Ampicillin Levels in Sputum, Serum, and Saliva

Total Page:16

File Type:pdf, Size:1020Kb

Ampicillin Levels in Sputum, Serum, and Saliva Thorax: first published as 10.1136/thx.25.3.304 on 1 May 1970. Downloaded from Thorax (1970), 25, 304. Ampicillin levels in sputum, serum, and saliva SHEILA M. STEWART, MARY FISHER, JOY E. YOUNG, and W. LUTZ Departments of Bacteriology, Respiratory Diseases and Social Medicinte, Uniiversity of Edinburgh anid Wellcome Laboratory, City Hospital, Edinburgh The ampicillin levels in sputum, serum, and saliva from 40 patients receiving a dose of 250 mg., 26 patients receiving a dose of 500 mg., and 11 patients receiving a dose of I g. were estimated. The ampicillin was given orally four times daily. The 1-2 hour and 2-3 hour sputum levels were similar in individual patients. There was no difference in the range or mean sputum or saliva levels between specimens from patients receiving 250 mg. and 500 mg., but the levels were significantly higher after the 1 g. dose. The mean serum level sihowed a small increase after 500 mg. ampicillin as compared with the 250 mg. dose and a big increase after the 1 g. dose: only the latter difference was significant. The sputum levels were approximately 30 to 40 times lower than the corrzsponding serum levels. There was con- siderable scatter in the sputum level for any level of ampicillin in the serum: in only two of the 1-2 hour sputum specimens was there no detectable ampicillin. There was no correlation between the sputum levels and either the body weight or the dose in milligrams per kilogram. There was no evidence that corticosteroids or diuretics affected the sputum level. It was not possible to demonstrate any relationship between the purulence of the sputum and the level of ampicillin after doses of 250 mg. or 500 mg., but higher levels were found in the more purulent specimens after 1 g. doses. http://thorax.bmj.com/ Previous work (Hafez, Stewart, and Burnet, 1965) PATIENTS INVESTIGATED showed that there was considerable variation be- All patients were in hospital at the time the levels tween patients in the level of penicillin in the were investigated. The authors were not respon- sputum after intramuscular injection and that the sible for their admission, treatment or discharge. sputum levels were appreciably lower than the This sample of patients can therefore not be con- serum levels. May and Delves (1965) reported sidered a truly random sample in the statistical on September 24, 2021 by guest. Protected copyright. the serum, saliva, and sputum levels in a small sense, nor indeed is this a clinical trial with group of patients with chronic bronchitis treated patients randomly allocated to different treat- orally with ampicillin. They found considerable ments. Hence the results, and in particular the variation between patients. statistical analysis, must be interpreted with The present investigation was carried out to caution. Nevertheless since we think that the determine the range of ampicillin sputum levels in ampicillin levels reached are not strongly related a larger series of patients with respiratory disease to the criteria determining treatment, we feel the after treatment with doses of 250 mg., 500 mg. or analysis to be helpful in giving some indication 1 g. orally four times daily. Serum levels were also of possible patient response to oral ampicillin. assayed since these are the levels frequently quoted when assessing the adequacy of the dosage of a AMPICILLIN THERAPY drug. Saliva levels were estimated because con- taminatilon of sputum with saliva containing ap- 250 mg. Dose Forty patients received 250 mg. preciable quantities of th.z drug might give falsely ampicillin four times daily. Twenty-five were men high sputuum levels. Various factors which might and 15 women. Their ages ranged from 22 to affect the antibiotic levels have been analysed. 85 years with a mean age of 60-6 years. Requests for reprints: Dr. S. M. Stewart, Wellcome Labxratory, City Hospital, Greenbank Drive, Edinburgh, EH10 5SB 500 mg. Dose Twenty-six patients received 304 Thorax: first published as 10.1136/thx.25.3.304 on 1 May 1970. Downloaded from Ampicillin levels in sputum, serum, and saliva 305 500 mg. ampicillin four times daily. Twenty were METHODS men and six women. Their ages ranged from 33 to 81 years with a mean age of 61-0 years. AMPICILLIN THERAPY The dose of ampicillin was decided by the clinician in charge. All patients had I g. Dose Eleven patients received 1 g. ampicillin been receiving ampicillin for at least 18 hours before four times daily. Nine were men and two women. the assay dose. In order to ensure the exact timing Their ages ranged from 60 to 76 years, the aver- and dosage of the drug, the 6 a.m. dose on the day age being 67-3 years, significantly older than in of assay was omitted, and the last dose was given the 250 and 500 mg. dose groups. at 10 p.m. the previous evening. The assay dose was given by one of us (M. F.) at approximately 9 a.m. REPEATED ASSAYS These were carried out on 20 No antibacterial drugs other than ampicillin were the repeated assays were given. The second dose of ampicillin on the day of patients. In 15 instances assay was withheld until the last specimens for assay done on the same dose only. In three cases had been collected. repeated assays were done both on the same dose on In calculating the duration of therapy the first day and on a higher dose, and in two cases only has been considered as day 1. Only treatment with different doses (see details in Table VI). Where ampicillin in hospital has been taken into account as repeated assays were done on the same dose, only the details of other therapy were often not available. the first set of readings was used for the main analysis. MEALTIMES No attempt was made to regulate or to record the food ingested by the patients. They had CLINICAL DIAGNOSIS The clinical diagnosis on breakfast between 7.45 and 8.00 a.m. and coffee or discharge from hospital is shown in Table I. tea (sometimes with biscuits, etc.) at about 10.30 a.m. Forty-two of the patients with bronchitis had The final specimens of sputum were invariably col- exacerbations of chronic bronchitis, one had acute lected before lunch was served. bronchitis, and six had chronic bronchitis without an exacerbation. Four of the five patients with CORTICOSTEROIDS AND DIURETICS Ten of the patients asthma also had evidence of an infection. on the 250 mg. dose, six of those receiving 500 mg., and three of those on the 1 g. dose were also receiving prednisolone, 5 to 50 mg. daily. A further patient in TABLE I the 250 mg. group was given 25 units of ACTH. http://thorax.bmj.com/ CLINICAL DIAGNOSIS ON DISCHARGE IN PATIENTS INVESTIGATED and one patient in t;he 500 mg. group was given 50 mg. cortisone. both daily. Dose of Ampicillin q.i.d. Clinical Diagnosis Five patients in the 250 mg. group and four in the 250 mg. 500 mg. I g. 500 mg. group were receiving diuretics at the time Bronchitis .25 16 8 of the ampicillin assay. The diuretics were frusemide, Pneumonia .7 3 bendrofluazide or mersalyl. Bronchiectasis .3 5 2 Asthma .. .. .. .. 4 1 0 Cavitated bronchial carcinoma I1 0 0 SPECIMENS FOR ASSAY All specimens were collected Pulmonary infarction with secondary infection .. 0 1 0 by the person administering the ampicillin and deli- on September 24, 2021 by guest. Protected copyright. vered to the laboratory within two hours of collec- Total No. of patients .. .. 40 26 11 tion. Sputum was collected during the first hour after EXCLUSIONS Fourteen further patients were administration of the drug and discarded. All the examined but were excluded from the main sputum produced between the first and second hour analysis. Twelve of these patients (4 in the 250 mg. and between the second and third hour was collected for assay. In order to reduce as far as possible the mg. group, and 6 in the 1 g. group, 2 in the 500 risk of contamination of sputum specimens with group) were excluded because the antibiotic level saliva, patients were told to collect only material in the saliva was the same as or higher than the actually coughed up. At the end of each period of sputum level. In these cases an apparent sputum collection, the patient was asked to cough forcibly antibiotic level could have been due to contamina- in order to empty the bronchial passages as far as tion of the sputum with antibiotic-containing possible. saliva. These 12 cases were included in the analysis Saliva and serum were collected two hours after of the saliva levels. The remaining two cases were administration of the drug. excluded from all analyses because they had The degree of purulence of the sputum was esti- clinical renal insufficiency that might have affected mated by naked-eye examination in the laboratory. It the drug levels (Hoffler, Stegemann, and Scheler, was graded as follows: mucoid; less than 30% pus: 1966). 30 to 70% pus; more than 70% pus. Thorax: first published as 10.1136/thx.25.3.304 on 1 May 1970. Downloaded from 306 Sheila M. Stewart, Mary Fisher, Joy E. Young, and W. Lutz BACTERIOLOGICAL METHODS Penicillinase-producing Organism A series of ampi- cillin solutions in sputum containing no other inhi- Assays A cup diffusion technique, similar to that biting substances were prepared in I ml. quantities -recommended by Heathcote and Nassau (1951), was in duplicate. To one series was added one drop of an used for the ampicillin assay. A peptone yeast extract 18 hours nutrient broth culture of a strain of agar was melted and cooled to 50° C.
Recommended publications
  • In Vitro Susceptibilities of Escherichia Coli and Klebsiella Spp. To
    Jpn. J. Infect. Dis., 60, 227-229, 2007 Short Communication In Vitro Susceptibilities of Escherichia coli and Klebsiella Spp. to Ampicillin-Sulbactam and Amoxicillin-Clavulanic Acid Birgul Kacmaz* and Nedim Sultan1 Department of Central Microbiology and 1Department of Microbiology, Faculty of Medicine, Gazi University, Ankara, Turkey (Received January 30, 2007. Accepted April 13, 2007) SUMMARY: Ampicillin-sulbactam (A/S) and amoxicillin-clavulanic acid (AUG) are thought to be equally efficacious clinically against the Enterobacteriaceae family. In this study, the in vitro activities of the A/S and AUG were evaluated and compared against Escherichia coli and Klebsiella spp. Antimicrobial susceptibility tests were performed by standard agar dilution and disc diffusion techniques according to the Clinical and Laboratory Standards Institute (CLSI). During the study period, 973 strains were isolated. Of the 973 bacteria isolated, 823 were E. coli and 150 Klebsiella spp. More organisms were found to be susceptible to AUG than A/S, regardless of the susceptibility testing methodology. The agar dilution results of the isolates that were found to be sensitive or resistant were also compatible with the disc diffusion results. However, some differences were seen in the agar dilution results of some isolates that were found to be intermediately resistant with disc diffusion. In E. coli isolates, 17 of the 76 AUG intermediately resistant isolates (by disc diffusion), and 17 of the 63 A/S intermediately resistant isolates (by disc diffusion) showed different resistant patterns by agar dilution. When the CLSI breakpoint criteria are applied it should be considered that AUG and A/S sensitivity in E. coli and Klebsiella spp.
    [Show full text]
  • Ampicillin (Ampicillin Sodium) INJECTION, POWDER, FOR
    Ampicillin for Injection, USP Rx Only (For Intramuscular or Intravenous Injection) To reduce the development of drug-resistant bacteria and maintain the effectiveness of ampicillin and other antibacterial drugs, ampicillin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION Ampicillin for injection, USP the monosodium salt of [2S-[2α,5α,6β(S*)]]-6- [(aminophenylacetyl)amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, is a synthetic penicillin. It is an antibacterial agent with a broad spectrum of bactericidal activity against both penicillin-susceptible Gram-positive organisms and many common Gram-negative pathogens. Ampicillin for injection, USP is a white to cream-tinged, crystalline powder. The reconstituted solution is clear, colorless and free from visible particulates. Each vial of Ampicillin for injection, USP contains ampicillin sodium equivalent to 250 mg, 500 mg, 1 gram or 2 grams ampicillin. Ampicillin for injection, USP contains 65.8 mg [2.9 mEq] sodium per gram ampicillin. It has the following molecular structure: The molecular formula is C16H18N3NaO4S, and the molecular weight is 371.39. The pH range of the reconstituted solution is 8 to 10. CLINICAL PHARMACOLOGY Ampicillin for injection diffuses readily into most body tissues and fluids. However, penetration into the cerebrospinal fluid and brain occurs only when the meninges are inflamed. Ampicillin is excreted largely unchanged in the urine and its excretion can be delayed by concurrent administration of probenecid. Due to maturational changes in renal function, ampicillin half-life decreases as postmenstrual age (a sum of gestational age and postnatal age) increases for infants with postnatal age of less than 28 days.
    [Show full text]
  • The Efficacy of Ampicillin Compared with Ceftriaxone on Preventing
    Assawapalanggool et al. Antimicrobial Resistance and Infection Control (2018) 7:13 DOI 10.1186/s13756-018-0304-6 RESEARCH Open Access The efficacy of ampicillin compared with ceftriaxone on preventing cesarean surgical site infections: an observational prospective cohort study Srisuda Assawapalanggool1, Nongyao Kasatpibal2*, Supatra Sirichotiyakul3, Rajin Arora4, Watcharin Suntornlimsiri5 and Anucha Apisarnthanarak6 Abstract Background: Cesarean surgical site infections (SSIs) can be prevented by proper preoperative antibiotic prophylaxis. Differences in antibiotic selection in clinical practice exist according to obstetricians’ preferences despite clear guidelines on preoperative antibiotic prophylaxis. This study aimed to compare the efficacy of ampicillin and ceftriaxone in preventing cesarean SSIs. Methods: The observational prospective cohort study was conducted at a tertiary hospital in Thailand from 1 January 2007 to 31 December 2012. Propensity scores for ceftriaxone prophylaxis were calculated from potential influencing confounders. The cesarean SSI rates of the ceftriaxone group vs. those of the ampicillin prophylactic group were estimated by multilevel mixed-effects Poisson regression nested by propensity score. Results: Data of 4149 cesarean patients were collected. Among these, 911 patients received ceftriaxone whereas 3238 patients received ampicillin as preoperative antibiotic prophylaxis. The incidence of incisional SSIs was (0.1% vs. 1.2%; p = 0.001) and organ space SSIs was (1.2% vs. 2.9%; p = 0.003) in the ceftriaxone group compared with the ampicillin group. After adjusting for confounders, the rate ratios of incisional and organ/space SSIs in the ceftriaxone compared with the ampicillin group did not differ (RR, 0.23; 95% CI 0.03–1.78), and (RR, 1.62; 95% CI 0.83–3.18), respectively.
    [Show full text]
  • Ceftaroline Fosamil for the Treatment of Gram-Positive Endocarditis: CAPTURE Study Experience
    International Journal of Antimicrobial Agents 53 (2019) 644–649 Contents lists available at ScienceDirect International Journal of Antimicrobial Agents journal homepage: www.elsevier.com/locate/ijantimicag Ceftaroline fosamil for the treatment of Gram-positive endocarditis: CAPTURE study experience ∗ Christopher J. Destache a, David J. Guervil b, Keith S. Kaye c, a School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA b Memorial Hermann-Texas Medical Center, Houston, TX, USA c Wayne State University and Detroit Medical Center, Detroit, MI, USA a r t i c l e i n f o a b s t r a c t Article history: Background: The clinical experience of ceftaroline fosamil (CPT-F) therapy for Gram-positive infective Received 3 October 2018 endocarditis is reported from CAPTURE, a retrospective study conducted in the USA. Accepted 27 January 2019 Methods: Data, including patient demographics, medical history, risk factors, microbiological aetiology and clinical outcomes, were collected by review of patient charts between September 2013 and February Editor: Professor Matthew Falagas 2015. Results: Patients ( n = 55) with Gram-positive endocarditis were treated with CPT-F. The most common Keywords: risk factors were intravascular devices (43.6%), diabetes mellitus (40.0%) and injection drug use (38.2%). Ceftaroline fosamil Gram-positive endocarditis The most commonly isolated pathogens were meticillin-resistant Staphylococcus aureus (MRSA; 80%), Meticillin-resistant Staphylococcus aureus meticillin-susceptible S. aureus (MSSA; 7.3%) and coagulase-negative staphylococci (7.3%). CPT-F was given Meticillin-susceptible Staphylococcus aureus as first-line therapy in 7.3% of patients and as second-line or later therapy in 92.7% of patients, and as CAPTURE study monotherapy in 41.8% of patients and as concurrent therapy in 58.2% of patients.
    [Show full text]
  • Abbreviations: ABPC, Ampicillin
    Agric. Biol. Chem., 44 (11), 2689•`2693, 1980 2689 Supersensitivity of Escherichia coli Cells to Several -Lactam Antibiotics Caused by Rod- MorphologyƒÀ Mutations at the mrd Gene Cluster Shigeo TAMAKI, Hiroshi MATSUZAWA,* Sadayo NAKAJIMA-IIJIMA and Michio MATSUHASHI Institute of Applied Microbiology, and *Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan Received June 13, 1980 Two kinds of spherical mutants, mrdA and mrdB mutants, have been isolated from Escherichia coli strain K12. The mrdA mutants have thermosensitive penicillin-binding protein 2, while the mrdB mutants have normal penicillin-binding proteins. Both kinds of mutants form spherical cells at 42•Ž and are resistant to the amidinopenicillin, mecillinam, at the same temperature. The two mutations have been mapped very close to lip at 14.2 min (revised chromosome linkage map, 1980) on the E. coli chromosome. Both mutations cause supersensitivities of cell growth to various ƒÀ-lactam antibiotics, such as ampicillin, cephalexin, cefoxitin and nocardicin A at 42•Ž. There are several reports that mutations 14.4•`14.5 min on the new E. coli chromosome in penicillin-binding proteins (PBPs) in map.8) Mutation in PBP-2 is known to cause Escherichia coli can cause supersensitivity of formation of spherical cells.3,7) The gene which the cells to ƒÀ-lactam antibiotics. Mutations in is simultaneously responsible for the for PBP-l Bs caused supersensitivity to almost all mation of PBP-2 and rod shaped cells has been penicillins and cephalosporins
    [Show full text]
  • Amoxicillin/Clavulanate Potassium Tablets
    NDA 50-564/S-049 NDA 50-720/S-022 Page 3 AC:AL10 PRESCRIBING INFORMATION Amoxicillin/Clavulanate Potassium Tablets To reduce the development of drug-resistant bacteria and maintain the effectiveness of amoxicillin/clavulanate potassium and other antibacterial drugs, amoxicillin/clavulanate potassium should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION Amoxicillin/clavulanate potassium is an oral antibacterial combination consisting of the semisynthetic antibiotic amoxicillin and the β-lactamase inhibitor, clavulanate potassium (the potassium salt of clavulanic acid). Amoxicillin is an analog of ampicillin, derived from the basic penicillin nucleus, 6-aminopenicillanic acid. The amoxicillin molecular formula is C16H19N3O5S•3H2O, and the molecular weight is 419.46. Chemically, amoxicillin is (2S,5R,6R)-6-[(R)­ (-)-2-Amino-2-(p-hydroxyphenyl)acetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2­ carboxylic acid trihydrate and may be represented structurally as: Clavulanic acid is produced by the fermentation of Streptomyces clavuligerus. It is a β-lactam structurally related to the penicillins and possesses the ability to inactivate a wide variety of β-lactamases by blocking the active sites of these enzymes. Clavulanic acid is particularly active against the clinically important plasmid-mediated β-lactamases frequently responsible for transferred drug resistance to penicillins and cephalosporins. The clavulanate potassium molecular formula is C8H8KNO5, and the molecular weight is 237.25. Chemically, clavulanate potassium is potassium (Z)­ (2R,5R)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo[3.2.0]-heptane-2-carboxylate, and may be represented structurally as: Inactive Ingredients: Colloidal silicon dioxide, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and titanium dioxide.
    [Show full text]
  • Surgical Antibiotic Prophylaxis
    Surgical Antibiotic Prophylaxis - Adult Page 1 of 6 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women. Local microbiology and susceptibility/resistance patterns should be taken into consideration when selecting antibiotics. Patients scheduled for surgery should have the following antibiotics administered prior to their procedure: ● Vancomycin, ciprofloxacin/levofloxacin, and gentamicin are to be initiated 60 to 120 minutes prior to incision, and all other antibiotics are to be initiated within 60 minutes of incision ● Carefully evaluate allergy histories before using alternative agents - the majority of patients with listed penicillin allergies can safely be given cephalosporins or carbapenems ● If the patient has multiple known antibiotic drug allergies, is colonized with or has a history of a recent multi-drug infection, administer antibiotics as indicated or consider an outpatient Infectious Diseases consultation ● Discontinue all antibiotics within 24 hours of first dose except for: 1) Treatment of established infection, 2) Prophylaxis of prosthesis in the setting of postoperative co-located
    [Show full text]
  • Antibacterial Prodrugs to Overcome Bacterial Resistance
    molecules Review Antibacterial Prodrugs to Overcome Bacterial Resistance Buthaina Jubeh , Zeinab Breijyeh and Rafik Karaman * Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; [email protected] (B.J.); [email protected] (Z.B.) * Correspondence: [email protected] or rkaraman@staff.alquds.edu Academic Editor: Helen Osborn Received: 10 March 2020; Accepted: 26 March 2020; Published: 28 March 2020 Abstract: Bacterial resistance to present antibiotics is emerging at a high pace that makes the development of new treatments a must. At the same time, the development of novel antibiotics for resistant bacteria is a slow-paced process. Amid the massive need for new drug treatments to combat resistance, time and effort preserving approaches, like the prodrug approach, are most needed. Prodrugs are pharmacologically inactive entities of active drugs that undergo biotransformation before eliciting their pharmacological effects. A prodrug strategy can be used to revive drugs discarded due to a lack of appropriate pharmacokinetic and drug-like properties, or high host toxicity. A special advantage of the use of the prodrug approach in the era of bacterial resistance is targeting resistant bacteria by developing prodrugs that require bacterium-specific enzymes to release the active drug. In this article, we review the up-to-date implementation of prodrugs to develop medications that are active against drug-resistant bacteria. Keywords: prodrugs; biotransformation; targeting; β-lactam antibiotics; β-lactamases; pathogens; resistance 1. Introduction Nowadays, the issue of pathogens resistant to drugs and the urgent need for new compounds that are capable of eradicating these pathogens are well known and understood.
    [Show full text]
  • AMOXICILLIN and CLAVULANATE (Veterinary—Systemic)
    AMOXICILLIN AND CLAVULANATE (Veterinary—Systemic) A commonly used brand name for a veterinary-labeled product is ELUS,CANOsteomyelitis (treatment)EL—Cats and dogs: There are Clavamox. insufficient data to show that amoxicillin and clavulanate combination is effective in the treatment of osteomyelitis in cats Note: For a listing of dosage forms and brand names by country and dogs; however, in vitro studies show that the bacteria causing availability, see the Dosage Forms sections(s). this type of infection are often susceptible.{R-32-34; 37} Category: Antibacterial (systemic). Chemistry Source: Indications Amoxicillin—Semisynthetic derivative of ampicillin.{R-12} ELUS EL Clavulanate—A fermentation product of the actinomycete Note: Text between and describes uses not included in U.S. {R-7; 8} product labeling. Text between ELCAN and EL describes uses not Streptomyces clavuligerus. included in Canadian product labeling. Chemical name: US CAN Amoxicillin—4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylic The EL or EL designation may signify a lack of product acid, 6-[[amino(4-hydroxyphenyl)acetyl]amino]-3,3- availability in the country indicated. See the Dosage Forms dimethyl-7-oxo-, trihydrate[2S-[2alpha,5alpha,6beta(S*)]]-.{R- section of this monograph to confirm availability. 13} Clavulanate potassium—4-Oxa-1-azabicyclo[3.2.0]heptane-2- General considerations carboxylic acid, 3-(2-hydroxyethylidene)-7-oxo-, Amoxicillin has activity against penicillin-sensitive gram-positive monopotassium salt, [2R-(2alpha,3Z,5alpha)]-.{R-13} bacteria as well as some gram-negative bacteria. The gram- Molecular formula: positive spectrum of activity includes alpha- and beta-hemolytic {R-13} Amoxicillin—C16H19N3O5S⋅3H2O.
    [Show full text]
  • Azactam (Aztreonam) Injection Label
    ® AZACTAM Rx only (aztreonam for injection, USP) To reduce the development of drug-resistant bacteria and maintain the effectiveness of AZACTAM and other antibacterial drugs, AZACTAM should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION AZACTAM (aztreonam for injection, USP) contains the active ingredient aztreonam, a monobactam. It was originally isolated from Chromobacterium violaceum. It is a synthetic bactericidal antibiotic. The monobactams, having a unique monocyclic beta-lactam nucleus, are structurally different from other beta-lactam antibiotics (eg, penicillins, cephalosporins, cephamycins). The sulfonic acid substituent in the 1-position of the ring activates the beta-lactam moiety; an aminothiazolyl oxime side chain in the 3-position and a methyl group in the 4-position confer the specific antibacterial spectrum and beta-lactamase stability. Aztreonam is designated chemically as (Z)-2-[[[(2-amino-4-thiazolyl)[[(2S,3S)-2-methyl- 4-oxo-1-sulfo-3-azetidinyl]carbamoyl]methylene]amino]oxy]-2-methylpropionic acid. Structural formula: C13H17N5O8S2 MW 435.44 1 Reference ID: 3326482 AZACTAM is a sterile, nonpyrogenic, sodium-free, white powder containing approximately 780 mg arginine per gram of aztreonam. Following constitution, the product is for intramuscular or intravenous use. Aqueous solutions of the product have a pH in the range of 4.5 to 7.5. CLINICAL PHARMACOLOGY Single 30-minute intravenous infusions of 500 mg, 1 g, and 2 g doses of AZACTAM in healthy subjects produced aztreonam peak serum levels of 54 mcg/mL, 90 mcg/mL, and 204 mcg/mL, respectively, immediately after administration; at 8 hours, serum levels were 1 mcg/mL, 3 mcg/mL, and 6 mcg/mL, respectively (Figure 1).
    [Show full text]
  • COHERENCE In-Vitro.Pdf
    International Journal of Antimicrobial Agents 57 (2021) 106344 Contents lists available at ScienceDirect International Journal of Antimicrobial Agents journal homepage: www.elsevier.com/locate/ijantimicag Review Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli ∗ Luigia Scudeller a,1, Elda Righi b,1, , Margherita Chiamenti b, Damiano Bragantini b, Giulia Menchinelli c,d, Paolo Cattaneo b, Christian G. Giske e, Thomas Lodise f, Maurizio Sanguinetti c,d, Laura J.V. Piddock g, François Franceschi g, Sally Ellis g, ∗ Elena Carrara b, Alessia Savoldi b, Evelina Tacconelli b,h,i, a Clinical Epidemiology and Biostatistics, IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano Foundation, Milan, Italy b Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy c Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy d Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy e Clinical Microbiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden f Albany College of Pharmacy and Health Sciences, Albany, New York, USA g Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland h Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Otfried Müller Straße 12, 72074 Tübingen, Germany i German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany a r t i c l e i n f o a b s t r a c t Article history: The superiority of combination therapy for carbapenem-resistant Gram-negative bacilli (CR-GNB) in- Received 20 January 2021 fections remains controversial.
    [Show full text]
  • Aztreonam for Injection USP, 500 Mg/Vial, 1 G/Vial, and 2 G/Vial
    CENTER FOR DRUG EVALUATION AND RESEARCH Approval Package for: APPLICATION NUMBER: ANDA 065439 Name: Aztreonam for Injection USP, 500 mg/vial, 1 g/vial, and 2 g/vial Sponsor: APP Pharmaceuticals, LLC Approval Date: June 18, 2010 CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: ANDA 065439 CONTENTS Reviews / Information Included in this Review Approval Letter X Tentative Approval Letter Labeling X Labeling Review(s) X Medical Review(s) Chemistry Review(s) X Bioequivalence Review(s) X Statistical Review(s) Microbiology Review(s) X Other Review(s) Administrative & Correspondence Documents X CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: ANDA 065439 APPROVAL LETTER DEPARTMENT OF HEALTH & HUMAN SERVICES Food and Drug Administration Rockville, MD 20857 ANDA 065439 APP Pharmaceuticals, LLC Attention: Georgia Hizon Senior Regulatory Scientist 1501 East Woodfield Road, Suite 300E Schaumburg, IL 60173 Dear Madam: This is in reference to your abbreviated new drug application (ANDA) dated October 5, 2006, submitted pursuant to section 505(j) of the Federal Food, Drug, and Cosmetic Act (the Act), for Aztreonam for Injection USP, 500 mg/vial, 1 g/vial, and 2 g/vial. Reference is also made to your amendments dated September 11, 2007; March 14, October 29, and December 5, 2008; February 2, March 13, April 10, September 11, November 3, December 14, and December 18, 2009; and January 19, 2010. We have completed the review of this ANDA and have concluded that adequate information has been presented to demonstrate that the drug is safe and effective for use as recommended in the submitted labeling. Accordingly the ANDA is approved, effective on the date of this letter.
    [Show full text]