Download Download
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxon Order Family Scientific Name Common Name Non-Native No. of Individuals/Abundance Notes Bees Hymenoptera Andrenidae Calliop
Taxon Order Family Scientific Name Common Name Non-native No. of individuals/abundance Notes Bees Hymenoptera Andrenidae Calliopsis andreniformis Mining bee 5 Bees Hymenoptera Apidae Apis millifera European honey bee X 20 Bees Hymenoptera Apidae Bombus griseocollis Brown belted bumble bee 1 Bees Hymenoptera Apidae Bombus impatiens Common eastern bumble bee 12 Bees Hymenoptera Apidae Ceratina calcarata Small carpenter bee 9 Bees Hymenoptera Apidae Ceratina mikmaqi Small carpenter bee 4 Bees Hymenoptera Apidae Ceratina strenua Small carpenter bee 10 Bees Hymenoptera Apidae Melissodes druriella Small carpenter bee 6 Bees Hymenoptera Apidae Xylocopa virginica Eastern carpenter bee 1 Bees Hymenoptera Colletidae Hylaeus affinis masked face bee 6 Bees Hymenoptera Colletidae Hylaeus mesillae masked face bee 3 Bees Hymenoptera Colletidae Hylaeus modestus masked face bee 2 Bees Hymenoptera Halictidae Agapostemon virescens Sweat bee 7 Bees Hymenoptera Halictidae Augochlora pura Sweat bee 1 Bees Hymenoptera Halictidae Augochloropsis metallica metallica Sweat bee 2 Bees Hymenoptera Halictidae Halictus confusus Sweat bee 7 Bees Hymenoptera Halictidae Halictus ligatus Sweat bee 2 Bees Hymenoptera Halictidae Lasioglossum anomalum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum ellissiae Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum laevissimum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum platyparium Cuckoo sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum versatum Sweat bee 6 Beetles Coleoptera Carabidae Agonum sp. A ground beetle -
List of Insect Species Which May Be Tallgrass Prairie Specialists
Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites -
Effects of Climate Change and Various Grassland Management Practices on Grasshopper (Orthoptera) Assemblages
Hindawi Publishing Corporation Advances in Ecology Volume 2014, Article ID 601813, 10 pages http://dx.doi.org/10.1155/2014/601813 Research Article Effects of Climate Change and Various Grassland Management Practices on Grasshopper (Orthoptera) Assemblages Zoltán Kenyeres1 and Judit Cservenka2 1 Acrida Conservational Research L.P., Deak´ Ferenc Street 7, Tapolca 8300, Hungary 2 Balaton Uplands National Park Directorate, Kossuth Street 16, Csopak 8229, Hungary Correspondence should be addressed to Zoltan´ Kenyeres; [email protected] Received 7 April 2014; Revised 4 June 2014; Accepted 16 June 2014; Published 2 July 2014 Academic Editor: Tomasz S. Osiejuk Copyright © 2014 Z. Kenyeres and J. Cservenka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Influence of different grassland management practices on Orthoptera assemblages inhabiting humid grassland areas was studied since 2003 to 2011. The examined sites were within the protected area of Balaton Uplands National Park. The physiognomy and climatic conditions of the studied habitats were similar but their land use types were significantly different. After the preliminary analyses of Nonmetric multidimensional scaling, neighbour joining clustering, and Spearman rank correlation, we examined the possible effects of such independent variables as land use (nonmanagement, mowing, grazing), microclimate (humidity and temperature), regional macroclimate (annual and monthly mean temperatures and rainfall), using General Linear Mixed Models, and canonical correlation analysis. Our results showed that the effect of grassland management practices on the organization of Orthoptera assemblages was at least as important as that of macro- and microclimate. -
New Orthoptera Records for Prince Edward Island and New Brunswick John Klymko, Robert W
J. Acad. Entomol. Soc. 17: 16-19 (2021) NOTE New Orthoptera records for Prince Edward Island and New Brunswick John Klymko, Robert W. Harding, Barry Cottam A checklist of the Orthoptera of the three Maritime provinces was published by Klymko et al. (2018). Even while it was in press, the Spring Field Cricket (Gryllus veletis) was added to the collective list (Lewis et al. 2019), and discoveries continue to be made. Here we present the first Prince Edward Island records of the Treetop Bush Katydid (Scudderia fasciata), the Roesel’s Shield-backed Katydid (Roeseliana roeselii), and the Sphagnum Ground Cricket (Neonemobius palustris) and the first New Brunswick records of the Drumming Katydid Meconema( thalassinum). Also presented are recent data for the occurrence of the Wingless Mountain Grasshopper (Booneacris glacialis) on Prince Edward Island, a species otherwise known only from historical records on the Island. Specimens reported here have been deposited in the collection of the New Brunswick Museum, and museum accession numbers are given for all specimens (e.g., NBM-070089). NEW PROVINCIAL RECORDS TRIGONIDIIDAE Nemobiinae Neonemobius palustris (Blatchley 1900), Sphagnum Ground Cricket — PRINCE EDWARD ISLAND: Kings County: Corraville, Buckskin Road Bog, 46.3056°N, 62.6328°W, collected with pitfall trap, 12 August 2017, C.F. Harding (NBM- 070089); Cardross, Sigsworth Road Bog, 46.2583°N, 62.6263°W, 16 August 2017, R.W. Harding (NBM-070092); Kingsboro, 2.8 km east-southeast of Route 304/Tarantum Road junction, open bog, 46.4107°N, 62.1210°W, 1 October 2020, J. Klymko (NBM-070098); Queens County: Mount Albion, Sphagnum bog along east side of Klondyke Road near Route 5 (48 Road), 46.2305°N, 62.9235°W, 20 August 2017 (NBM-070093); Johnston’s River Wildlife Management Area, east side of Route 21 at Murnaghan Road intersection, hand capture on bog mat, 21 August 2017 (NBM-070094), both R.W. -
The Evolution of Complex Calls in Meadow
THE EVOLUTION OF COMPLEX CALLS IN MEADOW KATYDIDS _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by NATHAN HARNESS Dr. Johannes Schul, Dissertation Supervisor July 2018 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled THE EVOLUTION OF COMPLEX CALLS IN MEADOW KATYDIDS presented by Nathan Harness, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Johannes Schul Professor Sarah Bush Professor Lori Eggert Professor Patricia Friedrichsen For my family Rachel and Mayr have given me so much. They show me unselfish affection, endless support, and generosity that seems to only grow. Without them the work here, and the adventure we’ve all three gone on surrounding it, would not have been possible. They have sacrificed birthdays, anniversaries, holidays, and countless weekends and evenings. They’ve happily seen me off to weeks of field work and conference visits. I am thankful to them for being so generous, and completely lacking in resentment at all the things that pull their husband and dad in so many directions. They have both necessarily become adept at melting away anxiety; I will forever be indebted to the hugs of a two-year-old and the kind words of his mom. Rachel and Mayr both deserve far more recognition than is possible here. I also want to thank my parents and brother and sisters. -
Tetrix Tuerki (Orthoptera, Tetrigidae): Distribution in Ukraine, Ecological Characteristic and Features of Biology
Vestnik zoologii, 43(1): e-1–e-14, 2009 DOI 10.2478/v10058-009-0001-2 ÓÄÊ 595.72(292.451/454) (477) TETRIX TUERKI (ORTHOPTERA, TETRIGIDAE): DISTRIBUTION IN UKRAINE, ECOLOGICAL CHARACTERISTIC AND FEATURES OF BIOLOGY T. I. Pushkar Schmalhausen Institute of Zoology, NAS of Ukraine, Bogdan Chmielnicky str., 15, Kyiv, 01601 Ukraine E-mail: [email protected] Accepted 28 January 2009 Tetrix tuerki (Orthoptera, Tetrigidae): ðàñïðîñòðàíåíèå â Óêðàèíå, ýêîëîãè÷åñêàÿ õàðàêòåðèñòèêà è îñîáåííîñòè áèîëîãèè. Ïóøêàð Ò. È. — Ïîäòâåðæäåíà íàõîäêà Tetrix tuerki (Krauss, 1876) íà òåððèòîðèè Óêðàèíñêèõ Êàðïàò, â Ïðèêàðïàòüå è Çàêàðïàòüå, ãäå îí âñòðå÷àåòñÿ â äîëèíàõ ãîðíûõ ðåê. T. tuerki ïðåäñòàâëåí òðåìÿ ìîðôîëîãè÷åñêèìè ôîðìàìè: êîðîòêîêðûëîé, ñðåäíå- êðûëîé è äëèííîêðûëîé. Çèìóþò èìàãî êîðîòêîêðûëîé è ñðåäíåêðûëîé ôîðì, à òàêæå ëè÷èíêè ïîñëåäíèõ âîçðàñòîâ; äëèííîêðûëûå îñîáè ïîÿâëÿþòñÿ â èþíå èç ïåðåçèìîâàâøèõ ëè÷èíîê. Ëè÷èíêè, ïðåâðàùàþùèåñÿ â èìàãî â ãîä ñâîåãî ïîÿâëåíèÿ, ñòàíîâÿòñÿ êîðîòêîêðûëûìè è ñðåäíåêðûëûìè îñîáÿìè. Áèîòîïè÷åñêàÿ ïðèóðî÷åííîñòü èçìåíÿåòñÿ íà ïðîòÿæåíèè ñåçîíà è ñïåöèôè÷íà äëÿ ðàçíûõ ìîðôîëîãè÷åñêèõ ôîðì. Âåñíîé T. tuerki âñòðå÷àåòñÿ íà ãðàíèöå ïåñ÷àíûõ è ïåñ÷àíî-ãàëå÷íèêîâûõ áåðåãîâûõ íàíîñîâ è ïîéìåííîé òåððàñû, ïîêðûòîé òðàâÿíèñòîé ðàñòèòåëüíîñòüþ (êîðîòêîêðûëàÿ è ñðåäíåêðûëàÿ ôîðìû), ëåòîì — íà íàíîñíûõ êîñàõ è îñòðîâêàõ, ÷àñòî äàëåêî îò áåðåãà (äëèííîêðûëûå îñîáè).  ñðåäíåì òå÷åíèè ãîðíûõ ðåê, ãäå íàíîñû õîðîøî ðàçâèòû, ïðèñóòñòâóþò âñå ìîðôîëîãè÷åñêèå ôîðìû; â âåðõíåì òå÷åíèè, ãäå íàíîñû ïðåèìóùåñòâåííî ãàëå÷íèêîâûå, è â íèæíåì, ãäå áåðåãà ïðèîáðåòàþò ðàâíèííûé õàðàêòåð, âñòðå÷àþòñÿ òîëüêî êîðîòêîêðûëûå è ñðåäíåêðûëûå îñîáè. Äëèíà òåëà îñîáåé ìàêñèìàëüíà â ñðåäíåì òå÷åíèè è óìåíüøàåòñÿ â âåðõíåì è íèæíåì òå÷åíèè ãîðíûõ ðåê. Âèáðàöèîííûå ñèãíàëû T. -
Orthoptera: Tettigonioidea)
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/268037110 Acoustic and Molecular Differentiation between Macropters and Brachypters of Eobiana engelhardti engelhardti (Orthoptera: Tettigonioidea) ARTICLE · MAY 2011 READS 19 1 AUTHOR: Yinliang Wang Northeast Normal University 9 PUBLICATIONS 4 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Yinliang Wang letting you access and read them immediately. Retrieved on: 25 November 2015 Zoological Studies 50(5): 636-644 (2011) Acoustic and Molecular Differentiation between Macropters and Brachypters of Eobiana engelhardti engelhardti (Orthoptera: Tettigonioidea) Yin-Liang Wang, Jian Zhang, Xiao-Qiang Li, and Bing-Zhong Ren* Jilin Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal Univ., 5268 Renmin St., Changchun CO130024, China (Accepted May 20, 2011) Yin-Liang Wang, Jian Zhang, Xiao-Qiang Li, and Bing-Zhong Ren (2011) Acoustic and molecular differentiation between macropters and brachypters of Eobiana engelhardti engelhardti (Orthoptera: Tettigonioidea). Zoological Studies 50(5): 636-644. This study focused on the wing dimorphism of Eobiana engelhardti engelhardti (Uvarov 1926). To examine acoustic differences between macropters and brachypters, we recorded and analyzed the calling songs of the 2 forms. Moreover, the vocal organs of E. e. engelhardti were also observed under optical and scanning electric microscopy. As a result, there were 3 “dynamic” song traits which had significant differences between the 2 forms, but no obvious differences were observed in vocal organs. For macropters, we assumed that differentiation of these calling songs showed compensation for a reproductive disadvantage. -
Male Genital Titillators and the Intensity of Post-Copulatory Sexual Selection Across Bushcrickets
Male genital titillators and the intensity of post-copulatory sexual selection across bushcrickets Item type Article Authors Lehmann, Gerlind; Gilbert, James D. J.; Vahed, Karim; Lehmann, Arne W. Citation Lehmann, G. et al (2017) 'Male genital titillators and the intensity of post-copulatory sexual selection across bushcrickets' Behavioral Ecology, Vol. 28 Issue 5, p1198- 1205. 8p. DOI 10.1093/beheco/arx094 Publisher Oxford University Press Journal Behavioral Ecology Rights Archived with thanks to Behavioral Ecology Downloaded 13-Jan-2019 02:43:47 Link to item http://hdl.handle.net/10545/621751 1 Male genital titillators and the intensity of postcopulatory sexual 2 selection across bushcrickets 3 4 Gerlind U.C. Lehmann1(*), James D. J. Gilbert2, Karim Vahed3, Arne W. Lehmann4 5 6 1 Humboldt-University Berlin, Department of Biology, Behavioral Physiology, 7 Invalidenstrasse 43, 10115 Berlin, Germany. 8 2 School of Biological, Biomedical and Environmental Sciences, University of Hull, UK. 9 3 Environmental Sustainability Research Centre, Department of Natural Sciences, 10 University of Derby, Derby DE22 1GB, UK. 11 4 Friedensallee 37, 14532 Stahnsdorf, Germany. 12 13 Abbreviated title: Genital titillators and polyandry in bushcrickets 14 15 (*) Corresponding author 16 Gerlind U.C. Lehmann 17 Humboldt-University Berlin, Department of Biology, Behavioral Physiology, 18 Invalidenstrasse 43, 10115 Berlin, Germany. 19 Tel.: ++49-30-2093-9006 20 e-mail: [email protected] 21 22 Keywords: Sexual selection, polyandry, refractory period, genitalia, Orthoptera 23 1 24 Abstract 25 Animal genitalia are diverse and a growing body of evidence suggests that they evolve 26 rapidly under post-copulatory sexual selection. This process is predicted to be more intense 27 in polyandrous species, although there have been very few comparative studies of the 28 relationship between the complexity of genital structures in males and measures of the 29 degree of polyandry. -
Great Lakes Entomologist
The GREAT LAKES ENTOMOLOGIST Vol. 5, No. 2 Summer 1972 The Singing Insects of Michigan RichardD. Alexander, Ann E. Pace and Daniel Otte THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 5 1972 No. 2 TABLE OF CONTENTS The singing insects of Michigan Richard D. Alexander, Ann E. Pace and Daniel Otte . .33 COVER ILLUSTRATION The Northern True Katydid, Pterophylla camellifolia (Fabricius) (Orthoptera: Tet- tigoniidae), whose raucus calls of "katydid, katy-did" can be heard from the tops of deciduous trees in the southern part of the Lower Peninsula during the evenings of middle and late summer. THE MICHIGAN ENTOMOLOGICAL SOCIETY 197 1-1972 OFFICERS President Dean G. DiIlery President-Elect Richard C. Fleming Executive Secretary M. C. Nielsen Editor Irving J. Cantrall The Michigan Entomological Society traces its origins'to the old Detroit Entomological Society and was organized on 4 November 1954 to ". promote the science of entomology in all its branches and by all feasible means, and to advance cooperation and good fellowship among persons interested in entomology." The Society attempts to facilitate the exchange of ideas and information in both amateur and professional circles, and encourages the study of insects by youth. Membership in the Society, which serves the North Central States and adjacent Canada, is open to all persons interested in entomology. There are three paying classes of membership: Student (including those currently enrolled in college or graduate programs) - annual dues $2.00 Active - anriual dues $4.00 Institutional - annual dues $6.00 Sustaining - annual contribution $25.00 or more Dues are paid on a calendar year basis (Jan. -
Diversity and Distribution of Orthoptera Communities of Two Adjacent Mountains in Northern Part of the Carpathians
Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa” 62 (2): 191–211 (2019) doi: 10.3897/travaux.62.e48604 RESEARCH ARTICLE Diversity and distribution of Orthoptera communities of two adjacent mountains in northern part of the Carpathians Anton Krištín1, Benjamín Jarčuška1, Peter Kaňuch1 1 Institute of Forest Ecology SAS, Ľ. Štúra 2, Zvolen, SK-96053, Slovakia Corresponding author: Anton Krištín ([email protected]) Received 19 November 2019 | Accepted 24 December 2019 | Published 31 December 2019 Citation: Krištín A, Jarčuška B, Kaňuch P (2019) Diversity and distribution of Orthoptera communities of two adjacent mountains in northern part of the Carpathians. Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa” 62(2): 191–211. https://doi.org/10.3897/travaux.62.e48604 Abstract During 2013–2017, assemblages of bush-crickets and grasshoppers were surveyed in two neighbour- ing flysch mountains – Čergov Mts (48 sites) and Levočské vrchy Mts (62 sites) – in northern part of Western Carpathians. Species were sampled mostly at grasslands and forest edges along elevational gradient between 370 and 1220 m a.s.l. Within the entire area (ca 930 km2) we documented 54 species, representing 38% of Carpathian Orthoptera species richness. We found the same species number (45) in both mountain ranges with nine unique species in each of them. No difference in mean species rich- ness per site was found between the mountain ranges (mean ± SD = 12.5 ± 3.9). Elevation explained 2.9% of variation in site species richness. Elevation and mountain range identity explained 7.3% of assemblages composition. We found new latitudinal as well as longitudinal limits in the distribu- tion for several species. -
The Song Relationships of Four Species of Ground Crickets (Orthoptera: Gryllidae: Nemobius)1
THE SONG RELATIONSHIPS OF FOUR SPECIES OF GROUND CRICKETS (ORTHOPTERA: GRYLLIDAE: NEMOBIUS)1 RICHARD D. ALEXANDER Department of Zoology and Entomology, The Ohio State University, Columbus 10 INTRODUCTION Several accounts have been written of the mating behavior of different species of ground crickets (Fulton, 1931; Richards, 1952; Gabbutt, 1954), and many excellent descriptions of their songs, based on auditory impressions, have appeared (Fulton, 1930, 1931, 1932; Cantrall, 1943; and many others). A few song analyses have been made with mechanical or electronic devices (Fulton, 1933; Pielemeier, 1946, 1946a; Pierce, 1948). Detailed comparative studies of song relationships in the singing Orthoptera and Cicadidae are almost non-existent, though it is increasingly apparent that satisfactory interpretations of the taxonomic and distri- butional relationships of these species will depend on such studies. The present investigation is based on laboratory and field observations, and on tape recordings of songs analyzed by means of a Vibralyzer. The species dis- cussed include Nemobius carolinus carolinus Scudder, N. confusus Blatchley, and N. melodius Thomas and Alexander, the only eastern representatives of the sub- genus Eunemobius Hebard. A fourth species, N. maculatus Blatchley, belonging in the subgenus Allonemobius Hebard, is also considered here because of certain distributional and song relationships with the above species. The recordings used for song analysis are deposited in the Library of Animal Sounds, Department of Zoology and Entomology, The Ohio State University. They were made with a Magnemite, Model 610-E (in the field) and a Magnecorder, Model PT6A (in the laboratory) at a tape speed of fifteen inches per second. American Microphone Company Microphones, Models D-33 and D-33A, were used, both in the field and in the laboratory. -
The Evolutionary Genetics of Sexual Size Dimorphism in the Cricket Allonemobius Socius
Heredity (2007) 99, 218–223 & 2007 Nature Publishing Group All rights reserved 0018-067X/07 $30.00 www.nature.com/hdy ORIGINAL ARTICLE The evolutionary genetics of sexual size dimorphism in the cricket Allonemobius socius KM Fedorka1, WE Winterhalter1 and TA Mousseau2 1Department of Biology, University of Central Florida, Orlando, FL, USA and 2Department of Biological Sciences, University of South Carolina, Columbia, SC, USA In recent years, investigations into the evolution of sexual phenotypic change in the next generation. We found that the size dimorphism have moved from a simple single trait, sexes differed significantly in their selection gradients as well single sex perspective, to the more robust view of multi- as several of their genetic parameters. Our predictions of variate selection acting on both males and females. How- next-generation change indicated that the within-sex genetic ever, more accurate predictions regarding selection correlations, as well as the between-sex genetic correlations, response may be possible if some knowledge of the should play a significant role in sexually dimorphic evolution underlying sex-specific genetic architecture exists. In the in this system. Specifically, the female size response was striped ground cricket, Allonemobius socius, females are the increased by approximately 178% when the between-sex larger sex. Furthermore, body size appears to be closely genetic correlations were considered. Thus, our predictions associated with fitness in both males and females. Here, we reinforce the notion that genetic architecture can produce investigate the role that genetic architecture may play in counterintuitive responses to selection, and suggest that affecting this pattern. Employing a quantitative genetic even a complete knowledge of the selection pressures approach, we estimated the sex-specific selection gradients acting on a trait may misrepresent the trajectory of trait and the (co)variance matrix for body size and wing evolution.