Space Math VI Math Space I

Total Page:16

File Type:pdf, Size:1020Kb

Space Math VI Math Space I National Aeronautics and Space Administration Space Math VI Math Space i This collection of activities is based on a weekly series of space science problems distributed to thousands of teachers during the 2009- 2010 school year. They were intended for students looking for additional challenges in the math and physical science curriculum in grades 5 through 12. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. The problems were designed to be ‘one-pagers’ with a Teacher’s Guide and Answer Key as a second page. This compact form was deemed very popular by participating teachers. For more weekly classroom activities about astronomy and space visit the NASA website, http://spacemath.gsfc.nasa.gov Add your email address to our mailing list by contacting Dr. Sten Odenwald at [email protected] Front and back cover credits: Lagrange points (WMAP/NASA); Saturn hexagon clouds (Cassini/NASA); Gravity waves from binary black hole system (LISA); Eta Carina Nebula (Hubble/NASA) Interior Illustrations:6) Chandra/NASA; 7)JPL/NASA; 8)SOHO/ESA/NASA; 9)Author; Fermilab; 11)Aqua/NASA; 12)Deep Impact/NASA; 13)GeoEye; 16)Chandra/NASA; 17)HST/NASA; 18)SOHO/ESA/NASA; 21)Chandra/NASA; 22)NASA Orbital Debris Program Office; NASA Photo 125e006995; 24)HST/NASA; 25)HST/NASA; 27)NASA; 31)Palomar Digital Sky Survey; Carnegie Institution; 34)Digital Globe Inc; 39) NASA/JPL-Caltech; 40)ESO/L.Calcada; 41) Robert Rhodr-Global Warming Art; 48) LHC-Peter Limon; 53) Webb Space Telescope; NASA; 55) NIAID/RML; 71)USDoI/USGS; 83) BP Image from Public Domain Video; 89-91) NASA/Ares; 93) NASA/Sonoma State/Aurore Simonnet; 94-95)NASA/Chandra; 110) LRO/NASA This booklet was created through an education grant NNH06ZDA001N- EPO from NASA's Science Mission Directorate. Space Math http://spacemath.gsfc.nasa.gov Table of Contents ii Grade Page Acknowledgments i Table of Contents ii Mathematics Topic Matrix v How to use this Book ix Alignment with Standards x Teacher Comments x Counting Atoms in Molecules 3-5 1 Planetary Conjunctions 3-5 2 Parts Per Hundred 3-5 3 Star Cluster Math 3-5 4 Atoms – How sweet they are! 3-5 5 The Hand of Chandra 6-8 6 The Martian Dust Devils 6-8 7 Solar Storms – Fractions and Percentages 6-8 8 Energy at Home 6-8 9 Carbon Dioxide Increases 6-8 10 NASA Sees Carbon Dioxide 6-8 11 Tempel-1 : Close-up of a Comet 6-8 12 Exploring a High-Resolution Satellite Photo 6-8 13 Some Famous Unit Conversion Errors 6-8 14 Identifying Materials by their Reflectivity 6-8 15 Chandra Spies the Longest Sound Wave in the Universe 6-8 16 Details from an Exploding Star 6-8 17 Changing Perspectives on the Sun’s Diameter 6-8 18 Earth’s Changing Rotation Rate and Length of the Day 6-8 19 Planetary Alignments 6-8 20 Chandra Studies an Expanding Supernova Shell 6-8 21 Counting Craters on the Hubble Space Telescope 6-8 22 Satellite Drag and the Hubble Space Telescope 9-11 23 Counting Galaxies with the Hubble Space Telescope 9-11 24 The Eagle Nebula Close-up 9-11 25 Angular Size and Similar Triangles 9-11 26 ISS Orbit Altitude Changes 9-11 27 Solid Rocket Boosters 9-11 28 Evaluating Secondary Physical Constants 9-11 29 Space Mobile Puzzle 9-11 30 Spotting an Approaching Asteroid or Comet 9-11 31 The Most Important Equation in Astronomy 9-11 32 Solar Insolation Changes and the Sunspot Cycle 9-11 33 Mare Nubium and Las Vegas 9-11 34 Ice or Water? 9-11 35 Space Math http://spacemath.gsfc.nasa.gov Table of Contents (contd) iii Grade Page Water on Planetary Surfaces 9-11 36 Modeling the Keeling Curve with Excel 9-11 37 The Deep Impact Comet Encounter 9-11 38 Spitzer Studies the Distant Planet Osiris 9-11 39 How Hot is That Planet 9-11 40 Scientists Track the Rising Tide 9-11 41 Getting an Angle on the Sun and Moon 9-11 42 Seeing Solar Storms in STEREO 9-11 43 How to Build a Planet from the Inside Out 9-11 44 Unit Conversions: Energy, Power and Flux 9-11 45 The Elementary Particle Masses 9-11 46 Energy and Mass – Same things but different. 9-11 47 Exploring the Large Hadron Collider 9-11 48 Exploring the Big Bang with the LHC 9-11 49 The Global Warming Debate and the Arctic Ice Cap 9-11 50 Star Light…Star Bright 9-11 51 Fermi Detects Gamma-rays from the Galaxy Messier-82 9-11 52 Webb Space Telescope: Detecting dwarf planets 9-11 53 Computing the Orbit of a Comet 9-11 54 Estimating Maximum Cell Sizes 12 55 A Simple Model for Atmospheric Carbon Dioxide 12 56 From Dust Grains to Dust Balls 12 57 From Dust Balls to Asteroids 12 58 From Asteroids to Planets 12 59 The Higgs Boson and the Mystery of Mass 12 60 The Energy of Empty Space 12 61 The Volume of a Hypersphere 12 62 The Internal Density and Mass of the Sun 12 63 How Many Stars are in the Sky 12 64 Lunar Crater Frequency Distribution 12 65 The Rotation Velocity of a Galaxy 12 66 How Many Quasars are There? 12 67 Deep Impact Comet Fly-by 12 68 In the News… Kepler Spies Five New Planets 3-5 69 LRO Sees Apollo 11 on the Moon 6-8 70 LRO and the Apollo-11 Landing Site 6-8 71 LRO’s First Image of Mare Nubium 6-8 72 LRO- Searching for Lunar boulders 6-8 73 LRO Explores Lunar Surface Cratering 6-8 74 IBEX Creates an Unusual Image of the Sky 6-8 75 The Mysterious Hexagon on Saturn 6-8 76 Scientific Data – The gift that keeps on giving! 6-8 77 Space Math http://spacemath.gsfc.nasa.gov Table of Contents (contd) iv Grade Page Methane Lakes on Titan 6-8 78 SDO: Measuring the Speed of an Eruptive Prominence 6-8 79 SDO Reveals Details on the Surface of the Sun 6-8 80 The Terra Satellite Spies the Gulf Oil Catastrophe of 2010 6-8 81 Recent Events: A Perspective on Carbon Dioxide 6-8 82 The Rate of Oil Leakage in the Gulf Oil Spill of 2010 6-8 83 LRO-The Apollo-11 Landing Area at High Resolution 9-11 84 Spitzer Telescope Discovers New Ring of Saturn 9-11 85 IBEX Uses Fast-moving Particles to Map the Sky 9-11 86 Chandra Sees the Most Distant Cluster in the Universe 9-11 87 Solid Rocket Boosters and Thrust 9-11 88 Exploring the Ares-1X Launch: Downrange Distance 9-11 89 Exploring the Ares-1X Launch: Parametrics 9-11 90 Exploring the Ares-1X Launch: Energy Changes 9-11 91 Exploring the Ares-1X Launch: The Hard Climb to Orbit 9-11 92 Fermi Observatory Measures the Lumps in Space 9-11 93 Calculating the Thickness of a Neutron Star Atmosphere 9-11 94 Chandra Sees the Atmosphere of a Neutron Star 9-11 95 Water on the Moon! 9-11 96 LCROSS Sees Water on the Moon 9-11 97 Seeing Solar Storms in STEREO 9-11 98 STEREO Watches the Sun Kick Up a Storm 9-11 99 Calculating Black Hole Power 9-11 100 WISE, Hubble, Power Functions: A question of magnitude 9-11 101 Hubble: Seeing a dwarf planet clearly 9-11 102 SDO: Working with Giga, Tera and Peta 9-11 103 Asteroids and Ice 9-11 104 Hubble: The Changing Atmosphere of Pluto 9-11 105 WISE; F(x)G(x) – A tale of two functions 12 106 Exploring Power-law Functions using WISE Data 12 107 The Ares-V Cargo Rocket 12 108 Hubble Spies Colliding Asteroids 12 109 LRO Spots A Rolling Boulder on the Moon 12 110 Useful Links 111 Author Comments 112 Space Math http://spacemath.gsfc.nasa.gov Mathematics Topic Matrix v Topic Problem Numbers 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Inquiry Technology, X X X X X X X X X rulers Numbers, patterns, X X X X X X X X X X X X X percentages Averages X X Time, distance,speed X X X X X Areas and X X volumes Scale drawings X X X X X X X X X X Geometry X X X X X Scientific Notation X X X Unit X X Conversions Fractions X Graph or Table Analysis X X X X Solving for X X X Evaluating Fns X Modeling X X X X Probability X X Rates/Slopes X Logarithmic X Fns Polynomials Power Fns Conics Piecewise Fns Trigonometry X Integration Differentiation Limits Space Math http://spacemath.gsfc.nasa.gov Mathematics Topic Matrix (cont'd) vi Topic Problem Numbers 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 Inquiry Technology, rulers X X Numbers, patterns, percentages Averages Time, distance,speed Areas and volumes X X X X X X X X X Scale X X drawings Geometry X X X X X X X X X X X X X Scientific X X X X X X X X X X X X X Notation Unit Conversions X X X X X X X X X X X Fractions Graph or Table X X X X Analysis Solving for X X X X X X X X X X X X X Evaluating Fns X X X X X X X X X X X X X Modeling X X X X X X X X X X Probability Rates/Slopes X X Logarithmic Fns Polynomials X X X X Power Fns X Exponential Fns Conics X Piecewise Fns Trigonometry X X Integration X X X Differentiation Limits Space Math http://spacemath.gsfc.nasa.gov Mathematics Topic Matrix (cont'd) vii Topic Problem Numbers 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 Inquiry Technology, X X X X X X X X X X X X X rulers Numbers, patterns, X X percentages Averages Time, distance,speed X X X X X X Areas and X X X X X X X X X volumes Scale drawings X X X X X X X X X X X X X X X Geometry X X X X X X X X X X X X Scientific Notation X X X X X X X X X Unit X X X X X X X X X X X X X X X X Conversions Fractions Graph or Table Analysis X Solving for X X X X X X X X X X X X Evaluating Fns X X X X X X X X X X X Modeling X X X X X X X X X X X X X X X X Probability Rates/Slopes Logarithmic X Fns Polynomials X Power Fns X Exponential Fns Conics Piecewise Fns Trigonometry X Integration X X Differentiation X X X Limits X Space Math http://spacemath.gsfc.nasa.gov Mathematics Topic Matrix (cont'd) viii Topic Problem Numbers 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 4 5 6 7 8
Recommended publications
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Tests of Stellar Model Atmospheres by Optical Interferometry IV
    A&A 460, 855–864 (2006) Astronomy DOI: 10.1051/0004-6361:20066032 & c ESO 2006 Astrophysics Tests of stellar model atmospheres by optical interferometry IV. VINCI interferometry and UVES spectroscopy of Menkar M. Wittkowski1, J. P. Aufdenberg2, T. Driebe3, V. Roccatagliata4 , T. Szeifert5,andB.Wolff1 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA 3 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 4 Max-Planck-Institut für Astronomie, Königsstuhl 17, 69117 Heidelberg, Germany 5 European Southern Observatory, Casilla 19001, Santiago 19, Chile Received 13 July 2006 / Accepted 29 August 2006 ABSTRACT Aims. We present coordinated near-infrared K-band interferometric and optical spectroscopic observations of the M 1.5 giant α Cet (Menkar) obtained with the instruments VINCI and UVES at the Paranal Observatory. Spherically symmetric PHOENIX stellar model atmospheres are constrained by comparison to our interferometric and spectroscopic data, and high-precision fundamental parameters of Menkar are obtained. Methods. Our high-precision VLTI/VINCI observations in the first and second lobes of the visibility function directly probe the model-predicted strength of the limb darkening effect in the K-band and the stellar angular diameter. The high spectral resolution of UVES of R = 80 000–110 000 allows us to confront in detail observed and model-predicted profiles of atomic lines and molecular bands. Results. We show that our derived PHOENIX model atmosphere for Menkar is consistent with both the measured strength of the limb- darkening in the near-infrared K-band and the profiles of spectral bands around selected atomic lines and TiO bandheads from 370 nm to 1000 nm.
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]
  • NGC 6872 in the Constellation of Pavo 23 September 2014
    Image: NGC 6872 in the constellation of Pavo 23 September 2014 of free hydrogen, which is the basis material for new stars, meaning that if it weren't for its interactions with IC 4970, NGC 6872 might not have been able to produce new bursts of star formation. Provided by NASA Credit: ESA/Hubble & NASA / Acknowledgement: Judy Schmidt This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872, called IC 4970. They both lie roughly 300 million light-years away from Earth. From tip to tip, NGC 6872 measures over 500,000 light-years across, making it the second largest spiral galaxy discovered to date. In terms of size it is beaten only by NGC 262, a galaxy that measures a mind-boggling 1.3 million light-years in diameter! To put that into perspective, our own galaxy, the Milky Way, measures between 100,000 and 120,000 light-years across, making NGC 6872 about five times its size. The upper left spiral arm of NGC 6872 is visibly distorted and is populated by star-forming regions, which appear blue on this image. This may have been be caused by IC 4970 recently passing through this arm—although here, recent means 130 million years ago! Astronomers have noted that NGC 6872 seems to be relatively sparse in terms 1 / 2 APA citation: Image: NGC 6872 in the constellation of Pavo (2014, September 23) retrieved 23 September 2021 from https://phys.org/news/2014-09-image-ngc-constellation-pavo.html This document is subject to copyright.
    [Show full text]
  • The SDSS Standard BD +17 4708
    A&A 459, 613–625 (2006) Astronomy DOI: 10.1051/0004-6361:20065647 & c ESO 2006 Astrophysics Fundamental parameters and abundances of metal-poor stars: the SDSS standard BD +17 4708 I. Ramírez, C. Allende Prieto, S. Redfield, and D. L. Lambert McDonald Observatory and Department of Astronomy, University of Texas at Austin, RLM 15.306 Austin, TX, 78712-1083, USA e-mail: [ivan;callende;sredfield;dll]@astro.as.utexas.edu Received 22 May 2006 / Accepted 21 August 2006 ABSTRACT The atmospheric parameters and iron abundance of the Sloan Digital Sky Survey (SDSS) spectrophotometric standard star BD +17 4708 are critically examined using up-to-date Kurucz model atmospheres, LTE line formation calculations, and reli- able atomic data. We find Teff = 6141 ± 50 K, log g = 3.87 ± 0.08, and [Fe/H] = −1.74 ± 0.09. The line-of-sight interstellar reddening, bolometric flux, limb-darkened angular diameter, stellar mass, and the abundances of Mg, Si, and Ca are also obtained: −9 −2 −1 E(B−V) = 0.010 ± 0.003, fbol = (4.89±0.10) × 10 erg cm s , θ = 0.1016 ± 0.0023 mas, M = 0.91 ± 0.06 M,[Mg/Fe] = 0.40 ± 0.10, [Si/Fe] = 0.35 ± 0.11, [Ca/Fe] = 0.36 ± 0.11. This star is a unique example of a moderately metal-poor star for which the effective temperature (Teff) can be accurately constrained from the observed spectral energy distribution (corrected for reddening). Such analysis leads to a value that is higher than most spectroscopic results previously reported in the literature (∼5950 K).
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Studies on the Formation, Evolution, and Destruction of Massive Star Clusters Cover: Photograph Taken at White Sands, New Mexico
    Studies on the Formation, Evolution, and Destruction of Massive Star Clusters Cover: Photograph taken at White Sands, New Mexico. Courtesy of Matt Robertson. Printed by MultiCopy, Utrecht ISBN 90–393–0502–1 Studies on the Formation, Evolution, and Destruction of Massive Star Clusters Studie van de Vorming, Evolutie, en Destructie van Massieve Sterclusters (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magnificus, Prof. Dr. W.H. Gispen, ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op donderdag 21 april 2005 des middags te 12.45 uur door Nathan John Bastian geboren op 22 March 1978, te Milwaukee Promoter: prof. dr Henny J.G.L.M. Lamers Sterrenkundig Instituut, Universiteit Utrecht Co-Promoter: dr Markus Kissler-Patig European Southern Observatory This research has been supported in part by the Nether- lands Organization for Scientific Research (NWO). Additional support has come from the European South- ern Observatory (ESO). Contents 1 Introduction 1 1.1 Introduction to Extragalactic Star Clusters . 1 1.1.1 The Milky Way Bias . 1 1.1.2 The copious environments of young star clusters . 2 1.2 This Thesis . 5 1.2.1 Cluster Populations . 5 1.2.2 Dynamical Studies of the Massive Star Cluster W3 in the Merger Remnant NGC 7252 . 10 1.2.3 Cluster Complexes . 10 1.2.4 Future Plans . 13 Part A: The Cluster Population of M 51 15 2 Clusters in the Inner Spiral Arms of M 51: The cluster IMF and the formation history 17 2.1 Introduction .
    [Show full text]
  • Sirius Astronomer
    FEBRUARY 2013 Free to members, subscriptions $12 for 12 Volume 40, Number 2 Jupiter is featured often in this newsletter because it is one of the most appealing objects in the night sky even for very small telescopes. The king of Solar System planets is prominent in the night sky throughout the month, located near Aldebaran in the constellation Taurus. Pat Knoll took this image on January 18th from his observing site at Kearney Mesa, California, using a Meade LX200 Classic at f/40 with a 4X Powermate. The image was compiled from a two-minute run with an Imaging Source DFK 21AU618.AS camera . OCA CLUB MEETING STAR PARTIES COMING UP The free and open club meeting The Black Star Canyon site will open The next session of the Beginners will be held February 8 at 7:30 PM on February 2. The Anza site will be Class will be held at the Heritage in the Irvine Lecture Hall of the open on February 9. Members are en- Museum of Orange County at Hashinger Science Center at couraged to check the website calen- 3101 West Harvard Street in San- Chapman University in Orange. dar for the latest updates on star par- ta Ana on February 1st. The fol- This month, UCSD’s Dr. Burgasser ties and other events. lowing class will be held March will present “The Coldest Stars: Y- 1st Dwarfs and the Fuzzy Border be- Please check the website calendar for tween Stars and Planets.” the outreach events this month! Volun- GOTO SIG: TBA teers are always welcome! Astro-Imagers SIG: Feb.
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • The Lunar Crust: Global Structure and Signature of Major Basins
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. E7, PAGES 16,841-16,843, JULY 25, 1996 The lunar crust: Global structure and signature of major basins GregoryA. Neumannand Maria T. Zuber1 Departmentof Earth and PlanetarySciences, Johns Hopkins University, Baltimore, Maryland David E. Smith and Frank G. Lemoine Laboratoryfor TerrestrialPhysics, NASA/Goddard Space Flight Center,Greenbelt, Maryland Abstract. New lunar gravityand topography data from the ClementineMission provide a global Bougueranomaly map correctedfor the gravitationalattraction of mare fill in mascon basins.Most of the gravity signalremaining after correctionsfor the attractionof topographyand mare fill can be attributedto variationsin depthto the lunar Moho and thereforecrustal thickness. The large range of global crustalthickness (-20-120 km) is indicativeof major spatialvariations in meltingof the lunar exteriorand/or significant impact-related redistribution. The 61-km averagecrustal thickness, constrained by a depth-to-Mohomeasured during the Apollo 12 and 14 missions,is preferentiallydistributed toward the farside,accounting for much of the offset in center-of-figurefrom the center-of-mass.While the averagefarside thickness is 12 km greaterthan the nearside,the distributionis nonuniform,with dramaticthinning beneath the farside, South Pole-Aitkenbasin. With the globalcrustal thickness map as a constraint,regional inversions of gravityand topographyresolve the crustalstructure of majormascon basins to half wavelengthsof 150 km. In order to yield crustalthickness maps with the maximum horizontalresolution permittedby the data, the downwardcontinuation of the Bouguergravity is stabilizedby a three- dimensional,minimum-slope and curvature algorithm. Both mare and non-marebasins are characterizedby a centralupwarped moho that is surroundedby ringsof thickenedcrust lying mainly within the basinrims. The inferredrelief at this densityinterface suggests a deep structuralcomponent to the surficialfeatures of multiring lunar impactbasins.
    [Show full text]
  • The European Space Agency
    Teachers Notes Booklet 6: Galaxies and the Expanding Universe Page 1 of 18 The European Space Agency The European Space Agency (ESA) was formed on 31 May 1975. It currently has 17 Member States: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland & United Kingdom. The ESA Science Programme currently contains the following active missions: Venus Express – an exploration of our Cluster – a four spacecraft mission to sister planet. investigate interactions between the Rosetta – first mission to fly alongside Sun and the Earth's magnetosphere and land on a comet XMM-Newton – an X-ray telescope Double Star – joint mission with the helping to solve cosmic mysteries Chinese to study the effect of the Sun Cassini-Huygens – a joint ESA/NASA on the Earth’s environment mission to investigate Saturn and its SMART-1 – Europe’s first mission to moon Titan, with ESA's Huygens probe the Moon, which will test solar-electric SOHO - new views of the Sun's propulsion in flight, a key technology for atmosphere and interior future deep-space missions Hubble Space Telescope – world's Mars Express - Europe's first mission most important and successful orbital to Mars consisting of an orbital platform observatory searching for water and life on the Ulysses – the first spacecraft to planet investigate the polar regions around the INTEGRAL – first space observatory to Sun simultaneously observe celestial objects in gamma rays, X-rays and visible light Details on all these missions and others can be found at - http://sci.esa.int. Prepared by Anne Brumfitt Content Advisor Chris Lawton Science Editor, Content Advisor, Web Integration & Booklet Design Karen O'Flaherty Science Editor & Content Advisor Jo Turner Content Writer © 2005 European Space Agency Teachers Notes Booklet 6: Galaxies and the Expanding Universe Page 2 of 18 Booklet 6 – Galaxies and the Expanding Universe Contents 6.1 Structure of the Milky Way .............................................
    [Show full text]
  • 304 Index Index Index
    _full_alt_author_running_head (change var. to _alt_author_rh): 0 _full_alt_articletitle_running_head (change var. to _alt_arttitle_rh): 0 _full_article_language: en 304 Index Index Index Adamson, Robert (1821–1848) 158 Astronomische Gesellschaft 216 Akkasbashi, Reza (1843–1889) viiii, ix, 73, Astrolog 72 75-78, 277 Astronomical unit, the 192-94 Airy, George Biddell (1801–1892) 137, 163, 174 Astrophysics xiv, 7, 41, 57, 118, 119, 139, 144, Albedo 129, 132, 134 199, 216, 219 Aldrin, Edwin Buzz (1930) xii, 244, 245, 248, Atlas Photographique de la Lune x, 15, 126, 251, 261 127, 279 Almagestum Novum viii, 44-46, 274 Autotypes 186 Alpha Particle Spectrometer 263 Alpine mountains of Monte Rosa and BAAS “(British Association for the Advance- the Zugspitze, the 163 ment of Science)” 26, 27, 125, 128, 137, Al-Biruni (973–1048) 61 152, 158, 174, 277 Al-Fath Muhammad Sultan, Abu (n.d.) 64 BAAS Lunar Committee 125, 172 Al-Sufi, Abd al-Rahman (903–986) 61, 62 Bahram Mirza (1806–1882) 72 Al-Tusi, Nasir al-Din (1202–1274) 61 Baillaud, Édouard Benjamin (1848–1934) 119 Amateur astronomer xv, 26, 50, 51, 56, 60, Ball, Sir Robert (1840–1913) 147 145, 151 Barlow Lens 195, 203 Amir Kabir (1807–1852) 71 Barnard, Edward Emerson (1857–1923) 136 Amir Nezam Garusi (1820–1900) 87 Barnard Davis, Joseph (1801–1881) 180 Analysis of the Moon’s environment 239 Beamish, Richard (1789–1873) 178-81 Andromeda nebula xii, 208, 220-22 Becker, Ernst (1843–1912) 81 Antoniadi, Eugène M. (1870–1944) 269 Beer, Wilhelm Wolff (1797–1850) ix, 54, 56, Apollo Missions NASA 32, 231, 237, 239, 240, 60, 123, 124, 126, 130, 139, 142, 144, 157, 258, 261, 272 190 Apollo 8 xii, 32, 239-41 Bell Laboratories 270 Apollo 11 xii, 59, 237, 240, 244-46, 248-52, Beg, Ulugh (1394–1449) 63, 64 261, 280 Bergedorf 207 Apollo 13 254 Bergedorfer Spektraldurchmusterung 216 Apollo 14 240, 253-55 Biancani, Giuseppe (n.d.) 40, 274 Apollo 15 255 Biot, Jean Baptiste (1774–1862) 1,8, 9, 121 Apollo 16 240, 255-57 Birt, William R.
    [Show full text]