INTERNATIONAL CHRONOSTRATIGRAPHIC CHART International Commission on Stratigraphy

Total Page:16

File Type:pdf, Size:1020Kb

INTERNATIONAL CHRONOSTRATIGRAPHIC CHART International Commission on Stratigraphy INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSA GSSP GSSP GSSP EonothemErathem / EonSystem / Era / Period GSSP age (Ma) EonothemErathem / EonSystem / Era / Period age (Ma) EonothemErathem / EonSystem / Era / Period age (Ma) / Eon Erathem / Era System / Period age (Ma) present 145.0 ± 0.8 358.9 ± 0.4 ~ 541 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic Pleistocene 0.781 372.2 ±1.6 850 Calabrian Oxfordian Tonian 1.806 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.588 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian 3.600 Bajocian 170.3 ±1.4 Givetian 1200 Pliocene Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.62 Pliensbachian Proterozoic Statherian Serravallian Lower 407.6 ±2.6 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Neogene Langhian Sinemurian Orosirian 15.97 199.3 ±0.3 Lochkovian Paleo- Burdigalian Hettangian 2050 Mesozoic 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Rhyacian Aquitanian Rhaetian Pridoli 23.03 ~ 208.5 423.0 ±2.3 2300 Cenozoic Ludfordian Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Homerian 430.5 ±0.7 Neo- Wenlock Precambrian 33.9 ~ 228 Sheinwoodian 433.4 ±0.8 archean Priabonian Carnian Silurian Telychian 2800 38.0 riassic ~ 235 Bartonian T Llandovery 438.5 ±1.1 Meso- 41.3 Ladinian Aeronian 440.8 ±1.2 archean Eocene Middle ~ 242 Rhuddanian Lutetian Anisian 443.4 ±1.5 3200 47.8 247.2 Hirnantian 445.2 ±1.4 Paleo- Olenekian 251.2 Archean Paleogene Ypresian Lower Induan 252.17 ±0.06 Upper Katian archean 56.0 Changhsingian 453.0 ±0.7 3600 Thanetian 254.14 ±0.07 59.2 Lopingian Sandbian Eo- Paleocene Wuchiapingian Paleozoic 458.4 ±0.9 Phanerozoic Phanerozoic Selandian 259.8 ±0.4 archean 61.6 Phanerozoic Capitanian Darriwilian Danian 265.1 ±0.4 Middle 4000 66.0 467.3 ±1.1 Guadalupian Wordian Dapingian Maastrichtian 268.8 ±0.5 470.0 ±1.4 Hadean 72.1 ±0.2 Roadian Ordovician 272.3 ±0.5 Floian ~ 4600 Lower 477.7 ±1.4 Campanian Kungurian Units of all rank are in the process of being defined by Global Boundary Permian 283.5 ±0.6 83.6 ±0.2 Tremadocian Stratotype Section and Points (GSSP) for their lower boundaries, 485.4 ±1.9 Upper Santonian 86.3 ±0.5 Artinskian including those of the Archean and Proterozoic, long defined by Cisuralian 290.1 ±0.26 Stage 10 Global Standard Stratigraphic Ages (GSSA). Coniacian ~ 489.5 89.8 ±0.3 Sakmarian 295.0 ±0.18 Furongian Jiangshanian Charts and detailed information on ratified GSSPs are Turonian Asselian ~ 494 available at the website http://www.stratigraphy.org 93.9 298.9 ±0.15 Paibian ~ 497 Cenomanian n Gzhelian Guzhangian Numerical ages are subject to revision and do not define units in the 100.5 Upper 303.7 ±0.1 ~ 500.5 Phanerozoic and the Ediacaran; only GSSPs do. For boundaries in the Phanerozoic without ratified GSSPs or without constrained Paleozoic Kasimovian 307.0 ±0.1 Series 3 Drumian numerical ages, an approximate numerical age (~) is provided. aceous Albian t Middle Moscovian ~ 504.5 Mesozoic ~ 113.0 315.2 ±0.2 Stage 5 Numerical ages for all systems except Triassic, Cretaceous and ~ 509 ennsylvania Precambrian are taken from ‘A Geologic Time Scale 2012’ by Gradstein Cre Lower Bashkirian Aptian P Stage 4 323.2 ±0.4 et al. (2012); those for the Triassic and Cretaceous were provided ~ 125.0 Series 2 ~ 514 by the relevant ICS subcommissions. Upper Serpukhovian Cambrian Stage 3 Barremian 330.9 ±0.2 Lower ~ 129.4 ~ 521 Coloring follows the Commission Hauterivian Middle Visean Stage 2 for the Geological Map of the World. ~ 132.9 Carboniferous http://www.ccgm.org Valanginian 346.7 ±0.4 Terreneuvian ~ 529 ~ 139.8 Fortunian Berriasian Mississippian Lower Tournaisian Chart drafted by K.M. Cohen, S. Finney, P.L. Gibbard ~ 145.0 358.9 ±0.4 541.0 ±1.0 (c) International Commission on Stratigraphy, January 2013 Holocene (0/5/5/0) Tithonian (15/0/0/0) Famennian (5/5/20/0) Ediacaran (0/15/55/0) (0/5/10/0) Upper Neo- Upper (5/10/35/0) Upper (0/5/15/0) (30/0/0/0) Kimmeridgian (20/0/0/0) Frasnian (5/5/30/0) proterozoic Cryogenian (0/20/60/0) (0/30/70/0) Middle (0/5/20/0) Oxfordian (25/0/0/0) Tonian (0/25/65/0) Pleistocene Middle Givetian (5/10/45/0) (0/0/50/0) (0/5/35/0) Calabrian (0/5/25/0) Callovian (25/0/5/0) (5/20/55/0) Eifelian (5/15/50/0) Stenian (0/15/35/0) Quaternary Meso- Bathonian (30/0/5/0) Gelasian (0/5/30/0) Middle Emsian (10/15/50/0) proterozoic Ectasian (0/20/40/0) (0/30/55/0) (50/0/5/0) Bajocian (35/0/5/0) Lower Pliocene Piacenzian (0/0/25/0) (10/30/65/0) Pragian (10/20/55/0) Calymmian (0/25/45/0) (0/0/40/0) Zanclean (0/0/30/0) Aalenian (40/0/5/0) Devonian (20/40/75/0) Lochkovian (10/25/60/0) Statherian (0/55/10/0) Messinian (0/0/55/0) Toarcian (40/5/0/0) Pridoli (10/0/10/0) Paleo- Orosirian (0/60/15/0) (10/0/10/0) proterozoic Pliensbachian (50/5/0/0) Tortonian (0/0/60/0) Jurassic (80/0/5/0) Ludfordian (15/0/10/0) (0/75/30/0) Rhyacian (0/65/20/0) Lower Ludlow Proterozoic (0/80/35/0) Miocene Serravallian (0/0/65/0) (75/5/0/0) Sinemurian (60/5/0/0) (25/0/15/0) Gorstian (20/0/10/0) Siderian (0/70/25/0) (0/0/100/0) Langhian (0/0/70/0) Hettangian (70/5/0/0) Homerian (20/0/15/0) Wenlock Neoarchean (0/35/5/0) Burdigalian (0/0/75/0) Rhaetian (10/25/0/0) (30/0/20/0) Sheinwoodian (25/0/20/0) (0/40/5/0) Neogene (0/10/90/0) Upper Aquitanian (0/0/80/0) Norian (15/30/0/0) Telychian (25/0/15/0) (25/40/0/0) Mesoarchean (0/50/5/0) Llandovery M e s o z i c (60/0/10/0) Carnian (20/35/0/0) (0/60/5/0) Oligocene Chattian (0/10/30/0) (40/0/25/0) Aeronian (30/0/20/0) (0/25/45/0) Silurian (30/0/25/0) Rupelian (0/15/35/0) Ladinian (20/45/0/0) Rhuddanian (35/0/25/0) r e c a m b i n (0/75/30/0) Middle Paleoarchean (0/60/0/0) P C e n o z i c (5/0/90/0) Priabonian (0/20/30/0) (30/55/0/0) Anisian (25/50/0/0) Hirnantian (35/0/30/0) (0/75/0/0) Upper Eocene Bartonian (0/25/35/0) Lower Olenekian (30/65/0/0) Katian (40/0/35/0) Eoarchean (50/0/40/0) (5/90/0/0) (0/30/50/0) riassic (50/80/0/0) Lutetian (0/30/40/0) (40/75/0/0) Induan (35/70/0/0) Archean (0/100/0/0) (10/100/0/0) T Sandbian (45/0/40/0) Ypresian (0/35/45/0) Lopingian Changhsingian(0/25/20/0) Darriwilian (55/0/35/0) Middle Hadean (30/100/0/0) Thanetian (0/25/50/0) (0/35/30/0) Wuchiapingian (0/30/25/0) (70/0/50/0) Dapingian (60/0/40/0) Paleocene a l e o z i c (40/10/40/0) Selandian (0/25/55/0) Capitanian (0/40/35/0) h a n e r o z i c (40/0/5/0) Floian (75/0/45/0) (0/35/55/0) P Lower P Paleogene (0/40/60/0) Guadalupian h a n e r o z i c (40/0/5/0) h a n e r o z i c (40/0/5/0) (90/0/60/0) CYMK COLOR CODE Danian (0/30/55/0) Wordian (0/45/40/0) Ordovician (100/0/60/0) Tremadocian (80/0/50/0) P P (0/55/50/0) The CMYK color code is an additive model with percentages of Cyan, Maastrichtian (5/0/45/0) Roadian (0/50/45/0) Stage 10 (10/0/20/0) Magenta, Yellow and Black. For example: the CMYK color for Devonian (20/40/75/0) is a mixture of 20% Cyan, 40% Magenta, 75% Yellow and 0% Campanian (10/0/50/0) Kungurian (10/45/40/0) Furongian Jiangshanian(15/0/25/0) (30/0/40/0) Black. Artinskian (10/50/45/0) Upper Santonian (15/0/55/0) Cisuralian Paibian (20/0/30/0) The CMYK values are the primary reference system for designating the (35/0/75/0) official colors for these geological units. Coniacian (20/0/60/0) (5/65/60/0) Sakmarian (10/55/50/0) Guzhangian (20/5/30/0) Permian (5/75/75/0) Series 3 The CMYK color code gives the official values only for Cyan (C), Magenta (M) Turonian (25/0/65/0) Asselian (10/60/55/0) (35/5/45/0) Drumian (25/5/35/0) and Yellow (Y).
Recommended publications
  • Wright and Cherns Supplementary Data Flat
    Wright and Cherns Supplementary Data Flat pebble conglomerates from subtidal settings (Fig. 2) PROPOSE SHELF D AGE LOCATION FORMATION SETTING PROCESS AUTHOR(S) Subtidal within Mesoproteroz China, Hebei Gaoyuzhuang storm wave oic Province Formation base storms Luo et al. 2014 Proterozoic, NW Canada, Pre-Marinoan Mackenzie mid to outer glaciation Mountains Keele Fm ramp storms Day et al. 2004 Bertrand-Sarfati Gourma, bottom & Moussine- Vendian West Africa slope currents' Pouchkine 1983 Low energy Narbonne et al. Ediacaran South Africa Swartpunt Fm deeper ramp storm 1997 Canadian MacNaughton et Ediacaran Arctic Gametrail Fm subtidal ramp storms al. 2008 shallow Kyrshabakty carbonate high energy Heubeck et al. Ediacaran Kazakhstan Formation platform events 2013 Ediacaran - Lower carbonate Grotzinger & Cambrian Oman Ara Group platform Al-Rawahi 2014 Lower South Sellick Hill Mount & Kidder Cambrian Australia Formation subtidal storms 1993 Lower Bayan Gol Fm, shallow Cambrian W Mongolia Zavkhan Basin subtidal storms Kruse et al. 1996 Lower Shuijingtuo Ishikawa et al. Cambrian South China Fm subtidal 2008 Middle Canadian Dewing & Cambrian Arctic ramp Nowlan 2012 British Middle Columbia, Cambrian Canada Jubilee Fm Pope 1990 1 Middle Pratt & Cambrian Argentina La Laja Fm subtidal shelf tsunamis Bordonaro 2007 low energy Middle shallow Cambrian Australia Ranken Lst subtidal storms Kruse 1996 Middle Wyoming, Upper Gros Cambrian USA Ventre Shale Csonka 2009 middle upper Middle W Utah, upper Wheeler, carbonate belt - Cambrian USA Marjum fms subtidal shelf Robison 1964 Middle- Upper Supratidal to Cambrian NW China subtidal fpc storms Liang et al. 1993 Ust’- Brus,Labaz, Middle Orakta, Cambrian - Kulyumbe, Lower Ujgur and Iltyk Kouchinsky et Ordovician Siberia fms al.
    [Show full text]
  • And Ordovician (Sardic) Felsic Magmatic Events in South-Western Europe: Underplating of Hot Mafic Magmas Linked to the Opening of the Rheic Ocean
    Solid Earth, 11, 2377–2409, 2020 https://doi.org/10.5194/se-11-2377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean J. Javier Álvaro1, Teresa Sánchez-García2, Claudia Puddu3, Josep Maria Casas4, Alejandro Díez-Montes5, Montserrat Liesa6, and Giacomo Oggiano7 1Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain 2Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain 3Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain 4Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 5Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain 6Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 7Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy Correspondence: J. Javier Álvaro ([email protected]) Received: 1 April 2020 – Discussion started: 20 April 2020 Revised: 14 October 2020 – Accepted: 19 October 2020 – Published: 11 December 2020 Abstract. A geochemical comparison of early Palaeo- neither metamorphism nor penetrative deformation; on the zoic felsic magmatic episodes throughout the south- contrary, their unconformities are associated with foliation- western European margin of Gondwana is made and in- free open folds subsequently affected by the Variscan defor- cludes (i) Furongian–Early Ordovician (Toledanian) activ- mation.
    [Show full text]
  • Appendix 3.Pdf
    A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin Item Type Thesis or dissertation Authors Nicholls, Keith H. Citation Nicholls, K. (2019). A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 26/09/2021 02:37:15 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622234 International Chronostratigraphic Chart v2013/01 Erathem / Era System / Period Quaternary Neogene C e n o z o i c Paleogene Cretaceous M e s o z o i c Jurassic M e s o z o i c Jurassic Triassic Permian Carboniferous P a l Devonian e o z o i c P a l Devonian e o z o i c Silurian Ordovician s a n u a F y r Cambrian a n o i t u l o v E s ' i k s w o Ichnogeneric Diversity k p e 0 10 20 30 40 50 60 70 S 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 Number of Ichnogenera (Treatise Part W) Ichnogeneric Diversity 0 10 20 30 40 50 60 70 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 c i o 63 z 65 o e 67 a l 69 a 71 P 73 75 77 79 81 83 n 85 a i r 87 b 89 m 91 a 93 C Number of Ichnogenera (Treatise Part W)
    [Show full text]
  • The Valanginian to Aptian Stages - Current Definitions and Outstanding Problems
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 4‘>3 Zitteliana 10 493-500 München, I. Juli 1983 ISSN 0373 9627 The Valanginian to Aptian stages - current definitions and outstanding problems Compiled by PETER FRANKLIN RAWSON») Willi 3 tables ABSTRACT Current definitions of the Valanginian to Aptian Stages are tion potential. The I’re-Albian Stages Working Croup is in­ reviewed and some of the outstanding problems outlined. Fi­ stigating study of selected sections in various parts of the nal recommendations on stage boundaries can be made only world to provide an integrated framework ol biostraligraphy after much more strat¡(graphical work has been completed, as and event stratigraphy. the eventual boundaries must have good international correla­ KURZFASSUNG Lin Überblick über die gängigen Definitionen der Stufen barsein. Die Prc-Albian Stagcs Working Group regt an, ms vom Valangin bis zum Apt wird gegeben und einige wichtige gewählte Profile in verschiedenen Peilen der Welt zu unterst! Probleme hervorgehoben. Lndgülligc Empfehlungen zu Stu­ ehen, um so den allgemeinen Rahmen liii eine Ncudelinition fengrenzen sind z. Zt. noch nicht möglich. Dazu sind noch der Stufen auf der Grundlage der Biostraligraphie und der weitere stratigraphische Untersuchungen erforderlich, denn Lvenl-Straiigraphic zu schaffen. die fcstzulcgendcn Grenzen müssen international korrelier­ I. INTRODUCTION This review has been compiled on behalf of the Prc-Albian boundaries and to improve the usage of stage names in re­ Stages Working Group of the Subcommission on Cretaceous gions away from stratotype sections." Stratigraphy. The primary role of the working group is to cla ­ Thus our fundamental philosophy is first to make objective rify, and to improve where necessary, the definition and correlations between regions and only then to redefine stages boundaries of the Valanginian to Aptian Stages.
    [Show full text]
  • Lee-Riding-2018.Pdf
    Earth-Science Reviews 181 (2018) 98–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Marine oxygenation, lithistid sponges, and the early history of Paleozoic T skeletal reefs ⁎ Jeong-Hyun Leea, , Robert Ridingb a Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea b Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA ARTICLE INFO ABSTRACT Keywords: Microbial carbonates were major components of early Paleozoic reefs until coral-stromatoporoid-bryozoan reefs Cambrian appeared in the mid-Ordovician. Microbial reefs were augmented by archaeocyath sponges for ~15 Myr in the Reef gap early Cambrian, by lithistid sponges for the remaining ~25 Myr of the Cambrian, and then by lithistid, calathiid Dysoxia and pulchrilaminid sponges for the first ~25 Myr of the Ordovician. The factors responsible for mid–late Hypoxia Cambrian microbial-lithistid sponge reef dominance remain unclear. Although oxygen increase appears to have Lithistid sponge-microbial reef significantly contributed to the early Cambrian ‘Explosion’ of marine animal life, it was followed by a prolonged period dominated by ‘greenhouse’ conditions, as sea-level rose and CO2 increased. The mid–late Cambrian was unusually warm, and these elevated temperatures can be expected to have lowered oxygen solubility, and to have promoted widespread thermal stratification resulting in marine dysoxia and hypoxia. Greenhouse condi- tions would also have stimulated carbonate platform development, locally further limiting shallow-water cir- culation. Low marine oxygenation has been linked to episodic extinctions of phytoplankton, trilobites and other metazoans during the mid–late Cambrian.
    [Show full text]
  • Norwegian Seaway: a Key Area for Understanding Late Jurassic to Early Cretaceous Paleoenvironments
    CORE Metadata, citation and similar papers at core.ac.uk Provided by OceanRep PALEOCEANOGRAPHY, VOL. 18, NO. 1, 1010, doi:10.1029/2001PA000625, 2003 The Greenland-Norwegian Seaway: A key area for understanding Late Jurassic to Early Cretaceous paleoenvironments Jo¨rg Mutterlose,1 Hans Brumsack,2 Sascha Flo¨gel,3 William Hay,3 Christian Klein,1 Uwe Langrock,4 Marcus Lipinski,2 Werner Ricken,5 Emanuel So¨ding,3 Ru¨diger Stein,4 and Oliver Swientek5 Received 22 January 2001; revised 24 April 2002; accepted 9 July 2002; published 26 February 2003. [1] The paleoclimatology and paleoceanology of the Late Jurassic and Early Cretaceous are of special interest because this was a time when large amounts of marine organic matter were deposited in sediments that have subsequently become petroleum source rocks. However, because of the lack of outcrops, most studies have concentrated on low latitudes, in particular the Tethys and the ‘‘Boreal Realm,’’ where information has been based largely on material from northwest Germany, the North Sea, and England. These areas were all south of 40°N latitude during the Late Jurassic and Early Cretaceous. We have studied sediment samples of Kimmeridgian (154 Ma) to Barremian (121 Ma) age from cores taken at sites offshore mid-Norway and in the Barents Sea that lay in a narrow seaway connecting the Tethys with the northern polar ocean. During the Late Jurassic-Early Cretaceous these sites had paleolatitudes of 42–67°N. The Late Jurassic-Early Cretaceous sequences at these sites reflect the global sea-level rise during the Volgian-Hauterivian and a climatic shift from warm humid conditions in Volgian times to arid cold climates in the early Hauterivian.
    [Show full text]
  • International Stratigraphic Chart
    INTERNATIONAL STRATIGRAPHIC CHART ICS International Commission on Stratigraphy Ma Ma Ma Ma Era Era Era Era Age Age Age Age Age Eon Eon Age Eon Age Eon Stage Stage Stage GSSP GSSP GSSA GSSP GSSP Series Epoch Series Epoch Series Epoch Period Period Period Period System System System System Erathem Erathem Erathem Erathem Eonothem Eonothem Eonothem 145.5 ±4.0 Eonothem 359.2 ±2.5 542 Holocene Tithonian Famennian Ediacaran 0.0117 150.8 ±4.0 Upper 374.5 ±2.6 Neo- ~635 Upper Upper Kimmeridgian Frasnian Cryogenian 0.126 ~ 155.6 385.3 ±2.6 proterozoic 850 “Ionian” Oxfordian Givetian Tonian Pleistocene 0.781 161.2 ±4.0 Middle 391.8 ±2.7 1000 Calabrian Callovian Eifelian Stenian Quaternary 1.806 164.7 ±4.0 397.5 ±2.7 Meso- 1200 Gelasian Bathonian Emsian Ectasian proterozoic 2.588 Middle 167.7 ±3.5 Devonian 407.0 ±2.8 1400 Piacenzian Bajocian Lower Pragian Calymmian Pliocene 3.600 171.6 ±3.0 411.2 ±2.8 1600 Zanclean Aalenian Lochkovian Statherian Jurassic 5.332 175.6 ±2.0 416.0 ±2.8 Proterozoic 1800 Messinian Toarcian Pridoli Paleo- Orosirian 7.246 183.0 ±1.5 418.7 ±2.7 2050 Tortonian Pliensbachian Ludfordian proterozoic Rhyacian 11.608 Lower 189.6 ±1.5 Ludlow 421.3 ±2.6 2300 Serravallian Sinemurian Gorstian Siderian Miocene 13.82 196.5 ±1.0 422.9 ±2.5 2500 Neogene Langhian Hettangian Homerian 15.97 199.6 ±0.6 Wenlock 426.2 ±2.4 Neoarchean Burdigalian M e s o z i c Rhaetian Sheinwoodian 20.43 203.6 ±1.5 428.2 ±2.3 2800 Aquitanian Upper Norian Silurian Telychian 23.03 216.5 ±2.0 436.0 ±1.9 P r e c a m b i n P Mesoarchean C e n o z i c Chattian Carnian
    [Show full text]
  • The Weeks Formation Konservat-Lagerstätte and the Evolutionary Transition of Cambrian Marine Life
    Downloaded from http://jgs.lyellcollection.org/ by guest on October 1, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-042 The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life Rudy Lerosey-Aubril1*, Robert R. Gaines2, Thomas A. Hegna3, Javier Ortega-Hernández4,5, Peter Van Roy6, Carlo Kier7 & Enrico Bonino7 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 Geology Department, Pomona College, Claremont, CA 91711, USA 3 Department of Geology, Western Illinois University, 113 Tillman Hall, 1 University Circle, Macomb, IL 61455, USA 4 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 5 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 6 Department of Geology, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium 7 Back to the Past Museum, Carretera Cancún, Puerto Morelos, Quintana Roo 77580, Mexico R.L.-A., 0000-0003-2256-1872; R.R.G., 0000-0002-3713-5764; T.A.H., 0000-0001-9067-8787; J.O.-H., 0000-0002- 6801-7373 * Correspondence: [email protected] Abstract: The Weeks Formation in Utah is the youngest (c. 499 Ma) and least studied Cambrian Lagerstätte of the western USA. It preserves a diverse, exceptionally preserved fauna that inhabited a relatively deep water environment at the offshore margin of a carbonate platform, resembling the setting of the underlying Wheeler and Marjum formations. However, the Weeks fauna differs significantly in composition from the other remarkable biotas of the Cambrian Series 3 of Utah, suggesting a significant Guzhangian faunal restructuring.
    [Show full text]
  • Ediacaran and Cambrian Stratigraphy in Estonia: an Updated Review
    Estonian Journal of Earth Sciences, 2017, 66, 3, 152–160 https://doi.org/10.3176/earth.2017.12 Ediacaran and Cambrian stratigraphy in Estonia: an updated review Tõnu Meidla Department of Geology, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia; [email protected] Received 18 December 2015, accepted 18 May 2017, available online 6 July 2017 Abstract. Previous late Precambrian and Cambrian correlation charts of Estonia, summarizing the regional stratigraphic nomenclature of the 20th century, date back to 1997. The main aim of this review is updating these charts based on recent advances in the global Precambrian and Cambrian stratigraphy and new data from regions adjacent to Estonia. The term ‘Ediacaran’ is introduced for the latest Precambrian succession in Estonia to replace the formerly used ‘Vendian’. Correlation with the dated sections in adjacent areas suggests that only the latest 7–10 Ma of the Ediacaran is represented in the Estonian succession. The gap between the Ediacaran and Cambrian may be rather substantial. The global fourfold subdivision of the Cambrian System is introduced for Estonia. The lower boundary of Series 2 is drawn at the base of the Sõru Formation and the base of Series 3 slightly above the former lower boundary of the ‘Middle Cambrian’ in the Baltic region, marked by a gap in the Estonian succession. The base of the Furongian is located near the base of the Petseri Formation. Key words: Ediacaran, Cambrian, correlation chart, biozonation, regional stratigraphy, Estonia, East European Craton. INTRODUCTION The latest stratigraphic chart of the Cambrian System in Estonia (Mens & Pirrus 1997b, p.
    [Show full text]
  • 1 Supplementary Materials and Methods 1 S1 Expanded
    1 Supplementary Materials and Methods 2 S1 Expanded Geologic and Paleogeographic Information 3 The carbonate nodules from Montañez et al., (2007) utilized in this study were collected from well-developed and 4 drained paleosols from: 1) the Eastern Shelf of the Midland Basin (N.C. Texas), 2) Paradox Basin (S.E. Utah), 3) Pedregosa 5 Basin (S.C. New Mexico), 4) Anadarko Basin (S.C. Oklahoma), and 5) the Grand Canyon Embayment (N.C. Arizona) (Fig. 6 1a; Richey et al., (2020)). The plant cuticle fossils come from localities in: 1) N.C. Texas (Lower Pease River [LPR], Lake 7 Kemp Dam [LKD], Parkey’s Oil Patch [POP], and Mitchell Creek [MC]; all representing localities that also provided 8 carbonate nodules or plant organic matter [POM] for Montañez et al., (2007), 2) N.C. New Mexico (Kinney Brick Quarry 9 [KB]), 3) S.E. Kansas (Hamilton Quarry [HQ]), 4) S.E. Illinois (Lake Sara Limestone [LSL]), and 5) S.W. Indiana (sub- 10 Minshall [SM]) (Fig. 1a, S2–4; Richey et al., (2020)). These localities span a wide portion of the western equatorial portion 11 of Euramerica during the latest Pennsylvanian through middle Permian (Fig. 1b). 12 13 S2 Biostratigraphic Correlations and Age Model 14 N.C. Texas stratigraphy and the position of pedogenic carbonate samples from Montañez et al., (2007) and cuticle were 15 inferred from N.C. Texas conodont biostratigraphy and its relation to Permian global conodont biostratigraphy (Tabor and 16 Montañez, 2004; Wardlaw, 2005; Henderson, 2018). The specific correlations used are (C. Henderson, personal 17 communication, August 2019): (1) The Stockwether Limestone Member of the Pueblo Formation contains Idiognathodus 18 isolatus, indicating that the Carboniferous-Permian boundary (298.9 Ma) and base of the Asselian resides in the Stockwether 19 Limestone (Wardlaw, 2005).
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China
    Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China Y.D. Suna, b*, X.T. Liuc, J.X. Yana, B. Lid, B. Chene, D.P.G. Bondf, M.M. Joachimskib, P.B. Wignallg, X.L. Laia a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China b GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany c Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China d Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou, 510075, China e State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing, 210008, R.P. China f School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK g School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK *Corresponding authors Email: [email protected] (Y.D. Sun) © 2017, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/ licenses/by-nc-nd/4.0/ 1 Abstract Permian strata from the Tieqiao section (Jiangnan Basin, South China) contain several distinctive conodont assemblages. Early Permian (Cisuralian) assemblages are dominated by the genera Sweetognathus, Pseudosweetognathus and Hindeodus with rare Neostreptognathodus and Gullodus. Gondolellids are absent until the end of the Kungurian stage—in contrast to many parts of the world where gondolellids and Neostreptognathodus are the dominant Kungurian conodonts. A conodont changeover is seen at Tieqiao and coincided with a rise of sea level in the late Kungurian to the early Roadian: the previously dominant sweetognathids were replaced by mesogondolellids.
    [Show full text]