BH3-Only Proteins and Their Roles in Programmed Cell Death

Total Page:16

File Type:pdf, Size:1020Kb

BH3-Only Proteins and Their Roles in Programmed Cell Death Oncogene (2009) 27, S128–S136 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc REVIEW BH3-only proteins and their roles in programmed cell death M Giam1,2, DCS Huang1 and P Bouillet1 1The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia and 2Department of Medical Biology, The University of Melbourne, Melbourne, Australia The Bcl-2 family of proteins controls the mitochondrial space is required for the activation of the initiator pathway to apoptosis. It consists of pro-survival and pro- caspase-9 by the apoptotic protease-activating factor-1. apoptotic members, and their interactions decide whether Proteins of the Bcl-2 family control the integrity of the apoptogenic factor confined to the mitochondrial inter- mitochondrial membrane in healthy cells, and its membrane space can leak to the cytosol. Despite the permeabilization in response to apoptotic stimuli (Cory intense efforts to understand the molecular mechanisms and Adams, 2002). that lead to the permeabilization of the mitochondrial membrane, this particular issue remains a matter of The Bcl-2 family intense controversy. It is well accepted that pro-apoptotic Bax and Bak are directly responsible for the damage to All members of the Bcl-2 family share a close homology the mitochondria, but pro-survival family members pre- in up to four characteristic regions termed the BH (Bcl-2 vent them from doing so. It is also accepted that stress homology) domains (BH1–4) (Figure 1). They have signals activate selected Bcl-2 homology (BH)3-only either a pro-survival or a pro-apoptotic function. proteins. But do these BH3-only proteins bind and activate Bax and Bak directly, or do they inhibit the The Pro-survival proteins pro-survival family members? The pro-survival proteins of the Bcl-2 family include Oncogene (2009) 27, S128–S136; doi:10.1038/onc.2009.50 Bcl-2, Bcl-w, Bcl-xL, Mcl-1 and A1. They possess up to four BH domains and all have similar 3D structures Keywords: Bcl-2 family; BH3-only proteins; Bax/Bak (Strasser, 2005). The BH1, BH2 and BH3 domains activation; direct/indirect models; mitochondria; cyto- interact to form a hydrophobic groove on the surface of chrome c release the protein. This groove accommodates the BH3 domain of its pro-apoptotic partners and is critical for the pro-survival function of these proteins. Overexpres- sion of any of the pro-survival Bcl-2 family members Introduction prevents the death induced by many apoptotic stimuli, indicating a significant functional redundancy between Apoptosis is essential for the development and main- these proteins. In physiological conditions, however, it is tenance of tissue homeostasis. It allows the safe rare that a single pro-survival protein ensures the elimination of cells that are no longer needed, for survival of a cell population. As an example, T cells example, at the end of an immune response. Apoptosis successively use Bcl-2 and Mcl-1, then A1 and Bcl-xL, occurs as the result of the activation of cysteine then Mcl-1 and Bcl-xL, and finally Bcl-2 again to survive proteases called caspases, which dismantle the cells by the different stages of their development (Strasser et al., degrading essential proteins. Two apoptotic pathways 2008). This may reflect either a selective expression of converge on the activation of caspases:the ‘extrinsic these genes in response to survival signals that may be pathway’, also called the ‘death receptor pathway’, different at each stage of maturation, or an adaptation involves the activation of membrane receptors of the toward the need to counter apoptotic signals that come tumor necrosis factor receptor family and the activation in different forms at each of these stages. Genetic studies of initiator caspases, 8 and 10. The ‘intrinsic pathway’, have helped to identify the physiological role of the pro- also called ‘mitochondrial’ or ‘Bcl-2-regulated pathway’, survival proteins in mice. The various phenotypes is activated as a result of cellular stresses such as growth illustrate the different requirements for these proteins factor deprivation, DNA damage or exposure to in different cell types and at various stages of develop- cytotoxic substances. Mitochondria play a major role ment. Bcl-2-deficient mice develop polycystic kidney in the Bcl-2-regulated pathway. Indeed, release of disease and profound lymphopenia and turn gray as a cytochrome c from the mitochondrial intermembrane result of the loss of melanocyte stem cells (Veis et al., 1993; Nakayama et al., 1994). These mice fail to thrive and die early of renal failure. Loss of Bcl-xL causes Correspondence:Dr P Bouillet, The Walter and Eliza Hall Institute of Medical Research, Molecular Genetics of Cancer Division, 1G Royal massive apoptosis in the nervous and hematopoietic Parade, Parkville, 3050 Victoria, Australia. systems and embryos die at mid-gestation (Motoyama E-mail:[email protected] et al., 1995). Embryos lacking Mcl-1 die at the time of BH3-only proteins and their roles M Giam et al S129 Pro-survival members BH4 BH3 BH1 BH2 TM Bcl-2, Bcl-xL, Bcl-w, Mcl-1,A1 Pro-apoptotic members Multidomain effectors BH3 BH1 BH2 TM Bax, Bak, Bok BH3-only proteins BH3 TM Bim, Puma, Noxa, Bik, Bmf, Bad, Hrk, Bid Figure 1 The Bcl-2 family is made up of proteins that contain conserved functional Bcl-2 Homology domains. The family can be subdivided into pro-survival and pro-apoptotic proteins. The latter can be further divided into multidomain effectors and BH3-only proteins. The transmembrane domain (TM) is not found in some of the BH3–only proteins. implantation (Rinkenberger et al., 2000), whereas BaxÀ/ÀBakÀ/À cells, showing the strict requirement for conditional deletion of Mcl-1 in the hematopoietic Bax or Bak downstream of the BH3-only proteins. system only showed a requirement of Mcl-1 for the However, it is surprising that 10% BaxÀ/ÀBakÀ/À mice survival of hematopoietic progenitors (Opferman et al., survived to adulthood and could live for several months 2003). The loss of A1a resulted in accelerated neutrophil (Lindsten et al., 2000). This shows that some develop- apoptosis, but this mild phenotype may be because of mental cell death can still proceed in the absence of these the existence of three additional A1 genes that may have two pro-apoptotic molecules. Bok, a third multi-domain substituted for the missing A1a (Hamasaki et al., 1998). pro-apoptotic protein resembling Bax and Bak, could It has been known for a long time that overexpressed potentially fulfill the same function. Unfortunately, this pro-survival proteins prevent the release of cytochrome protein has been poorly studied so far, and it is not at all c to the cytosol and thereby also the subsequent initiator clear whether it can compensate for the absence of Bax caspase activation. However, the molecular mechanisms or Bak in certain cell types. In vivo, Bax and Bak appear that they use to protect mitochondrial integrity are still to be mostly redundant, as the presence of a single allele debated. of either of them was sufficient to prevent all the defects observed in BaxÀ/ÀBakÀ/À mice (Lindsten et al., 2000). However, recent reports suggest that this redundancy Bax, Bak and Bok may be more limited, because some apoptotic signals Bcl-2-regulated apoptosis requires Bax or Bak for seem to rely specifically on one of them for their mitochondrial damage. These two pro-apoptotic pro- execution. For example, the BH3-only protein, Bik/ teins contain BH1-3 domains, and have a 3D structure Nbk, was reported to kill in the presence of Bax only, very similar to that of the pro-survival members of but to be inert in the presence of Bak only (Theodorakis the family (Sattler et al., 1997; Suzuki et al., 2000; et al., 2002; Gillissen et al., 2003). Moldoveanu et al., 2006). Mice lacking Bax show mild Bax and Bak are the main effectors of the Bcl-2- lymphoid hyperplasia and male sterility because of regulated pathway. When activated, they permeabilize sperm-cell differentiation defects (Knudson et al., 1995). the mitochondria to allow the release of apoptogenic Mice lacking Bak have no documented defect so far. proteins into the cytosol. This is thought to occur Most mice lacking both Bax and Bak complete through the formation of pores in the outer mitochon- embryonic development, but die around birth because drial membrane. The pore theory appeared with the they fail to nurse (Lindsten et al., 2000). These mice realization that the 3D structures of Bcl-xL (and later, of show several developmental defects including the Bax) had significant similarity with the pore-forming persistence of interdigital webs, imperforated vaginal translocation domain of the diphteria toxin (Suzuki canal and accumulation of cells in the central nervous et al., 2000). Despite intense efforts to show the and hematopoietic systems (Lindsten et al., 2000; Wei existence of this pore, its molecular composition remains et al., 2001). Many cell types derived from these mice elusive. The presence of Bax or Bak is required to allow proved to be completely resistant to a large array of cytochrome c out of the mitochondria or large macro- apoptotic stimuli such as UV-irradiation, DNA-dama- molecules out of synthetic lipidic vesicles, but how they ging drugs and cytokine deprivation, but were still achieve this not completely understood. Although Bax sensitive to death by tumor necrosis factor family and Bak seem to have identical functions, one striking ligands (which trigger the extrinsic pathway) (Wei difference between them is their subcellular localization et al., 2001). Of particular interest, death induced by in healthy cells (Reed, 2006). Bak is an integral overexpression of pro-apoptotic BH3-only members of membrane protein on the outer mitochondrial mem- the Bcl-2 family seemed to be completely blocked in brane, whereas inactive Bax is a largely cytosolic protein Oncogene BH3-only proteins and their roles M Giam et al S130 (Wolter et al., 1997).
Recommended publications
  • Glioma Oncoprotein Bcl2l12 Inhibits the P53 Tumor Suppressor
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor Alexander H. Stegh,1,2,7 Cameron Brennan,3 John A. Mahoney,1 Kristin L. Forloney,1 Harry T. Jenq,4 Janina P. Luciano,2 Alexei Protopopov,1 Lynda Chin,1,5 and Ronald A. DePinho1,6,8 1Belfer Institute for Applied Cancer Science, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 2Ken and Ruth Davee Department of Neurology, Robert H. Lurie Comprehensive Cancer Center, The Brain Tumor Institute, Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA; 3Brain Tumor Center, Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA; 4Division of Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, Massachusetts 02114, USA; 5Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, USA; 6Department of Medicine and Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by intense apoptosis resistance and extensive necrosis. Bcl2L12 (for Bcl2-like 12) is a cytoplasmic and nuclear protein that is overexpressed in primary GBM and functions to inhibit post-mitochondrial apoptosis signaling. Here, we show that nuclear Bcl2L12 physically and functionally interacts with the p53 tumor suppressor, as evidenced by the capacity of Bcl2L12 to (1) enable bypass of replicative senescence without concomitant loss of p53 or p19Arf, (2) inhibit p53-dependent DNA damage-induced apoptosis, (3) impede the capacity of p53 to bind some of its target gene promoters, and (4) attenuate endogenous p53-directed transcriptomic changes following genotoxic stress.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Inhibition of Mitochondrial Complex II in Neuronal Cells Triggers Unique
    www.nature.com/scientificreports OPEN Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration Sathyanarayanan Ranganayaki1, Neema Jamshidi2, Mohamad Aiyaz3, Santhosh‑Kumar Rashmi4, Narayanappa Gayathri4, Pulleri Kandi Harsha5, Balasundaram Padmanabhan6 & Muchukunte Mukunda Srinivas Bharath7* Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1‑methyl‑4‑phenylpyridinium (MPP+) and 3‑nitropropionic acid (3‑NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down‑stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome‑wide transcriptomics of N27 neuronal cells exposed to 3‑NPA, compared with MPP+ and Mn revealed varied transcriptomic profle. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway diferentially regulated in the 3‑NPA model with implications for neuronal survival. This pathway was unique to 3‑NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3‑NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor
    [Show full text]
  • Atlas Journal
    Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Tumors Cancer prone Deep Insight Case Reports Portal Journals Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 13, Number 7, July 2009 Previous Issue / Next Issue Genes ABL1 (v-abl Abelson murine leukemia viral oncogene homolog 1) (9q34.1) - updated. Ali G Turhan. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 757-766. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/ABL.html BCL2L12 (BCL2-like 12 (proline-rich)) (19q13.3). Christos Kontos, Hellinida Thomadaki, Andreas Scorilas. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 767-771. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/BCL2L12ID773ch19q13.html BCR (Breakpoint cluster region) (22q11.2) - updated. Ali G Turhan. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 772-779. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/BCR.html ENAH (enabled homolog (Drosophila)) (1q42.12). Paola Nisticò, Francesca Di Modugno. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 780-785. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/ENAHID44148ch1q42.html FGFR2 (fibroblast growth factor receptor 2) (10q26.13). Masaru Katoh. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 786-799. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/FGFR2ID40570ch10q26.html MAPK6 (mitogen-activated protein kinase 6) (15q21.2). Sylvain Meloche. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 800-804.
    [Show full text]
  • BCL2L12 (NM 138639) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221347 BCL2L12 (NM_138639) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: BCL2L12 (NM_138639) Human Tagged ORF Clone Tag: Myc-DDK Symbol: BCL2L12 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC221347 representing NM_138639 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGGACGGCCCGCTGGGCTGTTCCCGCCCCTATGCCCTTTTTTGGGTTTCCGGCCAGAGGCATGCTGGG AGCGTCACATGCAAATTGAGCGTGCACCCAGCGTTCCGCCCTTTCTACGCTGGGCCGGTTATCGACCCGG CCCAGTGCGCAGGCGCGGGAAAGTTGAACTAATAAAGTTTGTACGAGTTCAGTGGAGGAGACCGCAAGTT GAGTGGAGGAGGCGGCGGTGGGGCCCCGGACCAGGTGCCTCCATGGCAGGCTCTGAAGAGCTGGGGCTCC GGGAAGACACGCTGAGGGTCCTAGCTGCCTTCCTTAGGCGTGGTGAGGCTGCCGGGTCTCCTGTTCCAAC TCCACCTAGAAGCCCTGCCCAAGAAGAGCCAACAGACTTCCTGAGCCGCCTTCGAAGATGTCTTCCCTGC TCCCTGGGGCGAGGAGCAGCCCCCTCTGAGTCCCCTCGGCCTTGCTCTCTGCCCATCCGCCCCTGCTATG GTTTAGAGCCTGGCCCAGCTACTCCAGACTTCTATGCTTTGGTGGCCCAGCGGCTGGAACAGCTGGTCCA AGAGCAGCTGAAATCTCCGCCCAGCCCAGAATTACAGGGTCCCCCATCGACAGAGAAGGAAGCCATACTG CGGAGGCTGGTGGCCCTGCTGGAGGAGGAGGCAGAAGTCATTAACCAGAAGCTGGCCTCGGACCCCGCCC TGCGCAGCAAGCTGGTCCGCCTGTCCTCCGACTCTTTCGCCCGCCTGGTGGAGCTGTTCTGTAGCCGGGA TGACAGCTCTCGCCCAAGCCGAGCATGCCCCGGGCCCCCGCCTCCTTCCCCGGAGCCCCTGGCCCGCCTG GCCCTAGCCATGGAGCTGAGCCGGCGCGTGGCCGGGCTGGGGGGCACCCTGGCCGGACTCAGCGTGGAGC
    [Show full text]
  • Expression of BCL2L12, a New Member of Apoptosis-Related Genes
    © 2003 Schattauer GmbH, Stuttgart 1 Cellular Proteolysis and Oncology Expression of BCL2L12, a new member of apoptosis-related genes, in breast tumors Maroulio Talieri1, Eleftherios P.Diamandis2, Nikos Katsaros3, Dimitrios Gourgiotis4, Andreas Scorilas3 1 “G. Papanicolaou” Research Center of Oncology “Saint Savas” Hospital Athens, Greece 2 Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada 3 National Center for Scientific Research “Demokritos”, IPC, Athens Greece 4 Research Laboratories, Second Department of Pediatrics, School of Medicine, University of Athens, Athens, Greece Summary Apoptosis, a normal physiological form of cell death, is critical- BCL2L12 gene is constitutively expressed in many tissues, sug- ly involved in the regulation of cellular homeostasis. If the deli- gesting that the encoded protein serves an important function cate balance between cell death and cell proliferation is altered in different cell types. In the present study, the expression of by a defect in the normal regulation of apoptosis signaling, a cell BCL2L12 gene was analyzed by reverse transcription-PCR population is able to survive and accumulate, thereby favoring (PT-PCR) in 70 breast cancer tissues. Our results indicate that the acquisition of further genetic alterations and promoting BCL2L12 positive breast tumors are mainly of lower stage (I/II) tumorigenesis. Dysregulation of programmed cell death mech- or grade (I/II) (p=0.02 or p=0.04 respectively). Cox regression anisms plays an important role in the pathogenesis and progres- analysis revealed that BCL2L12 expression is positively related sion of breast cancer, as well as in the responses of tumors to to disease-free (DFS) and overall survival (OS) at both univari- therapeutic intervention.
    [Show full text]
  • Bcl2l12 Inhibits Post-Mitochondrial Apoptosis Signaling in Glioblastoma
    Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Stegh, A. H., H. Kim, R. M. Bachoo, K. L. Forloney, J. Zhang, H. Schulze, K. Park, et al. 2007. “Bcl2L12 Inhibits Post-Mitochondrial Apoptosis Signaling in Glioblastoma.” Genes & Development 21 (1): 98–111. https://doi.org/10.1101/gad.1480007. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41483449 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma Alexander H. Stegh,1 Hyunggee Kim,1,9 Robert M. Bachoo,1,2 Kristin L. Forloney,1 Jean Zhang,1,3 Harald Schulze,1 Kevin Park,4 Gregory J. Hannon,5 Junying Yuan,6 David N. Louis,4 Ronald A. DePinho,1,3,7,11 and Lynda Chin1,3,8,10 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 2Center for Neuro-Oncology and Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA; 3Center for Applied Cancer Science and the Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 4Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General Hospital
    [Show full text]
  • Gene Section Mini Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Mini Review BCL2L12 (BCL2-like 12 (proline-rich)) Christos Kontos, Hellinida Thomadaki, Andreas Scorilas Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens. 157 01, Panepistimiopolis, Athens, Greece (CK, HT, AS) Published in Atlas Database: August 2008 Online updated version : http://AtlasGeneticsOncology.org/Genes/BCL2L12ID773ch19q13.html DOI: 10.4267/2042/44508 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology protein, and five consensus PXXP tetrapeptide Identity sequences. Other names: BPR; MGC120313; MGC120314; BCL2L12 protein also includes various putative MGC120315 posttranslational modification sites. There are HGNC (Hugo): BCL2L12 numerous potential sites for O-glycosylation. Furthermore, several possible sites of phosphorylation Location: 19q13.3 have been identified for cAMP-dependent protein Local order: Telomere to centromere. kinase, protein kinase C, and casein kinase 2. In addition, several N-myristoylation sites have been DNA/RNA predicted. The BCL2L12 protein was found to have proline-rich sites. One PPPP site as well as five PP Description amino acid sites are present in this protein. Eight Spanning 8.8 kb of genomic DNA, the BCL2L12 gene putative PXXP motifs were also identified. Proline-rich consists of 6 introns and 7 exons. motifs are characterized by the presence of the Transcription consensus PXXP tetrapeptide, found in all proline-rich proteins identified to date. It is known that SH3 The BCL2L12 gene has three splice variants with domains recognize proline-rich sequences and that all differences in exon 3.
    [Show full text]
  • Spherical Nucleic Acid Nanoparticles: Therapeutic Potential
    BioDrugs https://doi.org/10.1007/s40259-018-0290-5 LEADING ARTICLE Spherical Nucleic Acid Nanoparticles: Therapeutic Potential Chintan H. Kapadia1 · Jilian R. Melamed1 · Emily S. Day1,2,3 © Springer International Publishing AG, part of Springer Nature 2018 Abstract Spherical nucleic acids (SNAs) are highly oriented, well organized, polyvalent structures of nucleic acids conjugated to hollow or solid core nanoparticles. Because they can transfect many tissue and cell types without toxicity, induce minimum immune response, and penetrate various biological barriers (such as the skin, blood–brain barrier, and blood–tumor barrier), they have become versatile tools for the delivery of nucleic acids, drugs, and proteins for various therapeutic purposes. This article describes the unique structures and properties of SNAs and discusses how these properties enable their application in gene regulation, immunomodulation, and drug and protein delivery. It also summarizes current eforts towards clinical translation of SNAs and provides an expert opinion on remaining challenges to be addressed in the path forward to the clinic. Key Points genes includes antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and microRNAs (miRNAs) Spherical nucleic acids (SNAs) are revolutionizing the [4]. Many of these have been investigated in clinical trials felds of diagnostics, gene regulation, immunotherapy, for the treatment of diseases including cancer, neurological and drug and protein delivery. disease, infectious disease, and spinal muscular atrophy, and six nucleic acid-based therapies have been approved by the This article discusses how the unique structure and US Food and Drug Administration (FDA) for clinical use properties of SNAs enable them to maximize their efect [5]. However, translation and clinical success of nucleic acid in various medical applications.
    [Show full text]
  • Osteoarthritis Prevention Using BCL2
    Design Brief Osteoarthritis prevention using BCL2 Baishali Chaudhuri, Jeffrey Conners, Eva McKone, Nadia Shah, Abhay Yajurvedi BioBuilderClub, Andover High School, Andover, Massachusetts, USA Reviewed on 2 May 2020; Accepted on 22 June 2020; Published on 26 October 2020 Osteoarthritis (OA) is a chronic, progressive illness that affects millions worldwide, primarily those aged 45 and above. Commonly known as “wear and tear” arthritis, it is caused by the degradation of cartilage in the joints. There is no cure for the disease, but there are methods to manage pain and symptoms. There are many challenges to curing osteoarthritis, especially in the development of Disease Modifying Osteoarthritis Drugs (or DMOADs). Most of these issues come from patient testing and the limita- tions of conventional technology used in trials. Here, we propose a solution for treat- ing osteoarthritis by using a gene called BCL2. BCL2 is responsible for blocking the apoptosis of specific cells. We believe that we could utilize BCL2 to prevent the death of chondrocytes—cells responsible for producing and maintaining cartilage—and inhibit caspase activity, including Caspase-1. Caspase-1 is responsible for the maturation of IL-1β, which is widely known for degenerating cartilage. Therefore, the overproduc- tion of IL-1β stimulates osteoarthritis. Saccharomyces cerevisiae will be transformed with the BCL2 gene, and we will then test it for purity using PCR. Afterwards, we will test its response to IL-1β. Finally, our solution will be made into an injection that can be applied to the joint. If our solution works as intended, then it would slow down the progression of osteoarthritis and hopefully restore the patient’s quality of life.
    [Show full text]
  • Bcl2l12 Inhibits Post-Mitochondrial Apoptosis Signaling in Glioblastoma
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma Alexander H. Stegh,1 Hyunggee Kim,1,9 Robert M. Bachoo,1,2 Kristin L. Forloney,1 Jean Zhang,1,3 Harald Schulze,1 Kevin Park,4 Gregory J. Hannon,5 Junying Yuan,6 David N. Louis,4 Ronald A. DePinho,1,3,7,11 and Lynda Chin1,3,8,10 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 2Center for Neuro-Oncology and Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA; 3Center for Applied Cancer Science and the Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 4Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; 5Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 6Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; 7Department of Medicine and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; 8Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, USA Glioblastoma (GBM) is an astrocytic brain tumor characterized by an aggressive clinical course and intense resistance to all therapeutic modalities. Here, we report the identification and functional characterization of Bcl2L12 (Bcl2-like-12) that is robustly expressed in nearly all human primary GBMs examined. Enforced Bcl2L12 expression confers marked apoptosis resistance in primary cortical astrocytes, and, conversely, its RNA interference (RNAi)-mediated knockdown sensitizes human glioma cell lines toward apoptosis in vitro and impairs tumor growth with increased intratumoral apoptosis in vivo.
    [Show full text]