Oxygen and Iron Isotope Systematics of the Grängesberg Mining District (GMD), Central Sweden
Total Page:16
File Type:pdf, Size:1020Kb
Oxygen and Iron Isotope Systematics Examensarbete vid Institutionen för geovetenskaper of the Grängesberg Mining District ISSN 1650-6553 Nr 251 (GMD), Central Sweden Franz Weis Oxygen and Iron Isotope Systematics of the Grängesberg Mining District Iron is the most important metal for modern industry and Sweden is (GMD), Central Sweden the number one iron producer in Europe. The main sources for iron ore in Sweden are the apatite-iron oxide deposits of the “Kiruna-type”, named after the iconic Kiruna ore deposit in Northern Sweden. The genesis of this ore type is, however, not fully understood and various schools of thought exist, being broadly divided into “ortho-magmatic” versus the “hydrothermal replacement” approaches. This study focuses on the origin of apatite-iron oxide ore of the Grängesberg Mining District (GMD) in Central Sweden, one of the largest iron reserves in Sweden, employing oxygen and iron isotope analyses on Franz Weis massive, vein and disseminated GMD magnetite, quartz and meta- volcanic host rocks. As a reference, oxygen and iron isotopes of magnetites from other Swedish and international iron ores as well as from various international volcanic materials were also analysed. These additional samples included both “ortho-magmatic” and “hydrothermal” magnetites and thus represent a basis for a comparative analysis with the GMD ore. The combined data and the derived temperatures support a scenario that is consistent with the GMD apatite-iron oxides having originated dominantly (ca. 87 %) through ortho-magmatic processes with magnetite crystallisation from oxide-rich intermediate magmas and magmatic fluids at temperatures between of 600 °C to 900 °C. A minor portion of the GMD magnetites (ca. 13 %), exclusively made up of vein and disseminated ore types, is in equilibrium with a high-δ18O and low-δ56Fe hydrothermal fluid at temperatures below 400 °C, indicating the existence of a hydrothermal system associated with the GMD volcano. Uppsala universitet, Institutionen för geovetenskaper Examensarbete E1, Berggrundsgeologi, 30 hp ISSN 1650-6553 Nr 251 Tryckt hos Institutionen för geovetenskaper, Geotryckeriet, Uppsala universitet, Uppsala, 2013. Examensarbete vid Institutionen för geovetenskaper ISSN 1650-6553 Nr 251 Oxygen and Iron Isotope Systematics of the Grängesberg Mining District (GMD), Central Sweden Franz Weis Oxygen and iron isotope systematics of the Grängesberg Mining District (GMD), Central Sweden Table of contents Abstract ..................................................................................................................................3 Sammanfattning på Svenska ...................................................................................................3 Zusammenfassung ..................................................................................................................4 1. Introduction ........................................................................................................................5 1.1 Apatite-iron oxide deposits ............................................................................................6 1.2 The origin of apatite-iron oxide ores ..............................................................................7 2. Aim of study .......................................................................................................................8 3. Samples and geological background ...................................................................................9 3.1 Samples.........................................................................................................................9 3.2 Geological background................................................................................................ 14 3.2.1 The geology of the Bergslagen mining district ...................................................... 14 3.2.2 Local geology of the Grängesberg Mining District ................................................ 16 3.2.3 Geological background of additional Swedish ore samples ................................... 18 3.2.3.1 Geology of Kiruna .......................................................................................... 18 3.2.3.2 Geology of Dannemora .................................................................................. 18 3.2.3.3 The geology of Striberg .................................................................................. 19 3.2.3.4 Swedish Layered Igneous Intrusions ............................................................... 20 3.2.4 Geological background of international magnetite samples ................................... 21 3.2.4.1 Geology of El Laco (Chile) ............................................................................ 21 3.2.4.2 Layered Igneous Intrusions ............................................................................. 22 3.2.4.3 Volcanic reference materials .......................................................................... 23 4. Analytical Methods........................................................................................................... 26 4.1 Sample preparation and analysis .................................................................................. 26 4.2 Possible analytical errors ............................................................................................. 27 5. Background on stable isotope systematics and data evaluation methodology ..................... 29 5.1 Stable isotopes and the δ-value .................................................................................... 29 5.2 Stable isotope fractionation ......................................................................................... 29 1 6. Results .............................................................................................................................. 32 6.1 Oxygen and iron isotope data of different magnetite ores and reference materials........ 32 6.1.1 Oxygen isotopes ................................................................................................... 32 6.1.2 Iron isotopes ......................................................................................................... 33 6.2 Isotope data for hydrothermal aureole identification .................................................... 35 7. Discussion ........................................................................................................................ 37 7.1 Determining ore formation processes .......................................................................... 37 7.1.1 Comparison of magmatic and ore magnetites ........................................................ 37 7.1.1.1 Oxygen isotopes ............................................................................................. 37 7.1.1.2 Iron isotopes ................................................................................................... 38 7.1.1.3 Bimodal formation ......................................................................................... 40 7.1.2 Calculation of possible ore sources ....................................................................... 41 7.1.3 Geothermometric calculations ............................................................................... 49 8. Hydrothermal aureole identification .................................................................................. 51 8.1 Hypothesis and background ......................................................................................... 51 8.2 Results ........................................................................................................................ 52 8.3 Calculation of possible quartz sources ......................................................................... 54 8.4 Interpretation ............................................................................................................... 55 9. Summary of the data evaluation ........................................................................................ 56 10. A conceptual model ........................................................................................................ 57 10.1 High temperature: crystallisation from magma .......................................................... 57 10.2 Ore formation from magmatic fluids ......................................................................... 58 10.3 Low-temperature: hydrothermal re-deposition ........................................................... 59 11. Summary and Conclusions .............................................................................................. 62 12. Acknowledgments .......................................................................................................... 64 13. References ...................................................................................................................... 66 14. Appendix ........................................................................................................................ 76 14.1 Appendix 1................................................................................................................ 76 2 Abstract Iron is the most important metal for modern industry and Sweden is the number one iron producer in Europe. The main sources for iron ore in Sweden are the apatite-iron oxide deposits of the “Kiruna-type”, named after the iconic Kiruna ore deposit in Northern Sweden. The genesis of this ore type is, however, not fully understood and various schools of thought exist, being