCE AWARD COMMENTARY I never met a microbe I didn’t like Stanley Falkow At the age of 11, I read Paul de Kruif’s Microbe Hunters, which dramatized the discovery of bacteria and viruses and their roles in human disease. The heroes of Microbe Hunters—Louis Pasteur, Robert Koch and others—became my heroes, and I dreamed of becoming a bacte- riologist, doing research on the bacteria that cause disease. I was lucky enough to fulfill my boyhood dream; however, I could never have imagined the path I eventually followed, or how much my views of microbes and disease would change (and continue to do so) in the process. Of course, I did not make this journey alone. During the five decades I worked as an active scientist, I helped train over 100 graduate Figure 1 Lab alumni reunion in 2004, Falkow/Tompkins home, Hamilton, Montana, USA. Photo students, postdoctoral fellows and clinical fel- courtesy of Manuel Amieva. lows, and collaborated with 75 other scientists (Fig. 1). Each of us, in our own way, wondered, Professor Herman Chase, a mouse geneticist, nicity. I was unable to transfer any gene from “What is a pathogen?” thought about my question and announced Salmonella or Shigella that altered the measur- that he had just the book to start me on my able pathogenicity or host range of another Entering the genetic and molecular world voyage, the just-published compilation The Salmonella species, or that made E. coli K-12 I was a hospital bacteriologist and an autopsy Chemical Basis of Heredity1. -
June 2021 Issue
SIMB News News Magazine of the Society for Industrial Microbiology and Biotechnology April/May/June 2021 V.71 N.2 • www.simbhq.org The Microbiology of Sheer Fun A Memorial to Douglas E. Eveleigh RAFT® returns to the Hyatt 2021 RAFT® Chairs: Regency Coconut Point Mark Berge, AstraZeneca November 7–10, 2021 Kat Allikian, Mythic Hyatt Regency Coconut Mushrooms Point, Bonita Springs, FL www.simbhq.org/raft contents 34 CORPORATE MEMBERS SIMB News 35 LETTER FROM THE EDITOR-IN-CHIEF Melanie Mormile | Editor-in-Chief 36 SIMB STRATEGIC PLAN Elisabeth Elder | Associate Editor Kristien Mortelmans | Associate Editor 38 NEWSWORTHY Vanessa Nepomuceno | Associate Editor 44 FEATURE: DESIGN & PRODUCTION Katherine Devins | Production Manager THE MICROBIOLOGY OF SHEER FUN: A MEMORIAL TO DOUGLAS E. EVELEIGH (1933–2019) BOARD OF DIRECTORS President Steve Decker 60 SBFC 2021 RECAP President-elect Noel Fong 61 SIMB ANNUAL MEETING 2021 Past President Jan Westpheling 62 RAFT® 14 2021 Secretary Elisabeth Elder SIMB WORKSHOPS Treasurer Laura Jarboe 64 Directors Rob Donofrio 65 INDUSTRIAL MICROBIOLOGY MEETS THE MICROBIOME (IMMM) 2021 Katy Kao Priti Pharkya 68 BOOK REVIEW: Tiffany Rau CLIMATE CHANGE AND MICROBIAL ECOLOGY: CURRENT RESEARCH HEADQUARTERS STAFF AND FUTURE TRENDS (SECOND EDITION) Christine Lowe | Executive Director Jennifer Johnson | Director of Member Services 71 CALENDAR OF EVENTS Tina Hockaday | Meeting Coordinator Suzannah Citrenbaum | Web Manager 73 SIMB COMMITTEE LIST SIMB CORPORATE MEMBERSHIP APPLICATION EDITORIAL CORRESPONDENCE 75 Melanie R. Mormile Email: [email protected] ADVERTISING For information regarding rates, contact SIMB News 3929 Old Lee Highway, Suite 92A Fairfax, VA 22030-2421 P: 703-691-3357 ext 30 F:703-691-7991 On the cover Email: [email protected] Doug Eveleigh wearing his father’s www.simbhq.org bowler hat while examining lichens SIMB News (ISSN 1043-4976), is published quarterly, one volume per year, by the on a tombstone.