Bcl2l12-Mediated Inhibition of Effector Caspase-3 and Caspase-7 Via Distinct Mechanisms in Glioblastoma

Total Page:16

File Type:pdf, Size:1020Kb

Bcl2l12-Mediated Inhibition of Effector Caspase-3 and Caspase-7 Via Distinct Mechanisms in Glioblastoma Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma Alexander H. Stegh*, Santosh Kesari*†, John E. Mahoney‡, Harry T. Jenq§, Kristin L. Forloney*, Alexei Protopopov*‡, David N. Louis¶, Lynda Chin*‡ʈ, and Ronald A. DePinho*‡**†† *Department of Medical Oncology, and ‡Center for Applied Cancer Science of the Belfer Foundation Institute for Innovative Cancer Science, Dana–Farber Cancer Institute, Boston, MA 02115; †Center for Neuro-Oncology and Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115; §Division of Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA 02114; ¶Department of Pathology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and Departments of ʈDermatology and **Medicine and Genetics, Harvard Medical School, Boston, MA 02115 Edited by William A. Weiss, University of California, San Francisco, CA, and accepted by the Editorial Board May 22, 2008 (received for review January 7, 2008) Glioblastoma multiforme (GBM) is a highly aggressive brain cancer matched well with direct physical interaction in vitro and in vivo with that is characterized by the paradoxical features of intense apoptosis the pro-caspase. The means through which Bcl2L12 inhibited resistance yet a marked propensity to undergo necrosis. Bcl2L12 (for caspase-3 was not defined and did not involve physical interaction Bcl2-Like12) is a nuclear and cytoplasmic oncoprotein that is univer- between Bcl2L12 and caspase-3. sally overexpressed in primary GBM and functions to block postmi- In this study, we sought to elucidate the mechanism of Bcl2L12- tochondrial apoptosis signaling by neutralizing effector caspase-3 mediated neutralization of caspase-3. Transcriptome analyses of and caspase-7 maturation. This postmitochondrial block in apoptosis Bcl2L12-expressing astrocytic cultures revealed prominent up- engenders the alternate cell fate of cellular necrosis, thus providing a regulation of ␣B-crystallin expression. The previously described molecular explanation for GBM’s classical features. Whereas Bcl2L12- capacity of recombinant ␣B-crystallin protein to inhibit caspase-3 mediated neutralization of caspase-7 maturation involves physical activation in a cell-free system (14) prompted a detailed analysis of interaction, the mechanism governing Bcl2L12-mediated inhibition of a potential Bcl2L12-␣B-crystallin signaling axis in cultured astro- caspase-3 activity is not known. The nuclear localization of Bcl2L12 cytes and glioma cell lines, orthotopic glioma xenotransplants, and prompted expression profile studies of primary astrocytes engi- primary GBM specimens. Gain- and loss-of-function assays and neered to overexpress Bcl2L12. The Bcl2L12 transcriptome revealed a detailed biochemical studies in both normal and neoplastic glial striking induction of the small heat shock protein ␣-basic-crystallin model systems establish a pathway comprised of Bcl2L12–␣B- (␣B-crystallin/HspB5), a link reinforced by robust ␣B-crystallin expres- crystallin–caspase-3 in the regulation of apoptosis and necrosis in sion in Bcl2L12-expressing orthotopic glioma and strong coexpression vitro and in vivo. Together, these studies reveal the multifunctional of ␣B-crystallin and Bcl2L12 proteins in human primary GBMs. On the nature of the Bcl2L12 oncoprotein, operating in both the cytoplasm functional level, enforced ␣B-crystallin or Bcl2L12 expression en- and nucleus to effect survival signaling in gliomagenesis. SCIENCES hances orthotopic tumor growth. Conversely, RNAi-mediated knock- ␣ Results down of B-crystallin in Bcl2L12-expressing astrocytes and glioma cell APPLIED BIOLOGICAL lines with high endogenous ␣B-crystallin showed enhanced apopto- Bcl2L12 Drives Up-Regulation of ␣B-Crystallin. The cytoplasmic pres- sis, yet decreased necrotic cell death with associated increased ence of Bcl2L12 is consistent with its physical and inhibitory actions caspase-3 but not caspase-7 activation. Mirroring this specific effect on caspase-7 (13). At the same time, abundant Bcl2L12 in the on effector caspase-3 activation, ␣B-crystallin selectively binds pro- nucleoplasm prompted transcriptional profiling studies to assess caspase-3 and its cleavage intermediates in vitro and in vivo. Thus, whether the range of Bcl2L12’s antiapoptotic activities might ␣B-crystallin is a Bcl2L12-induced oncoprotein that enables Bcl2L12 to extend to more direct effects on gene expression. Strikingly, block the activation of both effector caspases via distinct mechanisms, Bcl2L12V5-expressing Ink4a/Arf-deficient cortical astrocytes thereby contributing to GBM pathogenesis and its hallmark biological showed marked up-regulation of ␣B-crystallin by micorarray, quan- properties. titative RT-PCR, and Western blot analyses [Fig. 1A, supporting information (SI) Table S1, and data not shown]. In contrast, heat shock protein ͉ apoptosis/necrosis balance ͉ glial cells ␣B-crystallin was unchanged in the context of Bcl-2 expression (Fig. 1A), suggesting that up-regulation of ␣B-crystallin is not a general function of Bcl-2 family proteins. The specific physiological link lioblastoma multiforme (GBM) is a highly aggressive brain ␣ Gcancer characterized by rapid tumor cell proliferation, intense between Bcl2L12 and B-crystallin is supported further by the apoptosis resistance, and marked necrosis, tumor biological fea- inability of Bcl2L12 to influence expression of other apoptosis tures underlying its neurologically destructive course and its high modulators including postmitochondrial caspases and their inhib- lethality typically within 12–24 months of diagnosis. The mecha- itors and other members of the heat shock protein family such as nisms underlying GBM’s intense apoptosis resistance and associ- Hsp70 and Hsp27 (Fig. 1A and Table S1). Table S2 provides a ated poor therapeutic responsiveness relate in part to the reinforc- complete list of differentially expressed genes by 1.3-fold relative to ing activities of coactivated RTKs (1) and defective PTEN and p53 empty vector controls. proteins (2, 3) and modulation of classical apoptosis regulators such as Bcl-2 family proteins (4–7), soluble decoy receptor 3 (DcR3) (8), Author contributions: A.H.S. and R.A.D. designed research; A.H.S., S.K., J.E.M., H.T.J., K.L.F., APRIL (9), and PEA-15 (10–12). and A.P. performed research; A.H.S., S.K., J.E.M., A.P., D.N.L., and L.C. analyzed data; and In GBM oncogenomic studies, we identified and functionally A.H.S., L.C., and R.A.D. wrote the paper. characterized Bcl2L12 (for Bcl2-Like-12), a proline-rich and BH2 The authors declare no conflict of interest. domain-containing protein that is robustly expressed in virtually all This article is a PNAS Direct Submission. W.A.W. is a guest editor invited by the Editorial human primary GBM specimens (13). Enforced Bcl2L12 expres- Board. sion in primary cortical astrocytes conferred marked apoptosis ††To whom correspondence should be addressed. E-mail: ron࿝[email protected]. resistance and engendered cellular necrosis through inhibition of This article contains supporting information online at www.pnas.org/cgi/content/full/ effector caspase-3 and caspase-7 maturation downstream of mito- 0712034105/DCSupplemental. chondria (13). The capacity of Bcl2L12 to block caspase-7 activation © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0712034105 PNAS ͉ August 5, 2008 ͉ vol. 105 ͉ no. 31 ͉ 10703–10708 Downloaded by guest on September 24, 2021 A C αB-crystallinhigh αB-crystallinhigh αB-crystallinlow GBM-1 GBM-2 GBM-3 pBabe Bcl-2 kDa LacZ Bcl2L12 75- -Hsp70 40x 105- -Hsp90 Bcl2L12 B-crystallin 25- -αB-crystallin α -Hsp27 zoom 25- D 50- -XIAP p<0.01 B 400 Bcl2L12 B-crystallin ␣ α α Fig. 1. Bcl2L12 up-regulates B-crystallin protein levels in vitro and in vivo.(A) Western blot analysis of 350 postmitochondrial apoptosis effectors in Ink4a/ArfϪ/Ϫ astrocytes ectopically expressing a pBabe control, 300 Bcl2L12V5, LacZV5, and Bcl-2. The migration positions of p=0.018 Hsp70, Hsp90, ␣B-crystallin, Hsp27, and XIAP are indi- ␣ 250 cated. (B) Quantification of B-crystallin positivity in U98MG xenograft tumor sections. A total of 10–15 low 0% 57% 0% 44% 0% 5% power fields (LPFs) per genotype were counted. Error 200 bars represent SDs, and P values were calculated by using Student’s t test. (C) Coexpression analysis of 12% 31% 16% 40% 37% 58% ␣ 150 B-crystallin B-crystallin and Bcl2L12 in primary human GBM. GBM α Bcl2L12 cores were stained with a monoclonal anti-␣B- crystallin antibody (red) and a polyclonal Bcl2L12 (anti- B-crystallin-postivie100 cells/LPF L12–2) antiserum (brown). Shown are three represen- α E ρ=0.62 ρ=0.62 50,000 tative cores at ϫ40 magnifications. (D) Heat map (Top; 50 rel. intensity yellow dots ϭ Bcl2L12 positive; red dots ϭ ␣B-crystallin 40,000 positive) and density plot analyses (Middle) of Bcl2L12/ ␣B-crystallin double stainings in three representative 0 30,000 2 GBM cores shown in C. The percentages of Bcl2L12 and e 1 (+) b 20,000 ␣ L a B-crystallin-positive and -negative tumor cells are in- 2 l B c dicated (Bottom) with Bcl2L12 intensities plotted on p 10,000 B the x axis and ␣B-crystallin intensities on the y axis. (E) U87MG xenograft 0 Analysis of coexpression across 61 GBM cores in com- 46 51 56 61 31 36 41 parison with normal brain. Shown are intensity levels 16 21 26 6 11 Bcl2L12pos of Bcl2L12 (yellow), ␣B-crystallin (red), and levels of Tumor # αB-crystallinpos coexpression (green). Pearson correlation coefficient normal Double pos. ␳ ϭ 0.62. To assess whether Bcl2L12V5-dependent up-regulation of ␣B- detailed staining protocol and analysis methodology). Triply crystallin in cell culture is also operative in glioma cells in vivo,we stained for Bcl2L12 [diaminobenzidine (DAB), brown], ␣B- examined ␣B-crystallin protein expression in intracranial xeno- crystallin (FastRed), and hematoxylin, TMA sections were scanned transplants derived from the well established U87MG human with three lasers in distinct wavelength channels, demonstrating the glioma model system. Bcl2L12V5 and EGFRvIII overexpression coexpression of both proteins (Fig.
Recommended publications
  • Glioma Oncoprotein Bcl2l12 Inhibits the P53 Tumor Suppressor
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor Alexander H. Stegh,1,2,7 Cameron Brennan,3 John A. Mahoney,1 Kristin L. Forloney,1 Harry T. Jenq,4 Janina P. Luciano,2 Alexei Protopopov,1 Lynda Chin,1,5 and Ronald A. DePinho1,6,8 1Belfer Institute for Applied Cancer Science, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 2Ken and Ruth Davee Department of Neurology, Robert H. Lurie Comprehensive Cancer Center, The Brain Tumor Institute, Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA; 3Brain Tumor Center, Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA; 4Division of Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, Massachusetts 02114, USA; 5Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, USA; 6Department of Medicine and Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by intense apoptosis resistance and extensive necrosis. Bcl2L12 (for Bcl2-like 12) is a cytoplasmic and nuclear protein that is overexpressed in primary GBM and functions to inhibit post-mitochondrial apoptosis signaling. Here, we show that nuclear Bcl2L12 physically and functionally interacts with the p53 tumor suppressor, as evidenced by the capacity of Bcl2L12 to (1) enable bypass of replicative senescence without concomitant loss of p53 or p19Arf, (2) inhibit p53-dependent DNA damage-induced apoptosis, (3) impede the capacity of p53 to bind some of its target gene promoters, and (4) attenuate endogenous p53-directed transcriptomic changes following genotoxic stress.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Inhibition of Mitochondrial Complex II in Neuronal Cells Triggers Unique
    www.nature.com/scientificreports OPEN Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration Sathyanarayanan Ranganayaki1, Neema Jamshidi2, Mohamad Aiyaz3, Santhosh‑Kumar Rashmi4, Narayanappa Gayathri4, Pulleri Kandi Harsha5, Balasundaram Padmanabhan6 & Muchukunte Mukunda Srinivas Bharath7* Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1‑methyl‑4‑phenylpyridinium (MPP+) and 3‑nitropropionic acid (3‑NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down‑stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome‑wide transcriptomics of N27 neuronal cells exposed to 3‑NPA, compared with MPP+ and Mn revealed varied transcriptomic profle. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway diferentially regulated in the 3‑NPA model with implications for neuronal survival. This pathway was unique to 3‑NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3‑NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor
    [Show full text]
  • Atlas Journal
    Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Tumors Cancer prone Deep Insight Case Reports Portal Journals Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 13, Number 7, July 2009 Previous Issue / Next Issue Genes ABL1 (v-abl Abelson murine leukemia viral oncogene homolog 1) (9q34.1) - updated. Ali G Turhan. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 757-766. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/ABL.html BCL2L12 (BCL2-like 12 (proline-rich)) (19q13.3). Christos Kontos, Hellinida Thomadaki, Andreas Scorilas. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 767-771. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/BCL2L12ID773ch19q13.html BCR (Breakpoint cluster region) (22q11.2) - updated. Ali G Turhan. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 772-779. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/BCR.html ENAH (enabled homolog (Drosophila)) (1q42.12). Paola Nisticò, Francesca Di Modugno. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 780-785. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/ENAHID44148ch1q42.html FGFR2 (fibroblast growth factor receptor 2) (10q26.13). Masaru Katoh. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 786-799. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/FGFR2ID40570ch10q26.html MAPK6 (mitogen-activated protein kinase 6) (15q21.2). Sylvain Meloche. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 800-804.
    [Show full text]
  • BCL2L12 (NM 138639) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221347 BCL2L12 (NM_138639) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: BCL2L12 (NM_138639) Human Tagged ORF Clone Tag: Myc-DDK Symbol: BCL2L12 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC221347 representing NM_138639 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGGACGGCCCGCTGGGCTGTTCCCGCCCCTATGCCCTTTTTTGGGTTTCCGGCCAGAGGCATGCTGGG AGCGTCACATGCAAATTGAGCGTGCACCCAGCGTTCCGCCCTTTCTACGCTGGGCCGGTTATCGACCCGG CCCAGTGCGCAGGCGCGGGAAAGTTGAACTAATAAAGTTTGTACGAGTTCAGTGGAGGAGACCGCAAGTT GAGTGGAGGAGGCGGCGGTGGGGCCCCGGACCAGGTGCCTCCATGGCAGGCTCTGAAGAGCTGGGGCTCC GGGAAGACACGCTGAGGGTCCTAGCTGCCTTCCTTAGGCGTGGTGAGGCTGCCGGGTCTCCTGTTCCAAC TCCACCTAGAAGCCCTGCCCAAGAAGAGCCAACAGACTTCCTGAGCCGCCTTCGAAGATGTCTTCCCTGC TCCCTGGGGCGAGGAGCAGCCCCCTCTGAGTCCCCTCGGCCTTGCTCTCTGCCCATCCGCCCCTGCTATG GTTTAGAGCCTGGCCCAGCTACTCCAGACTTCTATGCTTTGGTGGCCCAGCGGCTGGAACAGCTGGTCCA AGAGCAGCTGAAATCTCCGCCCAGCCCAGAATTACAGGGTCCCCCATCGACAGAGAAGGAAGCCATACTG CGGAGGCTGGTGGCCCTGCTGGAGGAGGAGGCAGAAGTCATTAACCAGAAGCTGGCCTCGGACCCCGCCC TGCGCAGCAAGCTGGTCCGCCTGTCCTCCGACTCTTTCGCCCGCCTGGTGGAGCTGTTCTGTAGCCGGGA TGACAGCTCTCGCCCAAGCCGAGCATGCCCCGGGCCCCCGCCTCCTTCCCCGGAGCCCCTGGCCCGCCTG GCCCTAGCCATGGAGCTGAGCCGGCGCGTGGCCGGGCTGGGGGGCACCCTGGCCGGACTCAGCGTGGAGC
    [Show full text]
  • Expression of BCL2L12, a New Member of Apoptosis-Related Genes
    © 2003 Schattauer GmbH, Stuttgart 1 Cellular Proteolysis and Oncology Expression of BCL2L12, a new member of apoptosis-related genes, in breast tumors Maroulio Talieri1, Eleftherios P.Diamandis2, Nikos Katsaros3, Dimitrios Gourgiotis4, Andreas Scorilas3 1 “G. Papanicolaou” Research Center of Oncology “Saint Savas” Hospital Athens, Greece 2 Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada 3 National Center for Scientific Research “Demokritos”, IPC, Athens Greece 4 Research Laboratories, Second Department of Pediatrics, School of Medicine, University of Athens, Athens, Greece Summary Apoptosis, a normal physiological form of cell death, is critical- BCL2L12 gene is constitutively expressed in many tissues, sug- ly involved in the regulation of cellular homeostasis. If the deli- gesting that the encoded protein serves an important function cate balance between cell death and cell proliferation is altered in different cell types. In the present study, the expression of by a defect in the normal regulation of apoptosis signaling, a cell BCL2L12 gene was analyzed by reverse transcription-PCR population is able to survive and accumulate, thereby favoring (PT-PCR) in 70 breast cancer tissues. Our results indicate that the acquisition of further genetic alterations and promoting BCL2L12 positive breast tumors are mainly of lower stage (I/II) tumorigenesis. Dysregulation of programmed cell death mech- or grade (I/II) (p=0.02 or p=0.04 respectively). Cox regression anisms plays an important role in the pathogenesis and progres- analysis revealed that BCL2L12 expression is positively related sion of breast cancer, as well as in the responses of tumors to to disease-free (DFS) and overall survival (OS) at both univari- therapeutic intervention.
    [Show full text]
  • Bcl2l12 Inhibits Post-Mitochondrial Apoptosis Signaling in Glioblastoma
    Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Stegh, A. H., H. Kim, R. M. Bachoo, K. L. Forloney, J. Zhang, H. Schulze, K. Park, et al. 2007. “Bcl2L12 Inhibits Post-Mitochondrial Apoptosis Signaling in Glioblastoma.” Genes & Development 21 (1): 98–111. https://doi.org/10.1101/gad.1480007. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41483449 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma Alexander H. Stegh,1 Hyunggee Kim,1,9 Robert M. Bachoo,1,2 Kristin L. Forloney,1 Jean Zhang,1,3 Harald Schulze,1 Kevin Park,4 Gregory J. Hannon,5 Junying Yuan,6 David N. Louis,4 Ronald A. DePinho,1,3,7,11 and Lynda Chin1,3,8,10 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 2Center for Neuro-Oncology and Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA; 3Center for Applied Cancer Science and the Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 4Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General Hospital
    [Show full text]
  • Gene Section Mini Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Mini Review BCL2L12 (BCL2-like 12 (proline-rich)) Christos Kontos, Hellinida Thomadaki, Andreas Scorilas Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens. 157 01, Panepistimiopolis, Athens, Greece (CK, HT, AS) Published in Atlas Database: August 2008 Online updated version : http://AtlasGeneticsOncology.org/Genes/BCL2L12ID773ch19q13.html DOI: 10.4267/2042/44508 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology protein, and five consensus PXXP tetrapeptide Identity sequences. Other names: BPR; MGC120313; MGC120314; BCL2L12 protein also includes various putative MGC120315 posttranslational modification sites. There are HGNC (Hugo): BCL2L12 numerous potential sites for O-glycosylation. Furthermore, several possible sites of phosphorylation Location: 19q13.3 have been identified for cAMP-dependent protein Local order: Telomere to centromere. kinase, protein kinase C, and casein kinase 2. In addition, several N-myristoylation sites have been DNA/RNA predicted. The BCL2L12 protein was found to have proline-rich sites. One PPPP site as well as five PP Description amino acid sites are present in this protein. Eight Spanning 8.8 kb of genomic DNA, the BCL2L12 gene putative PXXP motifs were also identified. Proline-rich consists of 6 introns and 7 exons. motifs are characterized by the presence of the Transcription consensus PXXP tetrapeptide, found in all proline-rich proteins identified to date. It is known that SH3 The BCL2L12 gene has three splice variants with domains recognize proline-rich sequences and that all differences in exon 3.
    [Show full text]
  • Spherical Nucleic Acid Nanoparticles: Therapeutic Potential
    BioDrugs https://doi.org/10.1007/s40259-018-0290-5 LEADING ARTICLE Spherical Nucleic Acid Nanoparticles: Therapeutic Potential Chintan H. Kapadia1 · Jilian R. Melamed1 · Emily S. Day1,2,3 © Springer International Publishing AG, part of Springer Nature 2018 Abstract Spherical nucleic acids (SNAs) are highly oriented, well organized, polyvalent structures of nucleic acids conjugated to hollow or solid core nanoparticles. Because they can transfect many tissue and cell types without toxicity, induce minimum immune response, and penetrate various biological barriers (such as the skin, blood–brain barrier, and blood–tumor barrier), they have become versatile tools for the delivery of nucleic acids, drugs, and proteins for various therapeutic purposes. This article describes the unique structures and properties of SNAs and discusses how these properties enable their application in gene regulation, immunomodulation, and drug and protein delivery. It also summarizes current eforts towards clinical translation of SNAs and provides an expert opinion on remaining challenges to be addressed in the path forward to the clinic. Key Points genes includes antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and microRNAs (miRNAs) Spherical nucleic acids (SNAs) are revolutionizing the [4]. Many of these have been investigated in clinical trials felds of diagnostics, gene regulation, immunotherapy, for the treatment of diseases including cancer, neurological and drug and protein delivery. disease, infectious disease, and spinal muscular atrophy, and six nucleic acid-based therapies have been approved by the This article discusses how the unique structure and US Food and Drug Administration (FDA) for clinical use properties of SNAs enable them to maximize their efect [5]. However, translation and clinical success of nucleic acid in various medical applications.
    [Show full text]
  • Osteoarthritis Prevention Using BCL2
    Design Brief Osteoarthritis prevention using BCL2 Baishali Chaudhuri, Jeffrey Conners, Eva McKone, Nadia Shah, Abhay Yajurvedi BioBuilderClub, Andover High School, Andover, Massachusetts, USA Reviewed on 2 May 2020; Accepted on 22 June 2020; Published on 26 October 2020 Osteoarthritis (OA) is a chronic, progressive illness that affects millions worldwide, primarily those aged 45 and above. Commonly known as “wear and tear” arthritis, it is caused by the degradation of cartilage in the joints. There is no cure for the disease, but there are methods to manage pain and symptoms. There are many challenges to curing osteoarthritis, especially in the development of Disease Modifying Osteoarthritis Drugs (or DMOADs). Most of these issues come from patient testing and the limita- tions of conventional technology used in trials. Here, we propose a solution for treat- ing osteoarthritis by using a gene called BCL2. BCL2 is responsible for blocking the apoptosis of specific cells. We believe that we could utilize BCL2 to prevent the death of chondrocytes—cells responsible for producing and maintaining cartilage—and inhibit caspase activity, including Caspase-1. Caspase-1 is responsible for the maturation of IL-1β, which is widely known for degenerating cartilage. Therefore, the overproduc- tion of IL-1β stimulates osteoarthritis. Saccharomyces cerevisiae will be transformed with the BCL2 gene, and we will then test it for purity using PCR. Afterwards, we will test its response to IL-1β. Finally, our solution will be made into an injection that can be applied to the joint. If our solution works as intended, then it would slow down the progression of osteoarthritis and hopefully restore the patient’s quality of life.
    [Show full text]
  • BH3-Only Proteins and Their Roles in Programmed Cell Death
    Oncogene (2009) 27, S128–S136 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc REVIEW BH3-only proteins and their roles in programmed cell death M Giam1,2, DCS Huang1 and P Bouillet1 1The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia and 2Department of Medical Biology, The University of Melbourne, Melbourne, Australia The Bcl-2 family of proteins controls the mitochondrial space is required for the activation of the initiator pathway to apoptosis. It consists of pro-survival and pro- caspase-9 by the apoptotic protease-activating factor-1. apoptotic members, and their interactions decide whether Proteins of the Bcl-2 family control the integrity of the apoptogenic factor confined to the mitochondrial inter- mitochondrial membrane in healthy cells, and its membrane space can leak to the cytosol. Despite the permeabilization in response to apoptotic stimuli (Cory intense efforts to understand the molecular mechanisms and Adams, 2002). that lead to the permeabilization of the mitochondrial membrane, this particular issue remains a matter of The Bcl-2 family intense controversy. It is well accepted that pro-apoptotic Bax and Bak are directly responsible for the damage to All members of the Bcl-2 family share a close homology the mitochondria, but pro-survival family members pre- in up to four characteristic regions termed the BH (Bcl-2 vent them from doing so. It is also accepted that stress homology) domains (BH1–4) (Figure 1). They have signals activate selected Bcl-2 homology (BH)3-only either a pro-survival or a pro-apoptotic function.
    [Show full text]