High Arctic Odyssey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plumulitid Machaeridian Remains from the Silurian (Telychian) of Severnaya Zemlya, Arctic Russia
NORWEGIAN JOURNAL OF GEOLOGY Plumulitid mochoeridion remains from the Silurion, Arctic Russio 53 Plumulitid machaeridian remains from the Silurian (Telychian) of Severnaya Zemlya, Arctic Russia Anette E.S. Hogstrom, Olga K. Bogolepova & Alexander P. Gubanov Hogstrom, A.E.S., Bogolepova, O.K. and Gubanov, A.P.: Plumulitid machaeridian remains from the Silurian (Telychian) of Sevemaya Zemlya, Arc tic Russia. Norsk Geologisk Tidsskrift, Vol. 82, pp. 53-55. Trondheim 2002, ISSN 029-196X. The machaeridian genus Plumulites is reported for the first time from the Severnaya ZemlyaArchipelago of Arctic Russia, where it occurs in limes tone concretions within the Sredninskaya Formation. Graptolites fromthe same concretions indicate the late crispus- griestoniensisBiozones of the mid Telychian (Uandovery). Similarities to plumulitid sclerites from the Upper Ordovician of the Tairnyr Peninsula promotes further interest in machaeridian faunas fromthis region. A.E.S. Hogstromi, O.K. Bogolepova and A.P. Gubanov, Historical Geology & Palaeontology, Dept. of Earth Sciences, Uppsala University, Norbyviigen 22, SE-752 36, Uppsala, Sweden. I Temporaryaddress: Dept. of Earth Sciences, Wills Memorial Building, Queen's Road, Bristol BSB l RJ, UK. lntroduction Stratigraphy and locality The global record of Silurian machaeridians is limited, Machaeridians discussed herein originate from the but includes rare articulated specimens, and more com Lower Silurian Sredninskaya Formation (Matukhin et monly isolated sclerites that have been found in Britain al. 1999). To avoid nomenclatural questions, it should (de Koninck 1857; Woodward 1865; Withers 1926 and be noted that these rocks were previously referred to as Adrain et al. 1991), the Baltic Region (Aurivillius 1892; the Golomaynnaya Formation (Menner et al. -
Accelerated Glacier Mass Loss in the Russian Arctic (2010-2017) Christian Sommer1, Thorsten Seehaus1, Andrey Glazovsky2, Matthias H
https://doi.org/10.5194/tc-2020-358 Preprint. Discussion started: 28 December 2020 c Author(s) 2020. CC BY 4.0 License. Brief communication: Accelerated glacier mass loss in the Russian Arctic (2010-2017) Christian Sommer1, Thorsten Seehaus1, Andrey Glazovsky2, Matthias H. Braun1 1Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany 5 2Institute of Geography RAS, Moscow, 119017, Russia Correspondence to: Christian Sommer ([email protected]) Abstract. Glaciers in the Russian High Arctic have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small over the past decades. Here we show surface elevation change measure- ments and geodetic mass balances of 93% of all glacierized areas of Novaya Zemlya, Severnaya Zemlya and Franz Josef Land 10 using interferometric synthetic aperture radar measurements taken between 2010 and 2017. We calculate an overall mass loss rate of -23±5 Gt a-1, corresponding to a sea level rise contribution of 0.06±0.01 mm a-1. Compared to measurements prior to 2010, mass loss of glaciers on the Russian archipelagos has doubled in recent years. 1 Introduction The Arctic has undergone large environmental changes due to increases in temperature and humidity (Box et al., 2019) and an 15 increase in glacier mass loss has been observed in many polar regions (Morris et al., 2020). The Russian Arctic, including the archipelagos Novaya Zemlya, Severnaya Zemlya and Franz Josef Land, is one of these regions. Despite a glacierized area of ~52,000 km², in-situ observations of glacier mass change are sparse. -
Download Full Article in PDF Format
Silurian and Devonian strata on the Severnaya Zemlya and Sedov archipelagos (Russia) Peep MÄNNIK Institute of Geology, Tallinn Technical University, Estonia Ave 7, 10143 Tallinn (Estonia) [email protected] Vladimir V. MENNER Institute of Geology and Exploitation of Combustible Fuels (IGIRGI), Fersman Str. 50, 117312 Moscow (Russia) [email protected] [email protected] Rostislav G. MATUKHIN Siberian Research Institute of Geology, Geophysics and Mineral Resources (SNIIGiMS), Krasnyj Ave 67, 630104 Novosibirsk (Russia) [email protected] Visvaldis KURŠS Institute of Geology, University of Latvia, Raina Ave 19, LV-1050 Rīga (Latvia) [email protected] Männik P., Menner V. V., Matukhin R. G. & Kuršs V. 2002. — Silurian and Devonian strata 406 on the Severnaya Zemlya and Sedov archipelagos (Russia). Geodiversitas 24 (1) : 99-122. ABSTRACT Silurian and Devonian strata are widely distributed on the islands of the Severnaya Zemlya and Sedov archipelagos. The Silurian is represented by fossiliferous shallow-water carbonates underlain by variegated sandstones and siltstones of Ordovician age. The Devonian consists mainly of various red sandstones, siltstones and argillites, with carbonates only in some inter- KEY WORDS vals. The best sections available for study are located in the river valleys, and Silurian, in the cliffs along the coastline of islands. Type sections of most of the strati- Devonian, Sedov Archipelago, graphical units identified are located on the Matusevich River, October Severnaya Zemlya Archipelago, Revolution Island. As the Quaternary cover is poorly developed on Russia, lithostratigraphy, Severnaya Zemlya, the Palaeozoic strata can be easily traced also outside the biostratigraphy. sections. GEODIVERSITAS • 2002 • 24 (1) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris. -
4604. Declaration
Page 1 4450. Declaration By a decree dated 15 January 1985, the USSR Council of Ministers approved a list of the geographical co-ordinates of the points defining the position of the baselines for measuring the breadth of the territorial sea, the exclusive economic zone and the continental shelf of the USSR off the continental coast and islands of the Arctic Ocean and the Baltic and Black seas, as given below. The same decree establishes that the waters of the White Sea south of the line connecting Cape Svyatoy Nos with Cape Kanin Nos, the waters of Cheshskaya/Bay south of the line connecting Cape Mikulkin with Cape Svyatoy/Nos (Timansky), and the waters of Baidaratskaya Bay south-east of the line connecting Cape Yuribeisalya with Cape Belushy Nos are, as waters historically belonging to the USSR, internal waters. Arctic Ocean Co-ordinates Point Geographical location North East number of point latitude longitude 1 Boundary sign No. 415 (sea buoy) 69°47'41" 30°49'15" 2 Cape Nemetsky 69°57.2' 31°56.7' 3 Islet to the east of Cape 69 57.2 31 57.2 Nemetsky 4 Cape Kekursky 69 56.7 32 03.5 5 Islet to the south-east of 69 56.4 32 05.4 Cape Kekursky 6 Islet off Cape Lognavolok 69 46.2 32 57.4 7 Islet off Cape Laush 69 44.5 33 04.8 Thence following the low-water line to point 8 8 Rybachy Peninsula, Cape 69 42.9 33 07.9 Tsypnavolok 9 Kil'din Island, north-west coast 69 22.8 34 01.8 Thence following the low-water line to point 10 10 Kil'din Island, eastern 69 20.0 34 24.2 extremity 11 Cape to the east of Cape 69 15.2 35 15.2 Teribersky 12 Cape to the -
Summary of the Arctic Archipelagos and Islands Off Eurasia
SUMMARY OF THE ARCTIC ARCHIPELAGOS AND ISLANDS OFF EURASIA R. K. Headland revised 18 May 2017 SPRI, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1ER. These Arctic lands include a diverse range of archipelagos and separate islands. The positions given are approximately the middle point for smaller islands and their limits for larger ones and groups. Names are given in the forms recommended by the Union Géographique International with, where the name has varied through double transliteration, the original form, and, in other cases, an English translation. Sightings, landings, and winterings are the first recorded; there may have been previous ones for some islands. Islands only a short distance off the continental mainland are not included. In easterly order the islands are: JAN MAYEN 70·83°-71·17°N, 8°-9°W One isolated active volcanic island (latest eruption 1985); in the Greenland Sea. Area 373 km². Highest elevation: 2277 m (Beerenberg, volcano). 33% glacierized. Discovered 1614 by a Netherlands whaling voyage (Jan Jacobz. May aboard de goude Cath). First wintering 1633-34 (by whalers, all perished); meteorological station, established 1921, open. Norwegian territory; annexed in 1929. SPITSBERGEN ARKIPELAGO (Acute Peaks) 76·50°-80·80°N, 10°-34°E Four main islands and about 150 lesser ones; in the Barents Sea, of sedimentary origin with igneous overlay. Area: 62 842 km². Highest elevation: 1713 m (Newtontoppen). 60% glacierized. Possibly sighted 1194; discovered 1596 by a Dutch whaling voyage (Jacob Heemskerck aboard Hazewind). First wintering 1630-31 (by whalers); permanent settlement (coal mine) established 1906, currently 3 remain open, 1 other settlement occupied and 4 meteorological stations open. -
Severnaya Zemlya” to the Study of Arctic Seismicity
Arctic Environmental Research 19(4): 139–145 UDC 550.34 DOI 10.3897/issn2541-8416.2019.19.4.139 Research Article The contribution of the seismic station “Severnaya Zemlya” to the study of arctic seismicity AP Turova1, ER Morozova1 1 N. Laverov Federal Centre for Integrated Arctic Research (Arkhangelsk, Russian Federation) Corresponding author: Alyona Turova ([email protected]) Academic editor: Alexandr I. Malov ♦ Received 30 August 2019 ♦ Accepted 26 November 2019 ♦ Published 31 December 2019 Citation: Turova AP, Morozova ER (2019) The contribution of the seismic station “Severnaya Zemlya” to the study of arctic seismicity. Arctic Environmental Research 19(4): 139–145. https://doi.org/10.3897/issn2541-8416.2019.19.4.139 Abstract At present, a relevant task consists in understanding the seismicity of the European Arctic sector in gene- ral and the Barents-Kara region in particular. Due to the small number of seismic stations installed in the Arctic region our understanding of the seismicity of the Arctic is still not properly investigated. However, as a consequence of the operationalisation of the seismic station SVZ Severnaya Zemlya on the Severnaya Zemlya archipelago since 2016, it has become possible to record and process an increased number of seismic events. Data from the Arkhangelsk seismic network were compared with a map of the spatial distribution of earthquake epicentres in the Barents-Kara region and adjacent waters for 2017–2018 created by various seismological agencies. The distribution of the number of earthquakes by magnitude and location registered by the Arkhangelsk seismic network for 2012–2018 are presented. The greatest number of earthquakes is associated with the Gakkel, Knipovich and Mohn Ridges, while the lowest number is associated with the St. -
Early Holocene Environments on October Revolution Island, Severnaya Zemlya, Arctic Russia
Palaeogeography, Palaeoclimatology, Palaeoecology 267 (2008) 21–30 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early Holocene environments on October Revolution Island, Severnaya Zemlya, Arctic Russia A.A. Andreev a,⁎, D.J. Lubinski b, A.A. Bobrov c, Ó. Ingólfsson d, S.L. Forman e, P.E. Tarasov f, P. Möller g a Alfred-Wegener-Institut für Polar- und Meeresforschung, Forschungsstelle Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany b Institute of Arctic and Alpine Research (INSTAAR), Campus Box 450, University of Colorado, Boulder, CO 80309-0450, USA c Soil Department of Moscow State University, Vorobievy Gory, 119899, Moscow, Russia d Department of Geology and Geography, Askja, University of Island, IS-101 Reykjavík, Iceland e Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7059, USA f Institute for Geological Sciences/Palaeontology Free University Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany g GeoBiosphere Science Centre, Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, SE-22362 Lund, Sweden ARTICLE INFO ABSTRACT Article history: Pollen, palynomorphs, and rhizopods were studied from several b1 m thick, peaty and silty sediment Received 14 January 2008 sections on southwestern October Revolution Island, Severnaya Zemlya. Six AMS radiocarbon ages from the Received in revised form 7 April 2008 sections show that peat accumulation started at ca. 11,500 and stopped after 9500 cal. yr BP, consistent with Accepted 16 May 2008 several previously reported 14C ages. Open steppe-like vegetation existed on the island during the late Glacial, shortly before the Pleistocene/Holocene transition. -
Introduction Itinerary
THE ARCTIC - HIGH ARCTIC ODYSSEY: REMOTE RUSSIAN ARCHIPELAGOS TRIP CODE ACQEHAO DEPARTURE 04/08/2022, 04/08/2022 DURATION 22 Days LOCATIONS Arctic, Russian Arctic INTRODUCTION Book and Save: Up to 20%* on 2022 voyages and select cabins* This epic adventure of discovery takes you to some of the most remote and extreme regions of the Russian High Arctic. Setting sail from Murmansk, we explore heavily glaciated Novaya Zemlya (New Land), a vast area of pristine Arctic wilderness where polar bears roam. We sail further east to the âice cellar of the Arcticâ - the Kara Sea, where we follow in the footsteps of the Arctic explorers who set out in search of the fabled Northeast Passage. We may even explore Severnaya Zemlya, the last major territorial discovery on the planet. Then on to Franz Josef Land, a group of 191 remote islands within the Arctic Circle and part of the Russian Arctic National Park. This is an itinerary for the intrepid adventurer as you encounter unique wildlife amongst pristine landscapes. ITINERARY DAY 1: Helsinki, Finland Your arctic adventure begins in Helsinki, renowned for its extraordinary architecture and design scene and intriguing mix of eastern and western influences. If you arrive early, explore the many museums, galleries and restaurants, relax at a Finnish sauna or wander the vibrant Design District before retiring at your included hotel. Copyright Chimu Adventures. All rights reserved 2020. Chimu Adventures PTY LTD THE ARCTIC - HIGH ARCTIC ODYSSEY: REMOTE RUSSIAN ARCHIPELAGOS DAY 2: Embarkation in Murmansk, Russia TRIP CODE After breakfast, we will transfer to the airport and ACQEHAO board our private charter flight to Murmansk, Russia. -
High Arctic Odyssey
HIGH ARCTIC ODYSSEY Remote Russian Archipelagos A Contents 1 Overview 2 Itinerary 6 Arrival and Departure Details 8 Your Ship 10 Included Activities 11 Dates & Rates 12 Inclusions & Exclusions 13 Your Expedition Team 14 Extend Your Trip 15 Meals on Board 16 Possible Excursions 19 Packing Checklist Overview High Arctic Odyssey: Remote Russian Archipelagos One of Earth’s last regions to be discovered, and the newest destination in Quark EXPEDITION IN BRIEF Expeditions’ portfolio, the High Russian Arctic is a place of mystery, beauty and Experience a true expedition as we wonder. On this stirring voyage along Russia’s ice-draped coastlines, we invite explore rarely visited Severnaya Zemlya you to become one of the first passengers to visit this little-known region and Encounter iconic Arctic wildlife, such as encounter sights rarely seen by even the most intrepid adventurers. polar bears, walrus and seabirds From the breathtaking glaciers of Novaya Zemlya and Franz Josef Land to the Explore glaciated Novaya Zemlya, where stark, secluded islands of the icy Kara Sea, the remarkable features of this isolated the earliest Arctic explorers overwintered wilderness will leave you awed and inspired. An incredible 22-day journey that Visit significant sites at Franz Josef Land will take you to far-flung landscapes unlike anything you’ve ever witnessed, and learn about the region’s fascinating history High Arctic Odyssey is exclusively designed to allow you to maximize your time exploring these pristine environments, appreciate the rich and dramatic polar Discover rarely visited islands of the icy Kara Sea history of these faraway destinations, and, especially, increase your chances of observing the region’s diverse and magnificent wildlife, such as whales, seals, muskox, walruses and polar bears. -
The Following Section on Early History Was Written by Professor William (Bill) Barr, Arctic Historian, the Arctic Institute of North America, University of Calgary
The following section on early history was written by Professor William (Bill) Barr, Arctic Historian, The Arctic Institute of North America, University of Calgary. Prof. Barr has published numerous books and articles on the history of exploration of the Arctic. In 2006, William Barr received a Lifetime Achievement Award for his contributions to the recorded history of the Canadian North from the Canadian Historical Association. As well, Prof. Barr, a known admirer of Russian Arctic explorers, has been credited with making known to the wider public the exploits of Polar explorations by Russia and the Soviet Union. HISTORY OF ARCTIC SHIPPING UP UNTIL 1945 Northwest Passage The history of the search for a navigable Northwest Passage by ships of European nations is an extremely long one, starting as early as 1497. Initially the aim of the British and Dutch was to find a route to the Orient to grab their share of the lucrative trade with India, Southeast Asia and China, till then monopolized by Spain and Portugal which controlled the route via the Cape of Good Hope. In 1497 John Cabot (Giovanni Caboto), sponsored by King Henry VII of England, sailed from Bristol in Mathew; he made a landfall variously identified as on the coast of Newfoundland or of Cape Breton, but came no closer to finding the Passage (Williamson 1962). Over the following decade or so, he was followed (unsuccessfully) by the Portuguese seafarers Gaspar Corte Real and his brother Miguel, and also by John Cabot’s brother Sebastian, who some theorize, penetrated Hudson Strait (Hoffman 1961). The first expeditions in search of the Northwest Passage that are definitely known to have reached the Arctic were those of the English captain, Martin Frobisher in 1576, 1577 and 1578 (Collinson 1867; Stefansson 1938). -
Arctic Portion of Tsentr-2019 OE Watch Commentary: As Promised, the Northern Sea Fleet Added an Arctic Portion to the Major Tsentr 2019 Exercise Far to the South
EURASIA Arctic Portion of Tsentr-2019 OE Watch Commentary: As promised, the Northern Sea Fleet added an Arctic portion to the major Tsentr 2019 exercise far to the south. As the first accompanying passage discusses, this was the first time that an exercise of this kind was held on Bolshevik Island, located by the entrance to the Vilkitsky Strait, the waterway used by ships sailing on the Northern Sea Route. According to the passage, they conducted an amphibious landing, which involved Navy divers, helicopter aviation, and landing craft and vehicles. Earlier, this force was involved in a larger riverine landing from the north-flowing Arctic Yenisei River. Although remote to the much larger Tsentr 2019 exercise, it secured the northern flank of Central Russia and tested communications and command and control over a very extensive area. The landing was part of the summer training program. It was staged here because the landing area is on the periphery of a potential chokepoint on the Northern Sea Route-the Vilkitsky Strait. As the second passage reports, Russia is spending some serious money ($19 million) to construct a radar installation south of the landing site to help control the area. (Also see: “Center 2019: More than a Military Exercise,” OE Watch, October 2019) End OE Watch Bolshevik Island. Commentary (Grau) Source: Kennonv via Wikimedia, https://commons.wikimedia.org/wiki/File:Severnaya_Zemlya.svg, Public domain “More than 500 soldiers were involved in the exercise that… took place on the Bolshevik island, the piece of land that separates the Kara Sea and Laptev Sea. The training came shortly before Russia launched this year’s biggest drills, the Tsentr-2019.” Source: Atle Staalesen, “As Russia launches war games Tsentr-2019, Arctic troops advance on Bolshevik Island,” Barents Sea Independent Observer, 16 September 2019. -
7 Laptev Sea
7/18:&LME&FACTSHEET&SERIES& LAPTEV SEA LME tic LMEs Arc LAPTEV'SEA'LME'MAP 18 of Laptev Sea Map Russia Central LME Arctic Ocean Iceland North Pole Kara Sea 7 "1 ARCTIC LMEs Large&! Marine& Ecosystems& (LMEs)& are& defined& as& regions& of& work&of&the&ArcNc&Council&in&developing&and&promoNng&the& ocean& space& of& 200,000& km²& or& greater,& that& encompass& Ecosystem& Approach& to& management& of& the& ArcNc& marine& coastal& areas& from& river& basins& and& estuaries& to& the& outer& environment.& margins& of& a& conNnental& shelf& or& the& seaward& extent& of& a& predominant&coastal¤t.&LMEs&are&defined&by&ecological& Joint'EA'Expert'group' criteria,&including&bathymetry,&hydrography,&producNvity,&and& PAME& established& an& Ecosystem& Approach& to& Management& tropically& linked& populaNons.& PAME& developed& a& map& expert& group& in& 2011& with& the& parNcipaNon& of& other& ArcNc& delineaNng&17&ArcNc&Large&Marine&Ecosystems&(ArcNc&LME's)& Council&working&groups&(AMAP,&CAFF&and&SDWG).&This&joint& in&the&marine&waters&of&the&ArcNc&and&adjacent&seas&in&2006.& Ecosystem&Approach&Expert&Group&(EAYEG)&has&developed&a& In&a&consultaNve&process&including&agencies&of&ArcNc&Council& framework& for& EA& implementaNon& where& the& first& step& is& member&states&and&other&ArcNc&Council&working&groups,&the& idenNficaNon& of& the& ecosystem& to& be& managed.& IdenNfying& ArcNc& LME& map& was& revised& in& 2012&to&include&18&ArcNc& the&ArcNc&LMEs&represents&this&first&step. LMEs.& This& is& the& current& map& of& ArcNc& LMEs& used& in& the& This'factsheet'is'one'of'18'in'a'series'of'the'Arc<c'LMEs.