The Evolutionary Genetics of Sexual Size Dimorphism in the Cricket Allonemobius Socius

Total Page:16

File Type:pdf, Size:1020Kb

The Evolutionary Genetics of Sexual Size Dimorphism in the Cricket Allonemobius Socius Heredity (2007) 99, 218–223 & 2007 Nature Publishing Group All rights reserved 0018-067X/07 $30.00 www.nature.com/hdy ORIGINAL ARTICLE The evolutionary genetics of sexual size dimorphism in the cricket Allonemobius socius KM Fedorka1, WE Winterhalter1 and TA Mousseau2 1Department of Biology, University of Central Florida, Orlando, FL, USA and 2Department of Biological Sciences, University of South Carolina, Columbia, SC, USA In recent years, investigations into the evolution of sexual phenotypic change in the next generation. We found that the size dimorphism have moved from a simple single trait, sexes differed significantly in their selection gradients as well single sex perspective, to the more robust view of multi- as several of their genetic parameters. Our predictions of variate selection acting on both males and females. How- next-generation change indicated that the within-sex genetic ever, more accurate predictions regarding selection correlations, as well as the between-sex genetic correlations, response may be possible if some knowledge of the should play a significant role in sexually dimorphic evolution underlying sex-specific genetic architecture exists. In the in this system. Specifically, the female size response was striped ground cricket, Allonemobius socius, females are the increased by approximately 178% when the between-sex larger sex. Furthermore, body size appears to be closely genetic correlations were considered. Thus, our predictions associated with fitness in both males and females. Here, we reinforce the notion that genetic architecture can produce investigate the role that genetic architecture may play in counterintuitive responses to selection, and suggest that affecting this pattern. Employing a quantitative genetic even a complete knowledge of the selection pressures approach, we estimated the sex-specific selection gradients acting on a trait may misrepresent the trajectory of trait and the (co)variance matrix for body size and wing evolution. morphology (that is, either a long-winged flight-capable Heredity (2007) 99, 218–223; doi:10.1038/sj.hdy.6800985; phenotype or a short-winged flightless phenotype) to predict published online 2 May 2007 Keywords: G-matrix; heritability; genetic correlation; selection gradient; microevolutionary change Introduction Early investigations into the maintenance of female- biased SSD centered on this latter hypothesis (Clutton- Sexual size dimorphism (SSD) or the difference in mean brock and Harvey, 1978; Berry and Shine, 1980; Gilbert size between the sexes is widely observed throughout the and Williamson, 1983). Unfortunately, these studies animal kingdom. Adaptive evolution of SSD is generally generally ignored selection on male body size, which explained through three hypotheses (Hedrick and can contribute equally to the dimorphic pattern. Further- Temeles, 1989). First, dimorphism via sexual selection more, other selective pressures may be acting differen- may occur when individuals of a particular size in one tially on female body size over time, which can sex are differentially successful via mate choice or mate considerably modify the relationship between size and competition (Andersson, 1994). Slatkin (1984) suggested fitness. Thus, research over the past decade has focused that dimorphism may also be maintained through purely on generating a more robust view of selection by ecological mechanisms. In this model the sexes occupy examining the interplay between differing selective different fitness optima for a certain trait, creating pressures acting on both sexes to estimate the net dimorphic niches. These different niches may originate selective force (Price, 1984; Ferguson and Fairbairn, through direct competition for resources (where di- 2000; Preziosi and Fairbairn, 2000). However, even a morphism itself is adaptive), or through divergent complete knowledge of selection has limits when ecological roles. Finally, dimorphism may be maintained attempting to predict next-generation phenotypic through differential reproductive selection. The most change. common reproductive model, the fecundity advantage To this end, some knowledge of the underlying sex- model, suggests that large female size is strongly specific genetic architecture for body size is needed. The associated with a greater reproductive output (Shine, reasons for this are manifold. First, body size can only 1988). respond to selection if sufficient genetic variation exists in the population (Roff, 1997). Second, a dimorphic response in size is possible only if the genetic correlation Correspondence: Professor KM Fedorka, Department of Biology, between the sexes for the homologous trait is less than University of Central Florida, 4000 Central Florida Blvd, Orlando, one, indicating the existence of sex-specific genetic FL 32816, USA. E-mail: [email protected] variation (Lande, 1980; Via and Lande, 1985; Ashman, Received 15 November 2006; revised 22 March 2007; accepted 23 2005). Third, genetic correlations within each sex may March 2007; published online 2 May 2007 modify the magnitude and/or direction of the body size Genetics of size dimorphism KM Fedorka et al 219 response (Roff, 1997). Fourth, even if ample genetic Cages were 10 Â 10 Â 8 cm and contained ground cat variance for body size exists and genetic correlations are food and a carrot slice (provided in excess), dampened less than one, the overall genetic architecture may still cheesecloth (water source and oviposition material) and constrain evolution by limiting the amount of genetic strips of brown paper towel for cover. Every 2 days, the variance that exists in the multivariate direction of food, carrot and paper towel were replaced. Cages were selection (Blows and Hoffmann, 2005). Therefore, just kept in a constant environment at 281C and a 12:12 (L:D) as the dynamics between differing selective pressures are photoperiod provided by a Percival incubator (Boone, important in determining net selective force, the IA, USA). Eggs were collected and offspring were reared dynamics between selection and the underlying genetic in the same environment as the parental generation. structure may provide valuable insights regarding the Upon adult eclosion the sexes were separated and evolution of a dimorphic trait (Ashman, 2005). maintained as virgins at low density (4–5 per cage). In the striped ground cricket, Allonemobius socius, Age of experimental crickets was 1072 days post females are the larger sex. Furthermore, body size eclosion. appears to be significantly associated with both male To estimate selection on each sex, we regressed femur mating success and female reproductive success length (estimate of body size) and wing morph (long- (Fedorka and Mousseau, 2002a, b). As with most sexually and short-winged coded as 1 and 0, respectively) against dimorphic systems, however, little is known regarding relative fitness. Characters were standardized to a mean the role that genetic architecture plays in dimorphism. To of zero and unit variance and relative fitness was this end, we employed a quantitative genetic design, calculated as orelative ¼ oindividual/oaverage (Fedorka and coupling sex-specific selection gradients with h2-matrices Mousseau, 2002a). Fitness estimates were based on (standardized form of the G-matrix comprised of trait mating success for males and reproductive success for 0 heritabilities and additive genetic correlations) for body females. Both univariate (b X) and multivariate (bX) size and wing morphology (that is, either a long-wing selection gradients were calculated for each sex-specific flight-capable phenotype or a short-wing flightless trait. Multivariate gradients were estimated via a phenotype). This allowed us to first estimate the amount standardized partial regression, allowing us to disen- of additive genetic variance for body size; second, tangle direct from indirect selection (Lande and Arnold, compare the sexes for differences in genetic parameters; 1983). third, test for significant correlations between the sexes To assess male mating success and female reproduc- for homologous traits; and fourth, model the response to tive success, two unrelated males were placed into a selection in order to assess the potential influence that mating arena (100 mm Petri dish) along with a randomly genetic architecture may have on dimorphic evolution. chosen, unrelated female. Each male (n ¼ 220) was tested on average five times against a different male with a new Methods virgin female used for each trial (n ¼ 1067). Thus, the male estimate of fitness was based on the proportion of Selection gradients (b) and additive genetic variance and successful mating attempts and female fitness was based covariances (G) form the basis of modeling microevolu- on the number of eggs produced. These estimates of tionary change in accordance with quantitative genetic fitness do not consider selection associated with dis- theory (Lande and Arnold, 1983; Roff, 1997). Thus, the persal of the long-winged morph. However, dispersal evolutionary trajectory of body size may be significantly selection is likely to be minor compared with the influenced by its genetic associations with other traits reproductive selection acting on male mating success under selection. Previous work suggests that wing and female fecundity. To help control for the potential morphology represents a potentially important corre- influence of mating experience, males were tested lated character. Evidence from other cricket systems against other males who shared an equal number of suggests
Recommended publications
  • Diverse Reproductive Barriers in Hybridising Crickets Suggests Extensive Variation in the Evolution and Maintenance of Isolation
    Evol Ecol (2013) 27:993–1015 DOI 10.1007/s10682-012-9610-2 ORIGINAL PAPER Diverse reproductive barriers in hybridising crickets suggests extensive variation in the evolution and maintenance of isolation Thor Veen • Joseph Faulks • Frances Tyler • Jodie Lloyd • Tom Tregenza Received: 5 July 2012 / Accepted: 21 September 2012 / Published online: 10 November 2012 Ó Springer Science+Business Media Dordrecht 2012 Abstract Reproductive barriers reduce gene flow between populations and maintain species identities. A diversity of barriers exist, acting before, during and after mating. To understand speciation and coexistence, these barriers need to be quantified and their potential interactions revealed. We use the hybridising field crickets Gryllus bimaculatus and G. campestris as a model to understand the full compliment and relative strength of reproductive barriers. We find that males of both species prefer conspecific females, but the effect is probably too weak to represent a barrier. In contrast, prezygotic barriers caused by females being more attracted to conspecific male song and preferentially mounting and mating with conspecifics are strong and asymmetric. Postzygotic barriers vary in direction; reductions in fecundity and egg viability create selection against hybridisation, but hybrids live longer than pure-bred individuals. Hybrid females show a strong preference for G. bimaculatus songs, which together with a complete lack of hybridisation by G. campestris females, suggests that asymmetric gene flow is likely. For comparison, we review repro- ductive barriers that have been identified between other Gryllids and conclude that multiple barriers are common. Different species pairs are separated by qualitatively different Electronic supplementary material The online version of this article (doi:10.1007/s10682-012-9610-2) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]
  • New Mexico State University-Howard Hughes Medical Institute Science Education Program Research Scholars Publications 2007-2020
    New Mexico State University-Howard Hughes Medical Institute Science Education Program Research Scholars Publications 2007-2020 2007 Zamborsky, D.J., T.R. Paskadi, M.K., Nishiguchi, 2007. Population genetic structure of a sympatric squid-Vibrio symbiosis in the Mediterranean Sea using nested clade analysis. The Society for Integrative and Comparative Biology. http://www.sicb.org/meetings/2007/schedule/abstractdetails.php3?id=236 2008 Burnett, M., C.Q. Hoang, A. Sandoval, and J. Curtiss. 2008. Analyzing the role of CtBP in Drosophila eye development. Developmental Biology (Orlando), 2008; 319 (2). Pp. 495 ISSN: 00121606. Delgado, A., S. Zaman, A. Muthaiyan, V. Nagarajan, M. O. Elasri, B. J. Wilkinson, and J. E. Gustafson. 2008. The Fusidic acid Stimulon of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 62(6):1207-1214. http://jac.oxfordjournals.org/content/62/6/1207.full.pdf+html Lamichhane-Khadk, R., J.T. Riordan, A. Delgado, A. Muthaiyan, T.D. Reynolds, B.J. Wilkinson, and J.E. Gustafson. 2008. Genetic changes that correlate with the pine-oil disinfectant-reduced susceptibility mechanism of Staphylococcus aureus. Journal of Applied Microbiology. Dec;105(6):1973-81. [PMID: 19120644] http://www.ncbi.nlm.nih.gov/pubmed/19120644 Ross, C. L., J. H. Benedix Jr., C. Garcia, K. Lambeth, R. Perry, V. Selwyn, and D.J. Howard. 2008. Scale-independent criteria and scale-dependent agents determining the structure of a ground cricket mosaic hybrid zone (Allonemobius socius – Allonemobius fasciatus). Biological Journal of the Linnean Society 94(2):777–796. http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.2008.01018.x/abstract Soto, W., J.
    [Show full text]
  • Chasing Sympatric Speciation
    C HASING SYMPATRIC SPECIATION - P rezygotic isolation barriers in barriers isolation rezygotic CHASING SYMPATRIC SPECIATION THE RELATIVE IMPORTANCE AND GENETIC BASIS OF PREZYGOTIC ISOLATION BARRIERS IN DIVERGING POPULATIONS OF Spodoptera SPODOPTERA FRUGIPERDA frugiperda frugiperda S ABINE H ÄNNIGER SABINE HÄNNIGER CHASING SYMPATRIC SPECIATION THE RELATIVE IMPORTANCE AND GENETIC BASIS OF PREZYGOTIC ISOLATION BARRIERS IN DIVERGING POPULATIONS OF SPODOPTERA FRUGIPERDA ‘Every scientific statement is provisional. […]. How can anyone trust scientists? If new evidence comes along, they change their minds.’ Terry Pratchett et al., The Science of Discworld: Judgement Day, 2005 S. Hänniger, 2015. Chasing sympatric speciation - The relative importance and genetic basis of prezygotic isolation barriers in diverging populations of Spodoptera frugiperda PhD thesis, University of Amsterdam, The Netherlands ISBN: 978 94 91407 21 5 Cover design: Sabine Hänniger Lay-out: Sabine Hänniger, with assistance of Jan Bruin CHASING SYMPATRIC SPECIATION THE RELATIVE IMPORTANCE AND GENETIC BASIS OF PREZYGOTIC ISOLATION BARRIERS IN DIVERGING POPULATIONS OF SPODOPTERA FRUGIPERDA ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op dinsdag 06 oktober 2015, te 10.00 uur door SABINE HÄNNIGER geboren te Heiligenstadt, Duitsland Promotores prof. dr. S.B.J. Menken 1 prof. dr. D.G. Heckel 2 Co-promotor dr. A.T. Groot 1,2 Overige leden prof. dr. A.M. de Roos 1 prof. dr. P.H. van Tienderen 1 prof. dr. P.C.
    [Show full text]
  • The Song Relationships of Four Species of Ground Crickets (Orthoptera: Gryllidae: Nemobius)1
    THE SONG RELATIONSHIPS OF FOUR SPECIES OF GROUND CRICKETS (ORTHOPTERA: GRYLLIDAE: NEMOBIUS)1 RICHARD D. ALEXANDER Department of Zoology and Entomology, The Ohio State University, Columbus 10 INTRODUCTION Several accounts have been written of the mating behavior of different species of ground crickets (Fulton, 1931; Richards, 1952; Gabbutt, 1954), and many excellent descriptions of their songs, based on auditory impressions, have appeared (Fulton, 1930, 1931, 1932; Cantrall, 1943; and many others). A few song analyses have been made with mechanical or electronic devices (Fulton, 1933; Pielemeier, 1946, 1946a; Pierce, 1948). Detailed comparative studies of song relationships in the singing Orthoptera and Cicadidae are almost non-existent, though it is increasingly apparent that satisfactory interpretations of the taxonomic and distri- butional relationships of these species will depend on such studies. The present investigation is based on laboratory and field observations, and on tape recordings of songs analyzed by means of a Vibralyzer. The species dis- cussed include Nemobius carolinus carolinus Scudder, N. confusus Blatchley, and N. melodius Thomas and Alexander, the only eastern representatives of the sub- genus Eunemobius Hebard. A fourth species, N. maculatus Blatchley, belonging in the subgenus Allonemobius Hebard, is also considered here because of certain distributional and song relationships with the above species. The recordings used for song analysis are deposited in the Library of Animal Sounds, Department of Zoology and Entomology, The Ohio State University. They were made with a Magnemite, Model 610-E (in the field) and a Magnecorder, Model PT6A (in the laboratory) at a tape speed of fifteen inches per second. American Microphone Company Microphones, Models D-33 and D-33A, were used, both in the field and in the laboratory.
    [Show full text]
  • Common Name Proposal
    3 Park Place, Suite 307 Phone: 301-731-4535 [email protected] Annapolis, MD 21401-3722 USA Fax: 301-731-4538 www.entsoc.org Entomological Society of America Proposal Form for New Common Name or Change of ESA-Approved Common Name Complete this form and e-mail to [email protected]. Submissions will not be considered unless this form is filled out completely. The proposer is expected to be familiar with the rules, recommendations, and procedures outlined in the “Use and Submission of Common Names” on the ESA website at https://www.entsoc.org/pubs/use-and-submission-common-names. 1. Proposed new common name: Allard’s ground cricket In use 1968 to present 2. Previously approved common name (if any): None 3. Scientific name (genus, species, author): Allonemobius allardi (Alexander & Thomas 1959) Synonym: Nemobius allardi Alexander, R.D. & Thomas, E.S. 1959. Systematic and behavioral studies on the crickets of the Nemobius Fasciatus group (Orthoptera: Gryllidae: Nemobiinae). Annals of the Entomological Society of America 52(5) 591-605 Nemobius allardi was moved to Allonemobius sometime between 1968 and 1983. Maybe this was done in Howard’s 1982 Ph.D. dissertation from Yale “Speciation and coexistence in a group of closely related ground crickets.” At least from 1983 onwards all literature uses the genus Allonemobius. Order:Orthoptera Family:Gyrillidae Supporting Information 4. Please provide a clear and convincing explanation for why a common name is needed, possibly including but not limited to the taxon’s economic, ecological, or medical importance, striking appearance, abundance, or conservation status: This insect is gaining recognition in both public and private documents as a fun insect, a minor pest, and as a laboratory study organism.
    [Show full text]
  • New Canadian and Ontario Orthopteroid Records, and an Updated Checklist of the Orthoptera of Ontario
    Checklist of Ontario Orthoptera (cont.) JESO Volume 145, 2014 NEW CANADIAN AND ONTARIO ORTHOPTEROID RECORDS, AND AN UPDATED CHECKLIST OF THE ORTHOPTERA OF ONTARIO S. M. PAIERO1* AND S. A. MARSHALL1 1School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1 email, [email protected] Abstract J. ent. Soc. Ont. 145: 61–76 The following seven orthopteroid taxa are recorded from Canada for the first time: Anaxipha species 1, Cyrtoxipha gundlachi Saussure, Chloroscirtus forcipatus (Brunner von Wattenwyl), Neoconocephalus exiliscanorus (Davis), Camptonotus carolinensis (Gerstaeker), Scapteriscus borellii Linnaeus, and Melanoplus punctulatus griseus (Thomas). One further species, Neoconocephalus retusus (Scudder) is recorded from Ontario for the first time. An updated checklist of the orthopteroids of Ontario is provided, along with notes on changes in nomenclature. Published December 2014 Introduction Vickery and Kevan (1985) and Vickery and Scudder (1987) reviewed and listed the orthopteroid species known from Canada and Alaska, including 141 species from Ontario. A further 15 species have been recorded from Ontario since then (Skevington et al. 2001, Marshall et al. 2004, Paiero et al. 2010) and we here add another eight species or subspecies, of which seven are also new Canadian records. Notes on several significant provincial range extensions also are given, including two species originally recorded from Ontario on bugguide.net. Voucher specimens examined here are deposited in the University of Guelph Insect Collection (DEBU), unless otherwise noted. New Canadian records Anaxipha species 1 (Figs 1, 2) (Gryllidae: Trigidoniinae) This species, similar in appearance to the Florida endemic Anaxipha calusa * Author to whom all correspondence should be addressed.
    [Show full text]
  • Species Boundaries and Hybrid Zones of a Recently Diverged Species Complex
    Species Boundaries and Hybrid Zones of a Recently Diverged Species Complex Desiree Harpel* and Jeremy L. Marshall Department of Entomology, Kansas State University, Manhattan, KS 66503 Speciation is the biological process of one species splitting into two or more new species, and is the driving force of biodiversity on Earth. When such new species are formed, there are three different ways in which their populations can be distributed relative to each other. They can be sympatric, where species boundaries overlap one another; parapatric, where species boundaries line up along each other’s edges; or allopatric, where the species boundaries do not come in contact with each other. In the Marshall Laboratory, we are interested both in how environmental variables like temperature and moisture influence species distributions (Camp and Marshall 2000; Jensen, Camp, and Marshall 2002; Marshall and Camp 2006; Camp, Huestis, and Marshall 2007) and how closely related species interact at the boundaries of their distributions (Howard et al 2003; Traylor et al. 2008). The combination of these two interests motivated this study. Specifically, we were interested in the Allonemobius socius complex of crickets, which is comprised of four closely related species (i.e., A. socius, A. fasciatus, A. sp. nov. Tex, and A. shalontaki) whose species boundaries are unresolved in the central United States. This complex of crickets has been a model in evolutionary biology, used to study speciation (Howard et al. 2002; Marshall, Arnold, and Howard 2002; Marshall et al. 2011; Marshall and DiRienzo 2012; Marshall 2013), hybrid zones (Howard et al. 2003; Traylor et al. 2008), genetics (Huestis and Marshall 2006a; Britch et al.
    [Show full text]
  • Grasshopper,Katydid,Crickets of Eoa Species Common Name
    GRASSHOPPER,KATYDID,CRICKETS OF EOA SPECIES COMMON NAME Allonemobius allardi Allards ground cricket Allonemobius fasciatus striped ground cricket Allonemobius maculatus spotted ground cricket Allonemobius tinnulus tinkling ground cricket Amblycorpha alexanderi clicker round-wing katydid Amblycorpha longinicta common virtuoso katydid Amblycorpha oblongifolia oblong-winged katydid Amblycorpha rotundifolia rattler round-winged katydid Arphia simplex Plains yellow-winged grasshopper Arphia sulphurea spring yellow-winged grasshopper Arphia xanthoptera autumn yellow-wing grasshopper Atlanticus americanus American sheildback Camptonotus carlinensis Carolina leaf roller Ceuthophilus brevipes short-legged camel cricket Ceuthophilus g. gracilipes camel cricket Ceuthophilus uhleri Uhler's camel cricket Chortophaga viridifasciata N. green-striped hopper Conocephalus attenuatus long-tailed meadow katydid Conocephalus brevipennis short-winged meadow katydid Conocephalus fasciatus slender meadow katydid Conocephalus nemoralis woodland meadow katydid Dicromorpha viridis short-wing green grasshopper Dissosteira carolina Carolina grasshopper Ellipes minutus minute pygmy mole grasshopper Encoptolophus soridus dusky grasshopper Gryllus pennsylvanicus fall field cricket Melanolplus obovatipennis obovate-winged grasshopper Melanoplus bivittatus two-striped grasshopper Melanoplus differentialis differential grasshopper Melanoplus femurrubrum red-legged grasshopper Melanoplus gracilis graceful grasshopper Melanoplus keeleri luridus Keelers grasshopper Melanoplus
    [Show full text]
  • Note to Users
    NOTE TO USERS This reproduction is the best copy available. UMI LIFE HISTORYAND SEXUALSELECTION Patrick D. Lorch University of Toronto at Mississauga A thesis submittecl in conformity with the recpirements for the degree of Doctor of Philosophy Graduate Department of Zoology University of Toronto Copyright @ 3000 by Patrick D. Lorch University of Toronto at Mississauga l 'except Chapter 5. copyrighted by Society lor Sysdemotic Biology. Reproduced with permission (see p. 123). National Library Bibîioth$uo nationab du Cana a Acquisitions and Acquisitions et Bibliographk Sewices services bibliogrâphiques 395 WdiingtOri SM 385, ni4 Wellington OItawaON K1AONS ûHawaON K1AW canada canada The author has granted a non- L'auteur a accordé une licence non exclusive Licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seiî reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfichelfilm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substaatial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Life History and Sexual Selection Patrick D. Lorch University of Toronto at Mississauga Doctor of P hilosophy Graduate Department of Zoology University of Toronto 2000 Three of my thesis chapters use the fecundity by numbers of mates regression slope (Bate- man slopes) to understand how life history allocation patterns can influence the strength of sexual select ion.
    [Show full text]
  • 1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
    THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • GENETIC ARCHITECTURE of CONSPECIFIC SPERM PRECEDENCE in ALLONEMOBIUS FASCIATUS and ALLONEMOBIUS SOCIUS AUTHORS: Seth C. B
    Genetics: Published Articles Ahead of Print, published on April 15, 2007 as 10.1534/genetics.106.064949 TITLE: GENETIC ARCHITECTURE OF CONSPECIFIC SPERM PRECEDENCE IN ALLONEMOBIUS FASCIATUS AND ALLONEMOBIUS SOCIUS AUTHORS: Seth C. Britch*1, Emma J. Swartout*, Daniel D. Hampton†, Michael L. Draney‡, Jiming Chu§, Jeremy L. Marshall**, and Daniel J. Howard* * Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003 † Duke University School of Medicine, Durham, NC 27706 ‡ Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, Wisconsin 54311 § Health Occupations Program, Dona Ana Branch Community College, Las Cruces, New Mexico 88003 ** Department of Entomology, Kansas State University, Manhattan, KS 66506 1S. C. Britch (current address) USDA-ARS Center for Medical, Agricultural, & Veterinary Entomology 1600/1700 SW 23rd Dr Gainesville, FL 32608 Phone: (352) 374-5737 Fax: (352) 374-5781 E-mail: [email protected] 1 RUNNING HEAD: CONSPECIFIC SPERM PRECEDENCE KEYWORDS: CONSPECIFIC SPERM PRECEDENCE, QTL, BIMODAL HYBRID ZONE, REPRODUCTIVE ISOLATION, SPECIATION, ALLONEMOBIUS CRICKET, CORRESPONDENCE: 1S. C. Britch (current address) USDA-ARS Center for Medical, Agricultural, & Veterinary Entomology 1600/1700 SW 23rd Dr Gainesville, FL 32608 Phone: (352) 374-5737 Fax: (352) 374-5781 E-mail: [email protected] 2 ABSTRACT The evolution of barriers to gene exchange is centrally important to speciation. We used the crickets Allonemobius fasciatus and A. socius to investigate the genetic architecture of conspecific sperm precedence (CSP), a post-insemination prezygotic reproductive barrier. With AFLP markers and controlled crosses we constructed linkage maps and estimated positions of QTL associated with CSP. The majority of QTLs have low to moderate effects, although a few QTLs exist in A.
    [Show full text]