Molecular Phylogeny of the Freshwater Mussel Family Dreissenidae

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny of the Freshwater Mussel Family Dreissenidae MOLECULAR PHYLOGENY OF THE FRESHWATER MUSSEL FAMILY DREISSENIDAE A Thesis By SUSAN ROSE GEDA Submitted to the Graduate School At Appalachian State University In partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2017 Department of Biology i MOLECULAR PHYLOGENY OF THE FRESHWATER MUSSEL FAMILY DREISSENIDAE A Thesis By SUSAN ROSE GEDA APPROVED BY: ___________________________________ Michael M. Gangloff, Ph.D. Chairperson, Thesis Committee ___________________________________ Matt C. Estep, Ph.D. Member, Thesis Committee ___________________________________ Lynn Siefferman, Ph.D. Member, Thesis Committee ___________________________________ Zack E. Murrell, Ph.D. Chairperson, Department of Biology ___________________________________ Max Poole, Ph.D. Dean, Cratis D. Williams School of Graduate Studies ii Copyright by Susan Rose Geda 2017 All Rights Reserved iii Abstract MOLECULAR PHYLOGENY OF THE FRESHWATER BIVALVE FAMILY DREISSENIDAE Susan R. Geda B.S., Appalachian State University M.S., Appalachian State University Chairperson: Dr. Michael Gangloff The bivalve family Dreissenidae contains some of the most economically and ecologically important fresh and brackish-water mollusk species, including a number of problematic invaders. There has been much uncertainty surrounding phylogenetic resolution for members of Dreissenidae. The lineage is believed to have originated 83.6 million years ago in the Tethys and Paratethys seas. Three extant dreissenid genera are currently recognized, Dreissena, Mytilopsis, and Congeria. However, in 2012, an un-described mussel was discovered in the Xingu River, a tributary of the Amazon River in central Brazil. Sympatrically-occurring Congeria species have also been recently described from the region. The objective of this study was to determine the evolutionary history of the unknown South American dreissenids (USADs) and determine their proper taxonomic placement. I examined phylogenetic relationships among 10 described species within Dreissenidae and 6 related outgroups using nuclear and mitochondrial genes, a molecular clock analysis and a comparative analysis of life history characteristics to determine the evolutionary history of these enigmatic bivalves. Recent analyses suggest that these bivalves iv may comprise a distinct genus within Dreissenidae containing three species. My analyses support this hypothesis and revealed that the common ancestors of today’s USADs first diverged as a distinct lineage ~27.1 MYA. Due to phylogenetic analyses, genetic distance, and life history characteristics I believe USADs are sister taxa to Congeria and may have dispersed to South America on large scale ocean currents during the early Miocene. v Acknowledgements First and foremost, I would like to thank my advisor, Dr. Michael Gangloff. This project would not have been possible without your leadership and advice. You offered me so many research opportunities that created an extremely fulfilling graduate career for me. You pushed me enough so that I realized my potential and I would not be here without your support! I would also like to thank the members of my committee, Dr. Matt Estep and Dr. Sarah Marshburn, for their guidance, ideas, and edits to this thesis. This project would still be in progress without your insight. To all of the members of the ACRL lab, thank you for keeping me sane and making me laugh when I needed it the most. Daniel Mason, thank you for being my friend in the trenches and for being a sounding board for me to bounce my, sometimes terrible, ideas off of. Your perspective helped shape what this project is today. Michael Perkins and Raquel Fagundo, thank you both for being amazing resources for me during my analyses, for always answering the phone and talking me through the next steps, and making me laugh when I was almost ready to cry. I would also like to thank all of my collaborators. Specifically, Mark Sabaj- Perez, I would not have been able to travel to Brazil without your generous invitation. Thiago Mahlmann and Rafaela Ota at the Instituto Nacional de Pequisas da vi Amazonia and Leandro Sousa and Andre Ferriera from the Universidade Federal do Pará, thank you all for your help and hospitality regarding museum collections and field work. Nathan Lujan, thank you for sending me preliminary specimens and for involvement in previous publications. I would also like to thank Lynn Siefferman for support and many amazing dinners at the Gangloff-Siefferman household. Finally, I would like to thank my parents, Mark and Linda Geda, for their indefatigable support. They instilled in me my passion for nature, as well as my work ethic and my pride in that work. Thank you for the mindset that whatever I do is good enough, as long as I give it my all. vii Table of Contents Abstract…………………………………………………………………………………..….iv Acknowledgements…………………………………………………………………………vi List of Tables…………………………………………………………………………………x List of Figures……………………………………………………………………………….xi Foreword…………………………………………………………………………………….xii 1. Introduction………………………………….…………………………………………….1 1.1 Evolutionary History of Dreissenidae…………………………………………1 1.2 Dreissenid Biology……………………………………………………………...3 1.3 Study Sites…………………………………………………………………...….4 2. Methods…………………………………………………………………………………...6 2.1 Tissue Collection and DNA Extraction………………………………………..6 2.2 PCR Amplification………………………………………………………………7 2.3 Sequence Analyses…………………………………………………………….8 2.4 Phylogenetic Analyses…………………………………………………………9 2.5 Divergence Estimates………………………………………………………...10 3. Results………………………………………………………………………………...…11 3.1 Phylogenetic Analyses………………………………………………..………11 3.2 Genetic Diversity of USADs………………………………………………….13 3.3 Divergence Estimates………………………………………………………...15 viii 4. Discussion……………………………………………………………………………….15 4.1 Phylogenetic Analyses………………………………………………………..15 4.2 Genetic Diversity of USADs……………………………...…………………..17 4.3 Incongruent topologies………………….…………………………………….18 4.4 Divergence Estimates…………………………………………………...……23 4.5 Phylogeography and dispersal………………………………………………24 4.6 Comparative Analysis and Invasive Potential……………………………...28 References…………………………………………………………………………………30 Tables and Figures………………………………………………………………………..38 Appendix 1…………………………………………………………………………..……..72 Vita…………………………………………………………………………………………..75 ix List of Tables Table 1. Xingu Specimen Data…………………………………………………………..38 Table 2. Primers Used in Phylogenetic Analysis……………………………………....41 Table 3. Genbank Taxa Data…………………………………………………………….42 Table 4. Log Likelihood Estimates……………………………………………………....45 Table 5. Genotypes and Representative Sequences………………………………….46 Table 6. COI P-distances…………………………………………………………………47 Table 7. 28S P-distances………………………...……………………………………….48 Table 8. 16S P-distances……………………………...………………………………….49 Table 9. 18S P-distances……………………………...………………………………….50 Table 10. Hypotheses Proposed by Phylogenetic Analyses………………………….51 x List of Figures Figure 1. Map of Sampling Localities…………………………………………………....53 Figure 2. Picture of Congeria hoeblichi………………………………………………….54 Figure 3. Maximum Likelihood Analysis of COI Dataset………………………………55 Figure 4. Bayesian Analysis of COI Dataset……………………………………………56 Figure 5. Maximum Likelihood Analysis of 28S Dataset……………………...……….57 Figure 6. Bayesian Analysis of 28S Dataset……………………………………...…….58 Figure 7. Maximum Likelihood Analysis of 16S Dataset………………………...…….59 Figure 8. Bayesian Analysis of 16S Dataset…………………………………...……….60 Figure 9. Maximum Likelihood Analysis of 18S Dataset………………………...…….61 Figure 10. Bayesian Analysis of 18S Dataset…………………………………………..62 Figure 11. Maximum Likelihood Analysis of Mitochondrial Dataset………………….63 Figure 12. Bayesian Analysis of Mitochondrial Dataset…………………………….....64 Figure 13. Maximum Likelihood Analysis of Nuclear Dataset………………………...65 Figure 14. Bayesian Analysis of Nuclear Dataset……………………………………...66 Figure 15. Maximum Likelihood Analysis of Concatenated Dataset…………………67 Figure 16. Bayesian Analysis of Concatenated Dataset………………………………68 Figure 17. Comparative Analysis of Concatenated Dataset…………………………..69 Figure 18. TCS Haplotype Network of COI Dataset…………………………………...70 Figure 19. Maximum Clade Credibility Chronogram Created in BEAST…………….71 xi Foreword This research will be submitted to the peer-reviewed journal, Molecular Phylogenetics and Evolution. It has been formatted to fit the requirements for that journal. xii 1. Introduction 1.1 Evolutionary History of Dreissenidae The freshwater bivalve family Dreissenidae originated in Neogene fresh and brackish-water lake systems ~83.6 million years ago (MYA) during the Triassic period, concurrent with the time that Pangea began to separate into the continents of North and South America, Europe, and Africa (Bilandžija et al., 2013). Dreissenidae is the only extant family of the superfamily Dreissenoidea and contains three extant and two fossil genera: Prodreissensia and Dreisenomya (Nuttall 1990; Steipen et al., 2013). Mytilopsis (Conrad, 1857) and Congeria (Partsch, 1835) are sister genera and their common ancestor diverged from Dreissena (Van Beneden, 1835) ~37.4 MYA in the late Eocene (Bilandžija et al., 2013). The Eurasian Tectonic Plate was very close to its modern position. The Neotethys Sea was still in existence, creating shallow seas where Mediterranean, Italian, and North African coasts exist today. Congeria diverged from Mytilopsis ~22.8 MYA in the early Miocene when the Adriatic and Mediterranean seas were beginning to form and coastlines were similar to those during the present day (Bilandžija et al., 2013). Dreissena split from
Recommended publications
  • Zebra & Quagga Mussels: Species Guide
    SPECIES IN DEPTH Zebra and Quagga Mussels NATIVE AND INVASIVE RANGE Zebra mussels are native to the Caspian and Black Seas (Eurasia); quagga mussels are native to the Dneiper River drainage in Ukraine. Both mussels have invaded freshwater systems of the United Kingdom, Western Europe, Canada, and the United States. In the United States, zebra mussels were established in the Great Lakes by 1986; quagga mussels were discovered in the Erie Canal and Lake Ontario in 1991. Now, zebra mussels are widespread in the Great Lakes and all Randy Westbrooks the major river drainages east of the Rocky Mountains. Zebra Mussel Quagga mussels are mostly confined to the lower Great Dreissena polymorpha Lakes area and seem to be replacing zebra mussels where their populations overlap. The zebra mussel is a West Coast distribution freshwater bivalve that, true to its name, is often Quagga and zebra mussels have breached the striped with dark bands Rockies and invaded Western states. Quagga mussels like a zebra, but it can were discovered in Lake Mead (Arizona) in 2007, and Fred Snyder Fred also be pure black or within months their shells were washing up on the unpigmented. This small mussel (about 3 cm shores of Lake Mohave (borders Arizona, California, long) is can be recognized from other mussels by and Nevada), and Lake Havasu (borders California and its triangular shape and one flat edge where its Arizona). From there, the mussels were transported byssal threads (for attaching to hard surfaces; see into many Southern California reservoirs via infested inset photo) emerge. However, it is not as easily Colorado River water that runs through aqueducts distinguished from quagga mussels, as both to the reservoirs, providing the region with half of its have byssal threads, which is a key feature for drinking water.
    [Show full text]
  • Marine Bivalve Molluscs
    Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Population Ecology of the Ribbed Mussel in Southeastern Louisiana
    POPULATION ECOLOGY OF THE RIBBED MUSSEL IN SOUTHEASTERN LOUISIANA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Renewable Natural Resources by Aaron Jacob Honig B.S. Tufts University, 2006 May 2013 I have argued in this book that we are human in good A human being is a part of the whole called by part because of the particular way we affiliate with us universe, a part limited in time and space. He other organisms. They are the matrix in which the experiences himself, his thoughts and feeling as human mind originated and is permanently rooted, something separated from the rest, a kind of and they offer the challenge and freedom innately optical delusion of his consciousness. This sought. To the extent that each person can feel like a delusion is a kind of prison for us, restricting us naturalist, the old excitement of the untrammeled to our personal desires and to affection for a few world will be regained. I offer this as a formula of persons nearest to us. Our task must be to free reenchantment to invigorate poetry and myth: ourselves from this prison by widening our circle mysterious and little known organisms live within of compassion to embrace all living creatures walking distance of where you sit. Splendor awaits in and the whole of nature in its beauty. minute proportions. Albert Einstein E. O. Wilson, Biophilia The Road goes ever on and on So speak out loud of Down from the door where it began.
    [Show full text]
  • Dreisseina Spp
    Dreissena spp. Diagnostic features Shells equivalve, mytiliform, inflated, sunken elongate internal ligament. There is a distinct septum behind umbos. Periostracum present. Edentate hinge without teeth. Pallial line not sinuate. Anatomy: eulamellibranch gills, closed mantle with two well developed short siphons. Very small foot with a byssal apparatus (Huber 2010). Dreissena polymorpha (length up to about 50 mm) Classification Class Bivalvia I nfraclass Heteroconchia Cohort Heterodonta Megaorder Neoheterodontei Order Myida Superfamily Dreissenoidea Family Dreissenidae Genus Dreissena van Beneden, 1835 (Type species: Mytilus polymorphus Pallas, 1771) (Synonyms - see http://www.marinespecies.org/aphia.php?p=taxdetails&id=181565). Original reference: Van Beneden, P. J. (1835). Histoire naturelle et anatomique du Driessena [sic] polymorpha, genre nouveau dans la famille de mylilacées [sic]. Bulletins de L’ Academie Royale des Sciences et Belles-lettres de Bruxelles 2: 25-26 Type locality: Tributary of the Ural River in the Caspian Sea Basin, Russia. Biology and ecology Epifaunal. Very adaptable and can tolerate a wide range of salinity and water conditions, ranging from fresh to brackish water. Dioecious with external fertilisation and planktotrophic larvae. Extremely fertile and fast growing and can reach huge population densities. Distribution Native to the lakes of southeast Russia, the Dnieper River drainage of Ukraine and the Black and Caspian Seas. has also been introduced throughout Europe and North America, China and ndia. Notes Dresseina spp.do not occur in Australia but because it could be accidentally introduced, it is mentioned here as a potential threat. Two members of this genus have become major pests in freshwater environments in North America and Europe by clogging water intake structures (e.g., pipes and screens).
    [Show full text]
  • Risk Assessment for Three Dreissenid Mussels (Dreissena Polymorpha, Dreissena Rostriformis Bugensis, and Mytilopsis Leucophaeata) in Canadian Freshwater Ecosystems
    C S A S S C C S Canadian Science Advisory Secretariat Secrétariat canadien de consultation scientifique Research Document 2012/174 Document de recherche 2012/174 National Capital Region Région de la capitale nationale Risk Assessment for Three Dreissenid Évaluation des risques posés par trois Mussels (Dreissena polymorpha, espèces de moules dreissénidées Dreissena rostriformis bugensis, and (Dreissena polymorpha, Dreissena Mytilopsis leucophaeata) in Canadian rostriformis bugensis et Mytilopsis Freshwater Ecosystems leucophaeata) dans les écosystèmes d'eau douce au Canada Thomas W. Therriault1, Andrea M. Weise2, Scott N. Higgins3, Yinuo Guo1*, and Johannie Duhaime4 Fisheries & Oceans Canada 1Pacific Biological Station 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7 2Institut Maurice-Lamontagne 850 route de la Mer, Mont-Joli, QC G5H 3Z48 3Freshwater Institute 501 University Drive, Winnipeg, MB R3T 2N6 4Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Road, PO Box 5050, Burlington, Ontario L7R 4A6 * YMCA Youth Intern This series documents the scientific basis for the La présente série documente les fondements evaluation of aquatic resources and ecosystems in scientifiques des évaluations des ressources et des Canada. As such, it addresses the issues of the écosystèmes aquatiques du Canada. Elle traite des day in the time frames required and the problèmes courants selon les échéanciers dictés. documents it contains are not intended as Les documents qu‟elle contient ne doivent pas être definitive statements on the subjects addressed considérés comme des énoncés définitifs sur les but rather as progress reports on ongoing sujets traités, mais plutôt comme des rapports investigations. d‟étape sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé au Secretariat.
    [Show full text]
  • Proteomic Study of the Brackish Water Mussel Mytilopsis Leucophaeata Feico MAH Schuurmans Stekhoven1*, Gerard Van Der Velde1,4, Tsung-Han Lee2 and Andrew R Bottrill3
    Stekhoven et al. Zoological Studies (2015) 54:22 DOI 10.1186/s40555-014-0081-8 RESEARCH Open Access Proteomic study of the brackish water mussel Mytilopsis leucophaeata Feico MAH Schuurmans Stekhoven1*, Gerard van der Velde1,4, Tsung-Han Lee2 and Andrew R Bottrill3 Abstract Background: We encountered the opportunity to study proteochemically a brackish water invertebrate animal, Mytilopsis leucophaeata, belonging to the bivalves which stem from the second half of the Cambrian Period (about 510 million years ago). This way, we were able to compare it with the vertebrate animal, the frilled shark (Chlamydoselachus anguineus) that stems from a much later period of geologic time (Permian: 245–286 MYA). Results: The mussel contains a well-adapted system of protein synthesis on the ER, protein folding on the ER, protein trafficking via COPI or clathrin-coated vesicles from endoplasmic reticulum (ER) to Golgi and plasmalemma, an equally well-developed system of actin filaments that with myosin forms the transport system for vesicular proteins and tubulin, which is also involved in ATP-driven vesicular protein transport via microtubules or transport of chromosomes in mitosis and meiosis. A few of the systems that we could not detect in M. leucophaeata in comparison with C. anguineus are the synaptic vesicle cycle components as synaptobrevin, cellubrevin (v-snare) and synaptosomal associated protein 25-A (t-snare), although one component: Ras-related protein (O-Rab1) could be involved in synaptic vesicle traffic. Another component that we did not find in M. leucophaeata was Rab11 that is involved in the tubulovesicular recycling process of H+/K+-ATPase in C.
    [Show full text]
  • Microsatellite Loci for Dreissenid Mussels (Mollusca: Bivalvia: Dreissenidae) and Relatives: Markers for Assessing Exotic and Native Populations
    Molecular Ecology Resources (2011) doi: 10.1111/j.1755-0998.2011.03012.x Microsatellite loci for dreissenid mussels (Mollusca: Bivalvia: Dreissenidae) and relatives: markers for assessing exotic and native populations KEVIN A. FELDHEIM*, JOSHUA E. BROWN†‡, DOUGLAS J. MURPHY† and CAROL A. STEPIEN† *Field Museum, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA, †Lake Erie Research Center and the Department of Environmental Sciences, The University of Toledo, 6200 Bayshore Road, Toledo, OH 43616, USA Abstract We developed and tested 14 new polymorphic microsatellite loci for dreissenid mussels, including the two species that have invaded many freshwater habitats in Eurasia and North America, where they cause serious industrial fouling damage and ecological alterations. These new loci will aid our understanding of their genetic patterns in invasive populations as well as throughout their native Ponto-Caspian distributions. Eight new loci for the zebra mussel Dreissena polymorpha polymorpha and six for the quagga mussel D. rostriformis bugensis were compared with new results from six previously published loci to generate a robust molecular toolkit for dreissenid mussels and their relatives. Taxa tested include D. p. polymorpha, D.r.bugensis,D.r.grimmi, D. presbensis, the ‘living fossil’ Congeria kusceri, and the dark false mussel Mytilopsis leucophaeata (the latter also is invasive). Overall, most of the 24 zebra mussel (N = 583) and 13 quagga mussel (N = 269) population samples conformed to Hardy–Weinberg equilibrium expectations for the new loci following sequen- tial Bonferroni correction. The 11 loci (eight new, three previously published) evaluated for D. p. polymorpha averaged 35.1 alleles and 0.72 mean observed heterozygosity per locus, and 25.3 and 0.75 for the nine loci (six new, three previously published) developed for D.
    [Show full text]
  • Biological Synopsis of Dark Falsemussel (Mytilopsis Leucophaeata)
    Biological Synopsis of Dark Falsemussel (Mytilopsis leucophaeata) J. Duhaime and B. Cudmore Fisheries and Oceans Canada Centre of Expertise for Aquatic Risk Assessment 867 Lakeshore Rd., P.O. Box 5050 Burlington, Ontario L7R 4A6 2012 Canadian Manuscript Report of Fisheries and Aquatic Sciences 2980 Canadian Manuscript Report of Fisheries and Aquatic Sciences Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 1426 - 1550 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551. Rapport Manuscrit Canadien des Sciences Halieutiques et Aquatiques Les rapports manuscrits contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui traitent de problèmes nationaux ou régionaux.
    [Show full text]
  • Zebra and Quagga Mussels
    SPECIES AT A GLANCE Zebra and Quagga Mussels Two tiny mussels, the zebra mussel (Dreissena poly- morpha) and the quagga mussel (Dreissena rostriformis bugensis), are causing big problems for the economy and the environment in the west. Colonies of millions of mussels can clog underwater infrastructure, costing Zebra mussel (Actual size is 1.5 cm) taxpayers millions of dollars, and can strip nutrients from nearly all the water in a lake in a single day, turning entire ecosystems upside down. Zebra and quagga mussels are already well established in the Great Lakes and Missis- sippi Basin and are beginning to invade Western states. It Quagga mussel takes only one contaminated boat to introduce zebra and (Actual size is 2 cm) quagga mussels into a new watershed; once they have Amy Benson, U.S. Geological Survey Geological Benson, U.S. Amy been introduced, they are virtually impossible to control. REPORT THIS SPECIES! Oregon: 1-866-INVADER or Oregon InvasivesHotline.org; Washington: 1-888-WDFW-AIS; California: 1-916- 651-8797 or email [email protected]; Other states: 1-877-STOP-ANS. Species in the news Learning extensions Resources Oregon Public Broadcasting’s Like a Mussel out of Water Invasion of the Quagga Mussels! slide coverage of quagga mussels: www. show: waterbase.uwm.edu/media/ opb.org/programs/ofg/episodes/ cruise/invasion_files/frame.html view/1901 (Only viewable with Microsoft Internet Explorer) Why you should care How they got here and spread These tiny invaders have dramatically changed Zebra and quagga mussels were introduced to the entire ecosystems, and they cost taxpayers billions Great Lakes from the Caspian and Black Sea region of dollars every year.
    [Show full text]
  • Bivalve Distribution in Hydrographic Regions in South America: Historical Overview and Conservation
    Hydrobiologia DOI 10.1007/s10750-013-1639-x FRESHWATER BIVALVES Review Paper Bivalve distribution in hydrographic regions in South America: historical overview and conservation Daniel Pereira • Maria Cristina Dreher Mansur • Leandro D. S. Duarte • Arthur Schramm de Oliveira • Daniel Mansur Pimpa˜o • Cla´udia Tasso Callil • Cristia´n Ituarte • Esperanza Parada • Santiago Peredo • Gustavo Darrigran • Fabrizio Scarabino • Cristhian Clavijo • Gladys Lara • Igor Christo Miyahira • Maria Teresa Raya Rodriguez • Carlos Lasso Received: 19 January 2013 / Accepted: 25 July 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Based on literature review and malaco- Mycetopodidae and Hyriidae lineages were predom- logical collections, 168 native freshwater bivalve and inant in regions that are richest in species toward the five invasive species have been recorded for 52 East of the continent. The distribution of invasive hydrographic regions in South America. The higher species Limnoperna fortunei is not related to species species richness has been detected in the South richness in different hydrographic regions there. The Atlantic, Uruguay, Paraguay, and Amazon Brazilian species richness and its distribution patterns are hydrographic regions. Presence or absence data were closely associated with the geological history of the analysed by Principal Coordinate for Phylogeny- continent. The hydrographic regions present distinct Weighted. The lineage Veneroida was more represen- phylogenetic and species composition regardless of tative in hydrographic regions that are poorer in the level of richness. Therefore, not only should the species and located West of South America. The richness be considered to be a criterion for prioritizing areas for conservation, but also the phylogenetic diversity of communities engaged in services and Guest editors: Manuel P.
    [Show full text]
  • (GISD) 2021. Species Profile Mytilopsis Sallei. Available F
    FULL ACCOUNT FOR: Mytilopsis sallei Mytilopsis sallei System: Marine Kingdom Phylum Class Order Family Animalia Mollusca Bivalvia Veneroida Dreissenidae Common name false mussel (English), Caribbean black-striped mussel (English, Australia), Caribbean black-striped false mussel (English, Australia), caliche (Spanish, Venezuela), Santo Domingo false mussel (English), black striped mussel (English) Synonym Congeria gundlachi , Dall, 1898 Congeria rossmasessleri , Dall, 1898 Congeria sallei , Dall, 1898 Dreissena domingensis , Reculuz, 1852 Dreissena gundlachi , Fischer, 1858 Dreissena morchiana , Fischer, 1858 Dreissena pfeiferi , Fischer, 1858 Dreissena riisei , Dunker, 1855 Dreissena roosmassleri , Fischer, 1858 Dreissena sallei , Recluz, 1849 Dreissenia domingensis , Dunker, 1855 Dreissenia gundlachii , Dunker, 1855 Dreissenia moerchiana , Dunker, 1855 Dreissenia pfeifferi , Dunker, 1855 Dreissenia rossmaessleri , Dunker, 1855 Dreissenia sallei , Dunker, 1855 Mytilopsis allyneana , Hertlein and Hanna, 1949 Mytilus domningensis , Reeve, 1858 Mytilus morchianus , Reeve, 1858 Mytilus rossmassleri , Reeve, 1858 Mytilus sallei , Reeve, 1858 Tichogonia domingensis , Kuster, 1889 Tichogonia gundlachi , Kuster, 1889 Tichogonia moerchiana , Kuster, 1889 Tichogonia pfiefferi , Dunker, 1853 Tichogonia riisei , Dunker, 1853 Tichogonia rossmassleri , Dunker, 1853 Tichogonia sallei , Dunker, 1853 Similar species Dreissena polymorpha, Mytilopsis leucophaeata, Dreissena bugensis, Brachidontes Summary Mytilopsis sallei, commonly known as the black striped
    [Show full text]
  • With Emphasis on Ponto-Caspian Species, Including First
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 30 (2004) 479–489 www.elsevier.com/locate/ympev Molecular resolution of the family Dreissenidae (Mollusca: Bivalvia) with emphasis on Ponto-Caspian species, including first report of Mytilopsis leucophaeata in the Black Sea basin Thomas W. Therriault,a,* Margaret F. Docker,a Marina I. Orlova,b Daniel D. Heath,a and Hugh J. MacIsaaca a Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ont., Canada N9B 3P4 b Zoological Institute of the Russian Academy of Sciences, Universitetskaya emb. 1, 199034 St. Petersburg, Russia Received 13 May 2002; revised 26 February 2003 Abstract Considerable uncertainty exists in determination of the phylogeny among extant members of the Dreissenidae, especially those inhabiting the Ponto-Caspian basin, as multiple systematic revisions based on morphological characteristics have failed to resolve relationships within this group of bivalves. In this study we use DNA sequence analyses of two mitochondrial gene fragments, 16S rRNA and cytochrome c oxidase subunit I (COI), to determine phylogenetic relationships among Dreissena rostriformis, D. bug- ensis, D. polymorpha, D. stankovici, Congeria kusceri, and Mytilopsis leucophaeata. Dreissena stankovici was determined to represent a sister taxa to D. polymorpha and both are more closely related to other extant Dreissena species than Congeria or Mytilopsis. Sequence divergence between D. rostriformis and D. bugensis was relatively low (0.3–0.4%), suggesting that these two taxa constitute a single species. However, environmental differences suggest two races of D. rostriformis, a brackish water race (rostriformis) and a freshwater race (bugensis). Spread of bugensis-type individuals into habitats in the Caspian Sea that are occupied by rostriformis-type individuals may create novel hybridization opportunities.
    [Show full text]