Evidence for Iron-Rich Sulfate Melt During Magnetite(-Apatite) Mineralization at El Laco, Chile Wyatt M

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for Iron-Rich Sulfate Melt During Magnetite(-Apatite) Mineralization at El Laco, Chile Wyatt M https://doi .org/10.1130/G48861.1 Manuscript received 14 October 2020 Revised manuscript received 25 January 2021 Manuscript accepted 18 March 2021 © 2021 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 17 May 2021 Evidence for iron-rich sulfate melt during magnetite(-apatite) mineralization at El Laco, Chile Wyatt M. Bain1, Matthew Steele-MacInnis1*, Fernando Tornos2,3, John M. Hanchar3, Emily C. Creaser1 and Dorota K. Pietruszka3 1 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 2 Instituto de Geociencias (IGEO, CSIC-UCM), Dr Severo Ochoa, 7, 28040 Madrid, Spain 3 Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X5, Canada ABSTRACT GEOLOGIC CONTEXT The origins of Kiruna-type magnetite(-apatite) [Mt(-Ap)] deposits are contentious, with El Laco is a Pliocene (5.3–1.6 Ma; Naranjo existing models ranging from purely hydrothermal to orthomagmatic end members. Here, et al., 2010) stratovolcano consisting of radially we evaluate the compositions of fluids that formed the classic yet enigmatic Mt(-Ap) deposit distributed andesite flows (Naslund et al., 2002; at El Laco, northern Chile. We report evidence that ore-stage minerals crystallized from an Tornos et al., 2017) that are isotopically indis- Fe-rich (6–17 wt% Fe) sulfate melt. We suggest that a major component of the liquid was tinguishable from those of the nearby Lascar derived from assimilation of evaporite-bearing sedimentary rocks during emplacement of volcano (Matthews et al., 1994) and other vol- andesitic magma at depth. Hence, we argue that assimilation of evaporite-bearing sedimentary canoes in the Central Volcanic Zone (CVZ) of strata played a key role in the formation of El Laco and likely Mt(-Ap) deposits elsewhere. South America (Harmon et al., 1984; Richards and Villeneuve, 2001). El Laco is underlain by INTRODUCTION paragenesis of those systems (Bain et al., 2020). thick sedimentary sequences that include lime- “Kiruna-type” magnetite-(apatite) [Mt(-Ap)] This raises the possibility that carbonate-sulfate stones and sulfate evaporites of the Cretaceous– deposits (referring to the deposit at Kiruna, Swe- melts play a key role in Mt(-Ap) systems. We Tertiary Salta Group (Matthews et al., 1996; den) are major resources of iron, but their gen- test whether similar melts played a role in min- Marquillas et al., 2005; Tornos et al., 2017) and esis is vigorously debated. Some argue for a eralization at the El Laco deposit in northern phosphatic siderite ironstones of the Paleozoic hydrothermal origin, whereby veins, breccias, Chile (Fig. 1). basement (Boso and Monaldi, 1990; Mungall and replacement zones are formed by circulation The El Laco system (Fig. 1) is central to the et al., 2018). The presence of these lithologies of hot aqueous fluids of magmatic or basinal der- current debate about Mt(-Ap) genesis because it at depth likely accounts for significant crustal ivation (Hildebrand, 1986; Rhodes and Oreskes, shows (1) exceptionally well-preserved volcanic contamination of the intruding andesites (Har- 1999; Sillitoe and Burrows, 2002). Others argue textures suggesting an orthomagmatic (subaerial mon et al., 1984; Matthews et al., 1994) and the for an orthomagmatic origin, whereby orebodies volcanic) origin, and (2) widespread Na-K-Ca strong crustal Sr-Nd signature of the Mt(-Ap) are formed by emplacement and crystallization alteration suggestive of hydrothermal processes orebodies (Tornos et al., 2017). of Fe-rich silicate melt or immiscible iron-oxide (Tornos et al., 2017). Both types of features Magnetite(-apatite) mineralization at El Laco melt (Nyström and Henriquez, 1994; Naslund have been invoked as evidence for a range of occurs mostly as stratabound orebodies interbed- et al., 2002; Velasco et al., 2016; Mungall et al., contrasting orthomagmatic and hydrothermal ded with andesite flows (Naslund et al., 2002; 2018). Some models invoke combinations of models, which are difficult to reconcile. These Tornos et al., 2017). The orebodies are fed by magmatic and hydrothermal processes, includ- competing models for El Laco epitomize the magnetite-rich dikes and show prominent volca- ing exsolution of brines from Fe-rich melts wider debate about Mt(-Ap) genesis globally. nic features including flow banding, gas-escape (Tornos et al., 2017) or buoyancy-driven flota- We characterize the ore-forming fluids at El tubes, pahoehoe textures, and columnar jointing tion of magmatic magnetite by aqueous fluids Laco by detailed analyses of inclusions hosted (Henriquez and Martin, 1978; Naslund et al., (Knipping et al., 2015; Simon et al., 2018). Yet, in ore-stage diopside-magnetite-anhydrite veins 2002; Nyström et al., 2016). At Pasos Blancos, the compositions of the ore-forming fluids— from the Pasos Blancos orebody (Fig. 1; Table coarse mineralized diopside-magnetite-anhy- whether aqueous, silicate, oxide, or other— S1 in the Supplemental Material1). We focus drite (± apatite ± albite ± K-feldspar) veins remain unclear. A recent study of two Mt(- on assemblages of primary inclusions, and our (as much as 50 vol% magnetite) crosscut highly Ap) systems in the southwestern United States results show that an Fe-rich sulfate melt was altered andesite and cap subvertical lenses of showed that Fe-rich (∼4–14 wt% Fe) carbon- present during magnetite deposition. Hence, massive magnetite (Naranjo et al., 2010). The ate-sulfate melts were present throughout the we argue that sulfate-rich melts drove miner- veins show distinctive zonation, with diopside- alization at El Laco and are likely common to rich margins and anhydrite-rich interiors. Late *E-mail: [email protected] Mt(-Ap) systems more broadly. acid-sulfate and earlier alkali-calcic alteration 1Supplemental Material. Additional details on the geologic setting, analytical methods and results, Figures S1–S6, and Tables S1 and S2. Please visit https://doi .org/10.1130/GEOL.S.14470836 to access the supplemental material, and contact [email protected] with any questions. CITATION: Bain, W.M., et al., 2021, Evidence for iron-rich sulfate melt during magnetite(-apatite) mineralization at El Laco, Chile: Geology, v. 49, p. 1044–1048, https://doi.org/10.1130/G48861.1 1044 www.gsapubs.org | Volume 49 | Number 9 | GEOLOGY | Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/49/9/1044/5399969/g48861.1.pdf by guest on 27 September 2021 the analyses are described in the Supplemental translucent crystals. Liquid-vapor homogeniza- A Material. Our analyses focused on coeval mag- tion is between 800 and 951 °C, overlapping the netite, diopside, and lesser albite and apatite range of T estimated from oxygen-isotope frac- from ore-stage veins at Pasos Blancos (Fig. 1C; tionation in the diopside-magnetite-anhydrite Table S1). All four minerals in all samples stud- veins (900–1125 °C; Tornos et al., 2016). ied contain assemblages of primary inclusions composed of polycrystalline aggregates of trans- DISCUSSION AND CONCLUSION lucent and opaque crystals at ambient tempera- The polycrystalline inclusions represent an ture (Figs. 2A–2C; Fig. S3 in the Supplemental Fe-rich sulfate-silicate melt (e.g., ∼6–17 wt% Material). Aqueous liquid-rich inclusions are Fe, ∼7–14 wt% Si, ∼9–11 wt% S, based on conspicuously absent from all assemblages. volumetric proportions of mineral phases pres- Phases and volumetric ratios are remarkably ent). These inclusions occur along growth zones consistent within a given assemblage and always and show consistent phase assemblages, phase B include anhydrite, hematite (5–15 vol%), and ratios, and melting behavior. Sulfate melts albite (Figs. 2D and 2H). Hematite likely rep- are stable at T as low as 900 °C in the system resents oxidation of primary magnetite owing Na2SO4-CaSO4 (Freyer et al., 1998), represented to outward diffusion of hydrogen (Mavrogenes by the subsolidus assemblage of anhydrite plus and Bodnar, 1994). Paragenetically early assem- glauberite (Fig. 2D). Addition of NaCl and H2O blages in the cores of diopside and magnetite significantly lowers the minimum melting T in grains along the vein margins are notably more this system (Walter et al., 2020, their figure 3), silica rich (based on modal proportions of and addition of silica greatly enhances sulfate phases), with anhydrite + hematite ± apatite melting down to <400 °C (Cui et al., 2020). All constituting ∼50 vol% of each inclusion, and of these factors are consistent with the inclusions albite + K-feldspar + quartz making up the observed here (Fig. 2E). Hence, the diopside- remaining ∼50 vol% (Figs. 2E–2H). Parage- magnetite-anhydrite veins were generated by netically later inclusions in the rims of diopside an Fe-sulfate-rich melt. This melt contained a grains are dominated by anhydrite (as much as significant component of felsic silicate material, ∼80 vol%), hematite, and alkali-sulfates includ- evinced by the presence of plagioclase, K-feld- ing glauberite [Na2Ca(SO4)2] (Fig. 2D). Both spar, and quartz in paragenetically earlier inclu- the earlier and later varieties of inclusions are sions (Figs. 2E–2H). This suggests that the melt primary and hosted in coeval magnetite and evolved toward a sulfate-dominant composition CDdiopside, and thus represent ore-stage fluids. over time (Figs. 2B–2D), likely as a result of Additional phases consistently observed in the fractional crystallization of silicate minerals and polycrystalline inclusions include pyrite (Fig. magnetite. S4B), natrite (Na2CO3; Fig. 2D), allanite (Fig. Anhydrite-bearing inclusions have been pre- S4), ilmenite (Fig. 2H), and halite, along with viously observed in pyroxene from hydrother- a vapor phase that occupies interstitial space mally altered andesite at El Laco and were inter- between grains (10–20 vol%; Figs. 2B and preted as “hydrous saline melts” that condensed 2C). Polycrystalline inclusions also occur along- from a hydrothermal brine (Sheets, 1997; Bro- side coeval vapor-rich inclusions in secondary man et al., 1999). The anhydrite-rich inclusions Figure 1. (A) Location of El Laco and Lascar assemblages that crosscut diopside grains.
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • MINERALIZATION in the GOLD HILL MINING DISTRICT, TOOELE COUNTY, UTAH by H
    MINERALIZATION IN THE GOLD HILL MINING DISTRICT, TOOELE COUNTY, UTAH by H. M. EI-Shatoury and J. A. Whelan UTAH GEOLOGICAL AND MINERALOGIC~4L SURVEY affiliated with THE COLLEGE OF MINES AND MINERAL INDUSTRIES University of Utah~ Salt Lake City~ Utah Bulletin 83 Price $2.25 March 1970 CONTENTS Page ABSTRACT. • • . • . • . • . • • . • . • . • • • . • • . • . • .. 5 INTRODUCTION 5 GENERAL GEOLOGY. .. 7 ECONOMIC GEOLOGY. 7 Contact Metasomatic Deposits. 11 Veins. • . 11 Quartz-Carbonate-Adularia Veins 11 Quartz Veins . 15 Calcite Veins. 15 Replacement Deposits . 15 Replacement Deposits in the Ochre Mountain Limestone 15 Replacement Deposits in the Quartz Monzonite 17 HYDROTHERMAL ALTERATION. 17 Alteration of Quartz Monzonite. • 17 Alteration of Limestones. 22 Alteration of the Manning Canyon Formation 23 Alteration of the Quartzite. 23 Alteration of Volcanic Rocks. 23 Alteration of Dike Rocks. 23 Alteration of Quartz-Carbonate Veins . 23 OXIDATION OF ORES. 23 Oxidation of the Copper-Lead-Arsenic-Zinc Replacement Deposits 24 Oxidation of Tungsten and Molybdenum Deposits. 24 Oxidation of the Lead-Zinc Deposits 25 MINERALOGY. 25 CONTROLS OF MINERAL LOCALIZATION 25 ZONAL ARRANGEMENT OF ORE DEPOSITS. 25 GENESIS OF ORE DEPOSITS. 29 DESCRIPTION OF PROPERTIES. 29 The Alvarado Mine. 29 The Cane Spring Mine 30 The Bonnemort Mine 32 The Rube Gold Mine . 32 The Frankie Mine 32 The Yellow Hammer Mine 33 The Rube Lead Mine . 34 FUTURE OF THE DISTRICT AND RECOMMENDATIONS. .. 34 ACKNOWLEDGMENTS. .. 36 REFERENCES. • . .. 36 2 ILLUSTRATIONS Page Frontis piece Figure I. Index map showing location and accessibility to the Gold Hill mining district, Utah . 4 2. Geologic map of Rodenhouse Wash area, showing occurrence of berylliferous quartz-carbonate-adularia veins and sample locations.
    [Show full text]
  • Mineralogy and Geochemistry Study of Ree Minerals in Host Rocks in Iic Iron Deposit, Bafgh Mineral Area, Central Iran
    GEOSABERES: Revista de Estudos Geoeducacionais ISSN: 2178-0463 [email protected] Universidade Federal do Ceará Brasil MINERALOGY AND GEOCHEMISTRY STUDY OF REE MINERALS IN HOST ROCKS IN IIC IRON DEPOSIT, BAFGH MINERAL AREA, CENTRAL IRAN SHIRNAVARD SHIRAZI, MANSOUREH; LOTFI, MOHAMMAD; NEZAFATI, NIMA; GOURABJERIPOUR, ARASH MINERALOGY AND GEOCHEMISTRY STUDY OF REE MINERALS IN HOST ROCKS IN IIC IRON DEPOSIT, BAFGH MINERAL AREA, CENTRAL IRAN GEOSABERES: Revista de Estudos Geoeducacionais, vol. 11, 2020 Universidade Federal do Ceará, Brasil Available in: https://www.redalyc.org/articulo.oa?id=552861694014 DOI: https://doi.org/10.26895/geosaberes.v11i0.909 This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International. PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative MANSOUREH SHIRNAVARD SHIRAZI, et al. MINERALOGY AND GEOCHEMISTRY STUDY OF REE MINERALS IN HOST ROC... MINERALOGY AND GEOCHEMISTRY STUDY OF REE MINERALS IN HOST ROCKS IN IIC IRON DEPOSIT, BAFGH MINERAL AREA, CENTRAL IRAN ESTUDO DE MINERALOGIA E GEOQUÍMICA DE MINERAIS REE EM ROCHAS HOSPEDEIRAS NO DEPÓSITO DE FERRO DA IIC, ÁREA MINERAL DE BAFGH, IRÃ CENTRAL ESTUDIO DE MINERALOGÍA Y GEOQUÍMICA DE MINERALES REE EN ROCAS HOSPEDANTES DE DEPÓSITOS DE HIERRO DE LA CII, ÁREA MINERAL DE BAFGH, IRÁN CENTRAL MANSOUREH SHIRNAVARD SHIRAZI DOI: https://doi.org/10.26895/geosaberes.v11i0.909 Islamic Azad University, Irán Redalyc: https://www.redalyc.org/articulo.oa? [email protected] id=552861694014 http://orcid.org/0000-0001-9242-0341
    [Show full text]
  • ADA Fluoridation Facts 2018
    Fluoridation Facts Dedication This 2018 edition of Fluoridation Facts is dedicated to Dr. Ernest Newbrun, respected researcher, esteemed educator, inspiring mentor and tireless advocate for community water fluoridation. About Fluoridation Facts Fluoridation Facts contains answers to frequently asked questions regarding community water fluoridation. A number of these questions are responses to myths and misconceptions advanced by a small faction opposed to water fluoridation. The answers to the questions that appear in Fluoridation Facts are based on generally accepted, peer-reviewed, scientific evidence. They are offered to assist policy makers and the general public in making informed decisions. The answers are supported by over 400 credible scientific articles, as referenced within the document. It is hoped that decision makers will make sound choices based on this body of generally accepted, peer-reviewed science. Acknowledgments This publication was developed by the National Fluoridation Advisory Committee (NFAC) of the American Dental Association (ADA) Council on Advocacy for Access and Prevention (CAAP). NFAC members participating in the development of the publication included Valerie Peckosh, DMD, chair; Robert Crawford, DDS; Jay Kumar, DDS, MPH; Steven Levy, DDS, MPH; E. Angeles Martinez Mier, DDS, MSD, PhD; Howard Pollick, BDS, MPH; Brittany Seymour, DDS, MPH and Leon Stanislav, DDS. Principal CAAP staff contributions to this edition of Fluoridation Facts were made by: Jane S. McGinley, RDH, MBA, Manager, Fluoridation and Preventive Health Activities; Sharon (Sharee) R. Clough, RDH, MS Ed Manager, Preventive Health Activities and Carlos Jones, Coordinator, Action for Dental Health. Other significant staff contributors included Paul O’Connor, Senior Legislative Liaison, Department of State Government Affairs.
    [Show full text]
  • Oxygen and Iron Isotope Systematics of the Grängesberg Mining District (GMD), Central Sweden
    Oxygen and Iron Isotope Systematics Examensarbete vid Institutionen för geovetenskaper of the Grängesberg Mining District ISSN 1650-6553 Nr 251 (GMD), Central Sweden Franz Weis Oxygen and Iron Isotope Systematics of the Grängesberg Mining District Iron is the most important metal for modern industry and Sweden is (GMD), Central Sweden the number one iron producer in Europe. The main sources for iron ore in Sweden are the apatite-iron oxide deposits of the “Kiruna-type”, named after the iconic Kiruna ore deposit in Northern Sweden. The genesis of this ore type is, however, not fully understood and various schools of thought exist, being broadly divided into “ortho-magmatic” versus the “hydrothermal replacement” approaches. This study focuses on the origin of apatite-iron oxide ore of the Grängesberg Mining District (GMD) in Central Sweden, one of the largest iron reserves in Sweden, employing oxygen and iron isotope analyses on Franz Weis massive, vein and disseminated GMD magnetite, quartz and meta- volcanic host rocks. As a reference, oxygen and iron isotopes of magnetites from other Swedish and international iron ores as well as from various international volcanic materials were also analysed. These additional samples included both “ortho-magmatic” and “hydrothermal” magnetites and thus represent a basis for a comparative analysis with the GMD ore. The combined data and the derived temperatures support a scenario that is consistent with the GMD apatite-iron oxides having originated dominantly (ca. 87 %) through ortho-magmatic processes with magnetite crystallisation from oxide-rich intermediate magmas and magmatic fluids at temperatures between of 600 °C to 900 °C.
    [Show full text]
  • Insights on the Effects of the Hydrothermal Alteration in the El Laco Magnetite Deposit (Chile) / FRANCISCO VELASCO (1.), FERNANDO TORNOS (2)
    macla nº 16. junio ‘12 210 revista de la sociedad española de mineralogía Insights on the Effects of the Hydrothermal Alteration in the El Laco Magnetite Deposit (Chile) / FRANCISCO VELASCO (1.1), FERNANDO TORNOS (2) (1) Dpto. de Mineralogía y Petrología.Universidad del País Vasco UPV/EHU, Sarriena s/n, 0 Leioa, Spain. (2) Instituto Geológico y Minero de España, Madrid, Spain. INTRODUCCIÓN The understanding of the origin of the recent (ca. 2 Ma) El Laco deposit (Fig. 1), with near 1 Gt of almost pure magnetite/hematite, is considered critical for the interpretation of the Kiruna type magnetite-apatite style of mineralization, an end-member of the IOCG group of deposits. Despite the abundant studies conducted in the last decades on El Laco, with little erosion, well preserved volcanic features and excellent conditions of exposure, there is no agreement between models that support a genesis related to the hydrothermal replacement of preexisting andesitic rocks (Rhodes & Oreskes, 1999; Rhodes et al., 1999) and those which interpret the deposit as magmatic flows and dikes product of the crystallization of an iron oxide melt (Frutos & Oyarzun, 1975; Nyström & Henríquez, 1994; Naslund et al., 2002; Henríquez et al., 2003; Tornos et al., fig. 1 Schematic geological map of the magnetite orebodies (black) at the El Laco district hosted in the Plio- 2011). To solve this fascinating Pleistocene andesitic volcanic arc, northern Chile (modified from Frutos M Oyarzun, 1PQR).! controversy is crucial to understand the problem from a global point of view, host rocks. Except for some dikes, most crystals (size mm to several cm) integrating geological and geochemical of the magnetite orebodies (Laco Sur, intergrown with prismatic-acicular data of the magmatic and hydrothermal Laco Norte, S.
    [Show full text]
  • Tungsten Minerals and Deposits
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance.................................
    [Show full text]
  • Preparation and Solubility of Hydroxyapatite
    JOURNAL O F RESEARC H of the National Bureau of Standards - A. Ph ys ics a nd Chemistry Vol. 72A, No. 6, N ovember- December 1968 Preparation and Solubility of Hydroxyapatite E. C. Moreno,* T. M. Gregory,* and W. E. Brown* Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234 (August 2, 1968) Two portions of a syntheti c hydroxyapatite (HA), Ca" OH(PO'}J, full y characterized by x-ray, infrared, petrographi c, and chemi cal anal yses, were heated at 1,000 °C in air and steam atmospheres, respectively. Solubility isotherms for these two samples in the syste m Ca(OH}2 -H3PO,-H20 were determined in the pH range 5 to 7 by equilibrating the solids with dilute H3 PO. solutions. Both sam­ ples of HA disso lved stoichiometrically. The activity products (Ca + +)'( OH - ) (pO~f' and their standard errors-obtained by a least squares adjustment of the measurements (Ca and P concentrations and pH of the saturated solutions) subject to the conditions of electroneutralit y, constancy of the activity product, and stoichiometric dissolution - were 3.73 ± 0.5 x 10- 58 for the steam-h eated HA and 2_5, ± 0.4 x 10- 55 for the air-heated HA. Allowance was made in the calculations for the presence of the ion pairs [CaHPO. lo and [CaH2P04 1+ The hi gher solubility product for the air-heated HA is as­ cribed either to a change in the heat of formation brought about by partial dehydration or to a state of fine subdivision resulting from a disproportionation reacti on_ The solubility product constant s were used to cal culate the points of intersection (i.e_, sin gular points) of the two HA solubility isot herms with the isotherms of CaHPO.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Mineral Chemistry of Magnetite from Magnetite- Apatite Mineralization and Their Host Rocks: Examples from Kiruna, Sweden and El Laco, Chile
    Mineral chemistry of magnetite from magnetite- apatite mineralization and their host rocks: Examples from Kiruna, Sweden and El Laco, Chile Shannon G. Broughm A thesis submitted to the Department of Earth Sciences in partial fulfillment of the requirements for the degree of Master of Science. Memorial University of Newfoundland Abstract Magnetite-apatite deposits, sometimes referred to as Kiruna-type deposits, are major producers of iron ore that dominantly consist of the mineral magnetite (nominally 2+ 3+ [Fe Fe 2]O4). It remains unclear whether magnetite-apatite deposits are of hydrothermal or magmatic origin, or a combination of those two processes, and this has been a subject of debate for over a century. Magnetite is sensitive to the physicochemical conditions in which it crystallizes (such as element availability, temperature, pH, fO2, and fS2) and may contain distinct trace element concentrations depending on the growing environment. These properties make magnetite potentially a useful geochemical indicator for understanding the genesis of magnetite-apatite mineralization. The samples used in this study are from precisely known geographic locations and geologic environments in the world class districts of Kiruna and the Atacama Desert and their associated, sometimes hydrothermally altered, host rocks. Trace element analyses results of magnetite from the Kiruna area in the Norrbotten region of northern Sweden, and the El Laco and Láscar volcanoes in the Atacama Desert of northeastern Chile, were evaluated using mineral deposit-type and magmatic vs. hydrothermally derived magnetite discrimination diagrams. The objectives of this study are to critically evaluate the practical use and limitations of these discrimination diagrams with the goal of determining if the trace element chemistry of magnetite can be used to resolve if magnetite-apatite deposits form in a hydrothermal or magmatic environment, or a combination of those two processes.
    [Show full text]
  • Global Correlation of Oxygen and Iron Isotope on Kiruna-Type Ap-Fe-Ox Ores
    Global correlation of oxygen and iron isotope on Kiruna-type Ap-Fe-Ox ores Valentin R. Troll, Franz Weis, Erik Jonsson, Ulf B. Andersson , Chris Harris, Afshin Majidi, Karin Högdahl, Marc-Alban Millet, Sakthi Saravanan, Ellen Koijman, Katarina P. Nilsson Iron is master of them all • Despite the need for REE, iron is still the number 1 metal for modern industry…and will remain so for some time (e.g. USGS) • Kiruna-type Ap-Fe-oxide ores are the dominant source of industrially used iron in Europe • ….and Sweden is the country with the dominant concentration of Kiruna – type ore deposits in Europe What are apatite-iron- oxide ores? • Also referred to as the ”Kiruna-type”. Often massive magnetite associated with apatite • Grouped together with IOCG-deposits • Usually associated with subduction zones and extensional settings • Form lense-shaped or disc-like ore bodies • Occur from Paleoproterozoic (e.g. Kiruna), through Proterozoic (Bafq) to Quaternary (e.g. El Laco) What are apatite-iron- oxide ores? • About 355 deposits and prospects worldwide • Contain low-Ti magnetite as main ore mineral and F-rich apatite. Hematite may be present • Known for large sizes and high grades (e.g. Kiruna, pre- mining reserve 2 billion tons, grade > 60%) How do apatite-iron-oxide ores form? • Their origin is not yet fully understood and a debate has been going on for over 100 years. Two broad schools of thought exist: Orthomagmatic ore formation (high-T magmatic) Hydrothermal ore formation (low-T fluids and associated replacement) Aim: Investigate the origin of the massive apatite- iron-oxide ores from Sweden and elsewhere, using stable isotopes of iron and oxygen – the main elements in magnetite Hypothesis Magnetite that formed from magma should be in equilibrium with a magmatic source δ-value (magma or magmatic fluid) as fractionation temperatures should lie in the magmatic range.
    [Show full text]
  • El Depósito De Magnetita De El Laco (Chile): Evidencias De Una Evolución Magmático
    macla nº 11. septiembre ‘09 revista de la sociedad española de mineralogía 181 El Depósito de Magnetita de El Laco (Chile): Evidencias de una Evolución Magmático- Hidrotermal / FERNANDO TORNOS (1,*), FRANCISCO VELASCO (2) (1) Instituto Geológico y Minero de España. c/Azafranal 48, 37001 Salamanca (España). (2) Departamento de Petrología y Mineralogía. Universidad del País Vasco. Leoia (España). INTRODUCCIÓN. colada sin dejar restos. La mineralización discordante es texturalmente muy distinta y está El depósito de magnetita de El Laco, con En este resumen se muestran formada por magnetita en grandes más de 500 Mt de magnetita masiva se evidencias de que la mineralización de cristales que se interpretan como localiza en el actual eje magmático de El Laco es compatible con un origen debidos a disyunción columnar. El los Andes a una altura entre 4800 y magmático para la magnetita y que la apatito es mucho más abundante que 5200 msnm. Está relacionado espacial y propia cristalización de ese magma es en el otro estilo de mineralización. cronológicamente con un volcán de responsable de la intensa alteración Aunque forma afloramientos andesita datado en 2.0±0.3 Ma hidrotermal existente. independientes, hay una relación directa (Gardeweg & Ramírez, 1985). La entre estos cuerpos y los estratoides. importancia de este depósito estriba en ASPECTOS GEOLÓGICOS GENERALES. que debido a su carácter sub-actual es La alteración hidrotermal ha afectado a el lugar idóneo para discutir la génesis La mineralización de El Laco está grandes zonas alrededor de El Laco y de los depósitos de magnetita-apatito formada por magnetita masiva en todavía hay una cierta alteración tipo Kiruna y de las mineralizaciones de cuerpos estratoides y discordantes.
    [Show full text]