Download Full Article in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download Full Article in PDF Format Silurian and Devonian strata on the Severnaya Zemlya and Sedov archipelagos (Russia) Peep MÄNNIK Institute of Geology, Tallinn Technical University, Estonia Ave 7, 10143 Tallinn (Estonia) [email protected] Vladimir V. MENNER Institute of Geology and Exploitation of Combustible Fuels (IGIRGI), Fersman Str. 50, 117312 Moscow (Russia) [email protected] [email protected] Rostislav G. MATUKHIN Siberian Research Institute of Geology, Geophysics and Mineral Resources (SNIIGiMS), Krasnyj Ave 67, 630104 Novosibirsk (Russia) [email protected] Visvaldis KURŠS Institute of Geology, University of Latvia, Raina Ave 19, LV-1050 Rīga (Latvia) [email protected] Männik P., Menner V. V., Matukhin R. G. & Kuršs V. 2002. — Silurian and Devonian strata 406 on the Severnaya Zemlya and Sedov archipelagos (Russia). Geodiversitas 24 (1) : 99-122. ABSTRACT Silurian and Devonian strata are widely distributed on the islands of the Severnaya Zemlya and Sedov archipelagos. The Silurian is represented by fossiliferous shallow-water carbonates underlain by variegated sandstones and siltstones of Ordovician age. The Devonian consists mainly of various red sandstones, siltstones and argillites, with carbonates only in some inter- KEY WORDS vals. The best sections available for study are located in the river valleys, and Silurian, in the cliffs along the coastline of islands. Type sections of most of the strati- Devonian, Sedov Archipelago, graphical units identified are located on the Matusevich River, October Severnaya Zemlya Archipelago, Revolution Island. As the Quaternary cover is poorly developed on Russia, lithostratigraphy, Severnaya Zemlya, the Palaeozoic strata can be easily traced also outside the biostratigraphy. sections. GEODIVERSITAS • 2002 • 24 (1) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris. www.mnhn.fr/publication/ 99 Männik P. et al. RÉSUMÉ Les niveaux stratigraphiques silurien et dévonien des archipels de Severnaya Zemlya et de Sedov (Russie). Sur les îles de Severnaya Zemlya et de Sedov, les niveaux du Silurien et du Dévonien sont bien représentés. Le Silurien est représenté par des carbonates fossilifères de dépôts peu profonds, recouverts par des grès et des silts d’âge ordivicien. Les niveaux dévoniens sont représentés par des grès rouges, des silts et des argilites, qui alternent parfois avec des niveaux carbonatés. MOTS CLÉS Comme souvent, les meilleures coupes sont localisées dans les vallées et sur Silurien, Dévonien, les falaises le long des côtes. Les coupes-types des unités stratigraphiques archipel de Sedov, sont principalement localisées dans la vallée de la rivière Matusevich sur l’île archipel de Severnaya Zemlya, de la Révolution d’Octobre. Sur l’archipel de Severnaya Zemlya, la couver- Russie, lithostratigraphie, ture quaternaire est si réduite que les niveaux paléozoiques peuvent être faci- biostratigraphie. lement retrouvés en dehors des coupes-types. INTRODUCTION PREVIOUS STUDIES The Severnaya Zemlya and Sedov archipelagos The Severnaya Zemlya Archipelago was discov- lie north of the Tajmyr Peninsula, between the ered in 1913. The first evidence of the existence Kara and Laptev seas. The Severnaya Zemlya of Palaeozoic strata on the Severnaya Zemlya, Archipelago, with a total area of about 37 000 but also in the Sedov Archipelago, came from km2, consists of four large islands (October collections made by G. A. Ushakov and N. N. Revolution, Bol’shevik, Komsomolets and Urvantsev during the expedition in 1930-1932. Pioneer) and up to 70 smaller ones. Six islands In samples from Severnaya Zemlya, B. B. – Srednij, Golomyannyj, Domashnij, Figurnyj, Chernyshev identified Silurian tabulates, similar Vostochnyj and Samojlovich – form the Sedov to those known from Tajmyr and Novaya Archipelago. About half of the Severnaya Zemlya. In 1948-1954, a group of geologists Zemlya Archipelago’s territory is covered by from the Scientific Research Institute of continental glaciers (Fig. 1). Due to a very poor Geology of Arctic (NIIGA, St.-Petersburg), led vegetation, the rocks are well exposed. by B. Kh. Egiazarov, studied the archipelagos Numerous continuous sections of highly fossil- and compiled a geological map on a scale of iferous Lower and Middle Palaeozoic strata put 1:1 000 000. A rich collection of fossils was stud- the archipelagos among the key areas for geo- ied by A. P. Bystrov, Z. G. Balashov, V. A. logical studies in the Circum-Arctic region. The Vostokova, R. S. Eltysheva, M. S. Zhizhina, beginning in 1996 of the IGCP Project 406 B. N. Nalivkin, O. I. Nikiforova, V. N. (Circum-Arctic Lower and Middle Palaeozoic Ryabinin, Ya. D. Zekkel’ and S. V. Cherkesova. Vertebrate Palaeontology and Biostratigraphy) The general stratigraphy of the Palaeozoic strata reactivated the studies connected with was published in a number of papers and mono- Severnaya Zemlya. graphs (Egiazarov 1957, 1959, 1970, 1973). The aim of the present paper is to give a general Modern understanding of the Lower and idea about the sections, lithologies and stratigra- Middle Palaeozoic strata on Severnaya Zemlya phy of the Silurian and Devonian strata on is based mainly on the data of detailed geologi- Severnaya Zemlya. cal mapping by V. A. Markovskij, A. A. 100 GEODIVERSITAS • 2002 • 24 (1) Silurian and Devonian strata on Severnaya Zemlya 102° Schmidt Island LAPTEV SEA Glacier of KARA SEA Academy of Sciences Komsomolets Island Bedov R. Obryv. R. Rusanov Pioneer Glacier Island October Al'banov Revolution Glac. Krasn. Bay Island Pionerka R. Bol'shaya R. C Golomyannyj I. Srednij Vstrechnaya Karpinski Island Hill A Figurnyj I. Glacier Domashnij I. Pod. R. Mal'yutka Vkhodnoj Glacier B Peninsula Vatutin Peninsula Vavilov Vostochnyj I. Glacier Sedov Archipelago Samojlovich Glacier (Dlinnyj) of Island University KARA SEA 10 0 10 20 30 40 km Bol'shevik 1234 Island FIG. 1. — Distribution of Palaeozoic strata on Severnaya Zemlya, showing location of studied sections and spot samples (geology modified from Egiazarov 1959). Areas A, B and C show the location of detailed maps in Figs 2; 6; 9. Areas of Silurian outcrops stud- ied on Pioneer Island (according to Klubov et al. 1980) are indicated as follows: I, samples 2A-4G; III, samples 4D-6A, 8G; V, sample 12. Samples 7A-7B, 8D-8G, 9E, 9Zh and 10A-10B come from areas I or II (precise location not known). Bedov. R., Bedovaya River; Obryv. R., Obryvistaya River; Gr. R., Gremyashchaya River; Krasn. Bay, Krasnaya Bay; Pod. R., Pod’’emnaya River. 1, Cambrian and older rocks; 2, Ordovocian; 3, Silurian; 4, Devonian to Quaternary strata. GEODIVERSITAS • 2002 • 24 (1) 101 Männik P. et al. Makar’ev, Yu. G. Rogozov, B. N. Batuev, A. F. Proterozoic on Bol’shevik Island (Kaban’kov et Khapilin and others in 1973-1979. A proper al. 1982) to the Upper Palaeozoic (small oucrops stratigraphical framework for the mapping was of Carboniferous and Permian rocks on provided by special sedimentological and bios- Bol’shevik, October Revolution and tratigraphical studies. During field-work in Komsomolets islands; Dibner 1982) (Fig. 1). 1974, 1976, 1978 and 1979, many sections in Large areas on northern Komsomolets Island different parts of the archipelagos were are covered with Cenozoic sediments. The old- described in detail and fossils collected. Yu. G. est Palaeozoic strata (Cambrian) are exposed in Samojlovich, D. K. Patrunov and A. A. Egorova the eastern part of October Revolution Island. (St.-Petersburg, Russia), V. Karatajūtē-Talimaa The Cambrian-Devonian sediments in the mid- and J. Valiukevičius (Lithuania), E. Mark-Kurik dle and eastern parts of October Revolution and P. Männik (Estonia), V. Kuršs (Latvia), Island are folded, with the Silurian and R. G. Matukhin (Novosibirsk, Russia), V. Vl. Devonian outcrops situated on the limbs of a Menner (Moscow, Russia), and B. A. Klubov north-west south-east trending anticline. This and E. I. Kachanov (Magadan, Russia) partici- structure extends to the southwesternmost pated in the expeditions. The collections were Komsomolets Island. The core of the anticline is studied and described by A. Abushik (ostra- formed of Ordovician rocks. On western codes), O. Afanassieva (vertebrates), A. Blieck October Revolution Island and on Pioneer (vertebrates), S. Cherkesova (brachiopods), D. Island, the Palaeozoic strata are less deformed. Drygant (conodonts), I. Evdokimova (ostra- codes), V. Karatajūtē-Talimaa (vertebrates), SILURIAN E. Levitski (trilobites), E. Lukševičs (verte- The best Silurian sections available for study are brates), Z. Maximova (trilobites), E. Mark- located in the river valleys, perpendicular to the Kurik (vertebrates), T. Modzalevskaya outcrop belts in the central part of October (brachiopods), P. Männik (conodonts), T. Märss Revolution Island, and in the cliffs along the (vertebrates), L. Nekhorosheva (bryozoans), coastline of the Sedov Archipelago islands. Over H. Nestor (stromatoporoids), M. Shurygina 40 years ago, Egiazarov (1959) noted that the (rugose corals), M. Smirnova (tabulate corals), most complete sequence of Ordovician, Silurian N. Sobolev (conodonts), G. Stukalina (crinoids), and Devonian strata is exposed on the V. Sytova (rugose corals), G. Vaitiekūnienē Matusevich River (Figs 1; 2). Later, this section (miospores), and J. Valiukevičius (vertebrates). has been studied in detail by many geologists, A special meeting devoted to the stratigraphy of and the type sections of most of the Silurian for- Severnaya Zemlya was held in Vilnius, mations are located there (see below). Almost Lithuania, in 1980, and several papers were pub- complete,
Recommended publications
  • Plumulitid Machaeridian Remains from the Silurian (Telychian) of Severnaya Zemlya, Arctic Russia
    NORWEGIAN JOURNAL OF GEOLOGY Plumulitid mochoeridion remains from the Silurion, Arctic Russio 53 Plumulitid machaeridian remains from the Silurian (Telychian) of Severnaya Zemlya, Arctic Russia Anette E.S. Hogstrom, Olga K. Bogolepova & Alexander P. Gubanov Hogstrom, A.E.S., Bogolepova, O.K. and Gubanov, A.P.: Plumulitid machaeridian remains from the Silurian (Telychian) of Sevemaya Zemlya, Arc­ tic Russia. Norsk Geologisk Tidsskrift, Vol. 82, pp. 53-55. Trondheim 2002, ISSN 029-196X. The machaeridian genus Plumulites is reported for the first time from the Severnaya ZemlyaArchipelago of Arctic Russia, where it occurs in limes­ tone concretions within the Sredninskaya Formation. Graptolites fromthe same concretions indicate the late crispus- griestoniensisBiozones of the mid Telychian (Uandovery). Similarities to plumulitid sclerites from the Upper Ordovician of the Tairnyr Peninsula promotes further interest in machaeridian faunas fromthis region. A.E.S. Hogstromi, O.K. Bogolepova and A.P. Gubanov, Historical Geology & Palaeontology, Dept. of Earth Sciences, Uppsala University, Norbyviigen 22, SE-752 36, Uppsala, Sweden. I Temporaryaddress: Dept. of Earth Sciences, Wills Memorial Building, Queen's Road, Bristol BSB l RJ, UK. lntroduction Stratigraphy and locality The global record of Silurian machaeridians is limited, Machaeridians discussed herein originate from the but includes rare articulated specimens, and more com­ Lower Silurian Sredninskaya Formation (Matukhin et monly isolated sclerites that have been found in Britain al. 1999). To avoid nomenclatural questions, it should (de Koninck 1857; Woodward 1865; Withers 1926 and be noted that these rocks were previously referred to as Adrain et al. 1991), the Baltic Region (Aurivillius 1892; the Golomaynnaya Formation (Menner et al.
    [Show full text]
  • THE CLASSIFICATION and EVOLUTION of the HETEROSTRACI Since 1858, When Huxley Demonstrated That in the Histological Struc
    ACTA PALAEONT OLOGICA POLONICA Vol. VII 1 9 6 2 N os. 1-2 L. BEVERLY TARLO THE CLASSIFICATION AND EVOLUTION OF THE HETEROSTRACI Abstract. - An outline classification is given of the Hetero straci, with diagnoses . of th e following orders and suborders: Astraspidiformes, Eriptychiiformes, Cya­ thaspidiformes (Cyathaspidida, Poraspidida, Ctenaspidida), Psammosteiformes (Tes­ seraspidida, Psarnmosteida) , Traquairaspidiformes, Pteraspidiformes (Pte ras pidida, Doryaspidida), Cardipeltiformes and Amphiaspidiformes (Amphiaspidida, Hiber­ naspidida, Eglonaspidida). It is show n that the various orders fall into four m ain evolutionary lineages ~ cyathaspid, psammosteid, pteraspid and amphiaspid, and these are traced from primitive te ssellated forms. A tentative phylogeny is pro­ posed and alternatives are discussed. INTRODUCTION Since 1858, when Huxley demonstrated that in the histological struc­ ture of their dermal bone Cephalaspis and Pteraspis were quite different from one another, it has been recognized that there were two distinct groups of ostracoderms for which Lankester (1868-70) proposed the names Osteostraci and Heterostraci respectively. Although these groups are generally considered to be related to on e another, Lankester belie­ ved that "the Heterostraci are at present associated with the Osteostraci because they are found in the same beds, because they have, like Cepha­ laspis, a large head shield, and because there is nothing else with which to associate them". In 1889, Cop e united these two groups in the Ostracodermi which, together with the modern cyclostomes, he placed in the Class Agnatha, and although this proposal was at first opposed by Traquair (1899) and Woodward (1891b), subsequent work has shown that it was correct as both the Osteostraci and the Heterostraci were agnathous.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Accelerated Glacier Mass Loss in the Russian Arctic (2010-2017) Christian Sommer1, Thorsten Seehaus1, Andrey Glazovsky2, Matthias H
    https://doi.org/10.5194/tc-2020-358 Preprint. Discussion started: 28 December 2020 c Author(s) 2020. CC BY 4.0 License. Brief communication: Accelerated glacier mass loss in the Russian Arctic (2010-2017) Christian Sommer1, Thorsten Seehaus1, Andrey Glazovsky2, Matthias H. Braun1 1Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany 5 2Institute of Geography RAS, Moscow, 119017, Russia Correspondence to: Christian Sommer ([email protected]) Abstract. Glaciers in the Russian High Arctic have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small over the past decades. Here we show surface elevation change measure- ments and geodetic mass balances of 93% of all glacierized areas of Novaya Zemlya, Severnaya Zemlya and Franz Josef Land 10 using interferometric synthetic aperture radar measurements taken between 2010 and 2017. We calculate an overall mass loss rate of -23±5 Gt a-1, corresponding to a sea level rise contribution of 0.06±0.01 mm a-1. Compared to measurements prior to 2010, mass loss of glaciers on the Russian archipelagos has doubled in recent years. 1 Introduction The Arctic has undergone large environmental changes due to increases in temperature and humidity (Box et al., 2019) and an 15 increase in glacier mass loss has been observed in many polar regions (Morris et al., 2020). The Russian Arctic, including the archipelagos Novaya Zemlya, Severnaya Zemlya and Franz Josef Land, is one of these regions. Despite a glacierized area of ~52,000 km², in-situ observations of glacier mass change are sparse.
    [Show full text]
  • Plant Invasions in Rhode Island Riparian Zones ✴Paleostratigraphy in B Y S U Z a N N E M
    Volume 12 • Number 2 • November 2005 What’s Inside… Plant Invasions in Rhode Island Riparian Zones ✴Paleostratigraphy in B Y S U Z A N N E M . L U S S I E R A N D S A R A N . D A S I L V A the Campus Freezer ✴Wandering Hooded Riparian zones opportunistic, they are often the first Methods Seals are the corridors plants to colonize disturbed patches of Selecting the Study Sites ✴Bringing Watershed of land adjacent soil and forest edges. Several research- Health and Land to streams, riv- ers have found that riparian zones sup- By using hydrographical and land Use History into the use/land cover data from the Rhode Classroom ers, and other port a greater abundance and diversity Island Geographic Information System ✴ surface waters, of invasive plants than other habitats The Paleozoology (RIGIS, http://www.edc.uri.edu/rigis/), Collection of the which serve as (Brown and Peet 2003, Burke and Museum of Natural transitional areas Grime 1996, Gregory et al. 1991). we characterized eight subwatersheds History, Roger Wil- between terres- by their percentage of residential land liams Park trial and aquatic Streams within urban and suburban use (4–59%). Stream corridors were de- ✴“The Invasives Beat” systems. Their watersheds characteristically carry lineated using orthophotos and verified ✴Bioblitz 2005 vegetation pro- higher nutrient loads following storm with on-site latitude/longitude readings ✴and lots more... vides valuable events as the first flush of overland run- from a Geographic Positioning System wildlife habitat off transports nonpoint-source (nutri- (GPS). We also calculated the edge- while enhancing ent) pollution into the stream corridors to-area ratio for each riparian zone to instream habitat (Burke and Grime 1996).
    [Show full text]
  • National Report of the Russian Federation
    DEPARTMENT OF NAVIGATION AND OCEANOGRAPHY OF THE MINISTRY OF DEFENSE OF THE RUSSIAN FEDERATION NATIONAL REPORT OF THE RUSSIAN FEDERATION 7TH CONFERENCE OF ARCTIC REGIONAL HYDROGRAPHIC COMMISSION Greenland (Denmark), Ilulissat, 22-24 august, 2017 1. Hydrographic office In accordance with the legislation of the Russian Federation matters of nautical and hydrographic services for the purpose of aiding navigation in the water areas of the national jurisdiction except the water area of the Northern Sea Route and in the high sea are carried to competence of the Ministry of Defense of the Russian Federation. Planning, management and administration in nautical and hydrographic services for the purpose of aiding navigation in the water areas of the national jurisdiction except the water area of the Northern Sea Route and in the high sea are carried to competence of the Department of Navigation and Oceanography of the Ministry of Defense of the Russian Federation (further in the text - DNO). The DNO is authorized by the Ministry of Defense of the Russian Federation to represent the State in civil law relations arising in the field of nautical and hydrographic services for the purpose of aiding navigation. It is in charge of the Hydrographic office of the Navy – the National Hydrographic office of the Russian Federation. The main activities of the Hydrographic office of the Navy are the following: to carry out the hydrographic surveys adequate to the requirements of safe navigation in the water areas of the national jurisdiction and in the high
    [Show full text]
  • 4604. Declaration
    Page 1 4450. Declaration By a decree dated 15 January 1985, the USSR Council of Ministers approved a list of the geographical co-ordinates of the points defining the position of the baselines for measuring the breadth of the territorial sea, the exclusive economic zone and the continental shelf of the USSR off the continental coast and islands of the Arctic Ocean and the Baltic and Black seas, as given below. The same decree establishes that the waters of the White Sea south of the line connecting Cape Svyatoy Nos with Cape Kanin Nos, the waters of Cheshskaya/Bay south of the line connecting Cape Mikulkin with Cape Svyatoy/Nos (Timansky), and the waters of Baidaratskaya Bay south-east of the line connecting Cape Yuribeisalya with Cape Belushy Nos are, as waters historically belonging to the USSR, internal waters. Arctic Ocean Co-ordinates Point Geographical location North East number of point latitude longitude 1 Boundary sign No. 415 (sea buoy) 69°47'41" 30°49'15" 2 Cape Nemetsky 69°57.2' 31°56.7' 3 Islet to the east of Cape 69 57.2 31 57.2 Nemetsky 4 Cape Kekursky 69 56.7 32 03.5 5 Islet to the south-east of 69 56.4 32 05.4 Cape Kekursky 6 Islet off Cape Lognavolok 69 46.2 32 57.4 7 Islet off Cape Laush 69 44.5 33 04.8 Thence following the low-water line to point 8 8 Rybachy Peninsula, Cape 69 42.9 33 07.9 Tsypnavolok 9 Kil'din Island, north-west coast 69 22.8 34 01.8 Thence following the low-water line to point 10 10 Kil'din Island, eastern 69 20.0 34 24.2 extremity 11 Cape to the east of Cape 69 15.2 35 15.2 Teribersky 12 Cape to the
    [Show full text]
  • Late Silurianœearly Devonian Tessellated Heterostracan Oniscolepis Pander, 1856 from the East Baltic and North
    Estonian Journal of Earth Sciences, 2009, 58, 1, 43–62 doi:10.3176/earth.2009.1.05 Late Silurian–Early Devonian tessellated heterostracan Oniscolepis Pander, 1856 from the East Baltic and North Timan Tiiu Märssa and Valentina Karatajūtė-Talimaab a Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] b Institute of Geology and Geography of Lithuania, Ševčenkos Street 13, LT 03223 Vilnius, Lithuania; [email protected] Received 12 August 2008, accepted 18 November 2008 Abstract. Pander (1856, Monographie der fossilen Fische der silurischen Systems der Russisch–Baltischen Gouvernements. Obersilurische Fische. Buchdruckerei Kaiserlichen Akademie des Wissenschaften, St. Petersburg, 91 pp.) first established four Oniscolepis and three Strosipherus species, which later, except O. magna, were referred to Oniscolepis dentata, the name fixed by Rohon (1893, Mémoires de l´Académie Impériale des Sciences de St.-Petersbourg, 41, 1–124) as the senior synonym. Using modern techniques, we redescribe and illustrate morphological and histological varieties of its platelets, tesserae, and scales. No articulated specimen of O. dentata has ever been found. Fragments of head platelets, two branchial plates, an orbital plate (or tessera), and body ridge elements are described for the first time. The microstructure of scales of O. dentata specimens from the East Baltic and North Timan differs only slightly from that of scales from the type locality, Saaremaa Island, Ohesaare Cliff, which has fewer and finer dentine tubules and Sharpey’s fibre tubules than the specimens from North Timan. Oniscolepis Pander and Kallostrakon Lankester are united into a new family Oniscolepididae fam.
    [Show full text]
  • Devonian Jawless Vertebrates
    FULL COMMUNICATIONS PALAEONTOLOGY Phylogenetic relationships of psammosteid heterostracans (Pteraspidiformes), Devonian jawless vertebrates Vadim Glinskiy PALAEONTOLOGY Institute of Earth Sciences, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation Address correspondence and requests for materials to Vadim Glinskiy, [email protected] Abstract Psammosteid heterostracans are a group (suborder Psammosteoidei) of Devo- nian-age jawless vertebrates, which is included in the order Pteraspidiformes. The whole group of psammosteids is represented by numerous species (more than 40); their phylogenetic relationships are still poorly known and deserve further study. Classical researchers of the psammosteids, such as D. Obruchev, E. Mark-Kurik and L. Halstead Tarlo, had different views on the phylogeny of the group (e.g. origins and evolution of Psammosteus). To check the modern hy- potheses of psammosteid origins from various Pteraspidiformes and to clarify psammosteid interrelationships, the most complete phylogeny of this group (38 ingroup taxa + juvenile Drepanapsis) is presented here. Different methods of data analysis were used to explore the psammosteid data set, including equally weighted characters versus implied weighting. According to the results of the phylogenetic analysis, the monophyletic status of the group and their early development from the Pteraspidiformes are supported. The diagnoses and interrelationships of many taxa are clarified. Two new genera are proposed (Vladimirolepis
    [Show full text]
  • Summary of the Arctic Archipelagos and Islands Off Eurasia
    SUMMARY OF THE ARCTIC ARCHIPELAGOS AND ISLANDS OFF EURASIA R. K. Headland revised 18 May 2017 SPRI, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1ER. These Arctic lands include a diverse range of archipelagos and separate islands. The positions given are approximately the middle point for smaller islands and their limits for larger ones and groups. Names are given in the forms recommended by the Union Géographique International with, where the name has varied through double transliteration, the original form, and, in other cases, an English translation. Sightings, landings, and winterings are the first recorded; there may have been previous ones for some islands. Islands only a short distance off the continental mainland are not included. In easterly order the islands are: JAN MAYEN 70·83°-71·17°N, 8°-9°W One isolated active volcanic island (latest eruption 1985); in the Greenland Sea. Area 373 km². Highest elevation: 2277 m (Beerenberg, volcano). 33% glacierized. Discovered 1614 by a Netherlands whaling voyage (Jan Jacobz. May aboard de goude Cath). First wintering 1633-34 (by whalers, all perished); meteorological station, established 1921, open. Norwegian territory; annexed in 1929. SPITSBERGEN ARKIPELAGO (Acute Peaks) 76·50°-80·80°N, 10°-34°E Four main islands and about 150 lesser ones; in the Barents Sea, of sedimentary origin with igneous overlay. Area: 62 842 km². Highest elevation: 1713 m (Newtontoppen). 60% glacierized. Possibly sighted 1194; discovered 1596 by a Dutch whaling voyage (Jacob Heemskerck aboard Hazewind). First wintering 1630-31 (by whalers); permanent settlement (coal mine) established 1906, currently 3 remain open, 1 other settlement occupied and 4 meteorological stations open.
    [Show full text]
  • Severnaya Zemlya” to the Study of Arctic Seismicity
    Arctic Environmental Research 19(4): 139–145 UDC 550.34 DOI 10.3897/issn2541-8416.2019.19.4.139 Research Article The contribution of the seismic station “Severnaya Zemlya” to the study of arctic seismicity AP Turova1, ER Morozova1 1 N. Laverov Federal Centre for Integrated Arctic Research (Arkhangelsk, Russian Federation) Corresponding author: Alyona Turova ([email protected]) Academic editor: Alexandr I. Malov ♦ Received 30 August 2019 ♦ Accepted 26 November 2019 ♦ Published 31 December 2019 Citation: Turova AP, Morozova ER (2019) The contribution of the seismic station “Severnaya Zemlya” to the study of arctic seismicity. Arctic Environmental Research 19(4): 139–145. https://doi.org/10.3897/issn2541-8416.2019.19.4.139 Abstract At present, a relevant task consists in understanding the seismicity of the European Arctic sector in gene- ral and the Barents-Kara region in particular. Due to the small number of seismic stations installed in the Arctic region our understanding of the seismicity of the Arctic is still not properly investigated. However, as a consequence of the operationalisation of the seismic station SVZ Severnaya Zemlya on the Severnaya Zemlya archipelago since 2016, it has become possible to record and process an increased number of seismic events. Data from the Arkhangelsk seismic network were compared with a map of the spatial distribution of earthquake epicentres in the Barents-Kara region and adjacent waters for 2017–2018 created by various seismological agencies. The distribution of the number of earthquakes by magnitude and location registered by the Arkhangelsk seismic network for 2012–2018 are presented. The greatest number of earthquakes is associated with the Gakkel, Knipovich and Mohn Ridges, while the lowest number is associated with the St.
    [Show full text]
  • Early Holocene Environments on October Revolution Island, Severnaya Zemlya, Arctic Russia
    Palaeogeography, Palaeoclimatology, Palaeoecology 267 (2008) 21–30 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early Holocene environments on October Revolution Island, Severnaya Zemlya, Arctic Russia A.A. Andreev a,⁎, D.J. Lubinski b, A.A. Bobrov c, Ó. Ingólfsson d, S.L. Forman e, P.E. Tarasov f, P. Möller g a Alfred-Wegener-Institut für Polar- und Meeresforschung, Forschungsstelle Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany b Institute of Arctic and Alpine Research (INSTAAR), Campus Box 450, University of Colorado, Boulder, CO 80309-0450, USA c Soil Department of Moscow State University, Vorobievy Gory, 119899, Moscow, Russia d Department of Geology and Geography, Askja, University of Island, IS-101 Reykjavík, Iceland e Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7059, USA f Institute for Geological Sciences/Palaeontology Free University Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany g GeoBiosphere Science Centre, Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, SE-22362 Lund, Sweden ARTICLE INFO ABSTRACT Article history: Pollen, palynomorphs, and rhizopods were studied from several b1 m thick, peaty and silty sediment Received 14 January 2008 sections on southwestern October Revolution Island, Severnaya Zemlya. Six AMS radiocarbon ages from the Received in revised form 7 April 2008 sections show that peat accumulation started at ca. 11,500 and stopped after 9500 cal. yr BP, consistent with Accepted 16 May 2008 several previously reported 14C ages. Open steppe-like vegetation existed on the island during the late Glacial, shortly before the Pleistocene/Holocene transition.
    [Show full text]