Rr Lyrae Calibration Using Sdss, Single-Epoch Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Rr Lyrae Calibration Using Sdss, Single-Epoch Spectroscopy University of Kentucky UKnowledge Theses and Dissertations--Physics and Astronomy Physics and Astronomy 2018 RR LYRAE CALIBRATION USING SDSS, SINGLE-EPOCH SPECTROSCOPY Stacy Long University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-0726-424X Digital Object Identifier: https://doi.org/10.13023/etd.2018.334 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Long, Stacy, "RR LYRAE CALIBRATION USING SDSS, SINGLE-EPOCH SPECTROSCOPY" (2018). Theses and Dissertations--Physics and Astronomy. 56. https://uknowledge.uky.edu/physastron_etds/56 This Doctoral Dissertation is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Physics and Astronomy by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. Stacy Long, Student Dr. Ron Wilhelm, Major Professor Dr. Chris Crawford, Director of Graduate Studies RR LYRAE CALIBRATION USING SDSS, SINGLE-EPOCH SPECTROSCOPY DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Stacy Long Lexington, Kentucky Director: Dr. Ron Wilhelm, Professor of Physics Lexington, Kentucky 2018 c Copyright Stacy Long 2018 ABSTRACT OF DISSERTATION RR LYRAE CALIBRATION USING SDSS, SINGLE-EPOCH SPECTROSCOPY I use single-epoch, SDSS spectroscopy of RR Lyraes identified in the Catalina survey to separate the spectra into same-temperature groups. Then I draw temperature- phase diagrams of the groups. I find shocked stars, improperly phased stars, low amplitude stars, and a few that are more likely eclipsing binaries. The RR Lyraes are then given precise metallicities by measurements of the CaII K and H-β, H-γ, and H-δ lines. This leads to better distance measurements, which allow me to confirm a distinction between the inner and outer galactic halo. KEYWORDS: stars: variables: RR Lyrae, surveys: Sloan, surveys: Catalina, metal- licity calibration, galactic halo Author’s signature: Stacy Long Date: August 2, 2018 RR LYRAE CALIBRATION USING SDSS, SINGLE-EPOCH SPECTROSCOPY By Stacy Long Director of Dissertation: Ron Wilhelm Director of Graduate Studies: Chris Crawford Date: August 2, 2018 To my wife, Jessica, whose attraction to me was stronger than predicted by Newton’s law of universal gravitation in the relativity class we once took together, and to our son, Orion, whose birth delayed the completion of this dissertation. ACKNOWLEDGMENTS I am grateful to my advisor, Professor Ron Wilhelm, for his help in organizing and presenting my work, providing the synthetic spectra, and measuring the spectral lines. I am thankful for useful comments by the rest of my committee. Renbin Yan provided information about how SDSS spectra were combined. Tom Troland suggested the normalization technique that I eventually settled on. Carolyn Brock’s comments made this dissertation more readable. I am grateful for introduction section revisions suggested by Jessica Short-Long. This research made use of unpublished McDonald Observatory spectra provided by Eckhart Spalding. He also provided a template for the SQL code to select the SDSS spectra. I thank Nathan De Lee for checking the ephemerides and providing assistance with spline algorithms. I thank Tim Beers and Vinicius Placco for running nSSPP. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. The original description of the VizieR service was published in A&AS 143, 23. The VizieR web site is http://vizier.cfa.harvard.edu/. This research has made use of NASA’s Astrophysics Data System Bibliographic Services. The ADS web site is http://adsabs.harvard.edu. The CSS survey is funded by the National Aeronautics and Space Administration under Grant No. NNG05GF22G issued through the Science Mission Directorate Near-Earth Objects Observations Program. The CRTS survey is supported by the U.S. National Science Foundation under grants AST-0909182 and AST-1313422. The CSS web site is http://nesssi.cacr.caltech.edu/. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department iii of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Partici- pating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mel- lon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins Univer- sity, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. iv TABLE OF CONTENTS Acknowledgments.................................. iii ListofTables.................................... vi ListofFigures ................................... vii Chapter1 Introduction.............................. 1 1.1 ABriefHistoryofVariableStars . .. .. 1 1.2 OverviewofRRLyraeProperties . 1 1.3 Halodisputes ............................... 6 1.4 TheRestofthisWork .......................... 7 Chapter2 DataCollection ............................ 9 2.1 SDSS.................................... 9 2.2 Catalina.................................. 9 2.3 McDonald................................. 10 2.4 Syntheticmodelspectra ......................... 10 Chapter3 Methods................................ 11 3.1 Spectrumnormalization ......................... 11 3.2 Thetemperaturefindingalgorithm . 12 3.3 Grouping ................................. 13 3.4 Testing the code on noise-injected synthetic spectra . ... 13 Chapter 4 Temperature-phase diagrams, shocks, and mislabeled RRLyraes 15 4.1 Validation of the temperature-phase diagram . 15 4.2 Application to the Stripe 82 and Catalina Stars . 16 4.3 TheRRcs ................................. 22 Chapter 5 Metallicity Calibration . 35 Chapter 6 Galactic Geometry Implications . 40 6.1 Finding Stellar position . 40 6.2 Stellar Velocities . 43 Chapter7 Conclusion............................... 53 Bibliography .................................... 54 Vita ......................................... 58 v LIST OF TABLES 4.1 ShockedStars................................. 19 4.2 LowamplitudecoolRRabs.......................... 24 4.3 RRc-EWcrosslistings............................. 26 4.4 CoolRRcs................................... 28 6.1 Metallicity dependent rotation . 47 vi LIST OF FIGURES 1.1 Apparent magnitude v period in Reticulum . 2 1.2 HRdiagram.................................. 3 1.3 Period-amplitudediagramofM15. 4 1.4 ExampleRRLyraelightcurves ....................... 5 1.5 Halo metallicity histograms . 7 3.1 Systematiccontinuumerror . .. .. 11 3.2 Cubicspline.................................. 12 3.3 Noisymodelparameterreproduction . 14 4.1 Temperature-phase diagram for For and McDonald RRabs . ... 15 4.2 Temperature-phase diagrams four RRabs from For . ... 16 4.3 Temperature-phase diagrams for four RRabs from Chadid . .... 17 4.4 Temperature-phase diagramforStripe82RRabs . .. 18 4.5 Temperature-phase diagramfor Catalina RRabs . .. 19 4.6 Phase discrepancies Stripe 82 v Catalina . 22 4.7 Balmerlinesofashockedstar . .. .. 23 4.8 FWHM/EWcurveofashockedstar . 23 4.9 FWHM/EW fits for H-δ and H-γ ...................... 25 4.10 FWHM/EW fits for H-β andCaIIK ...................
Recommended publications
  • Tests of Stellar Model Atmospheres by Optical Interferometry IV
    A&A 460, 855–864 (2006) Astronomy DOI: 10.1051/0004-6361:20066032 & c ESO 2006 Astrophysics Tests of stellar model atmospheres by optical interferometry IV. VINCI interferometry and UVES spectroscopy of Menkar M. Wittkowski1, J. P. Aufdenberg2, T. Driebe3, V. Roccatagliata4 , T. Szeifert5,andB.Wolff1 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA 3 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 4 Max-Planck-Institut für Astronomie, Königsstuhl 17, 69117 Heidelberg, Germany 5 European Southern Observatory, Casilla 19001, Santiago 19, Chile Received 13 July 2006 / Accepted 29 August 2006 ABSTRACT Aims. We present coordinated near-infrared K-band interferometric and optical spectroscopic observations of the M 1.5 giant α Cet (Menkar) obtained with the instruments VINCI and UVES at the Paranal Observatory. Spherically symmetric PHOENIX stellar model atmospheres are constrained by comparison to our interferometric and spectroscopic data, and high-precision fundamental parameters of Menkar are obtained. Methods. Our high-precision VLTI/VINCI observations in the first and second lobes of the visibility function directly probe the model-predicted strength of the limb darkening effect in the K-band and the stellar angular diameter. The high spectral resolution of UVES of R = 80 000–110 000 allows us to confront in detail observed and model-predicted profiles of atomic lines and molecular bands. Results. We show that our derived PHOENIX model atmosphere for Menkar is consistent with both the measured strength of the limb- darkening in the near-infrared K-band and the profiles of spectral bands around selected atomic lines and TiO bandheads from 370 nm to 1000 nm.
    [Show full text]
  • The SDSS Standard BD +17 4708
    A&A 459, 613–625 (2006) Astronomy DOI: 10.1051/0004-6361:20065647 & c ESO 2006 Astrophysics Fundamental parameters and abundances of metal-poor stars: the SDSS standard BD +17 4708 I. Ramírez, C. Allende Prieto, S. Redfield, and D. L. Lambert McDonald Observatory and Department of Astronomy, University of Texas at Austin, RLM 15.306 Austin, TX, 78712-1083, USA e-mail: [ivan;callende;sredfield;dll]@astro.as.utexas.edu Received 22 May 2006 / Accepted 21 August 2006 ABSTRACT The atmospheric parameters and iron abundance of the Sloan Digital Sky Survey (SDSS) spectrophotometric standard star BD +17 4708 are critically examined using up-to-date Kurucz model atmospheres, LTE line formation calculations, and reli- able atomic data. We find Teff = 6141 ± 50 K, log g = 3.87 ± 0.08, and [Fe/H] = −1.74 ± 0.09. The line-of-sight interstellar reddening, bolometric flux, limb-darkened angular diameter, stellar mass, and the abundances of Mg, Si, and Ca are also obtained: −9 −2 −1 E(B−V) = 0.010 ± 0.003, fbol = (4.89±0.10) × 10 erg cm s , θ = 0.1016 ± 0.0023 mas, M = 0.91 ± 0.06 M,[Mg/Fe] = 0.40 ± 0.10, [Si/Fe] = 0.35 ± 0.11, [Ca/Fe] = 0.36 ± 0.11. This star is a unique example of a moderately metal-poor star for which the effective temperature (Teff) can be accurately constrained from the observed spectral energy distribution (corrected for reddening). Such analysis leads to a value that is higher than most spectroscopic results previously reported in the literature (∼5950 K).
    [Show full text]
  • Accurate and Homogeneous Abundance Patterns in Solar-Type Stars of the Solar Neighbourhood: a Chemo-Chronological Analysis⋆
    A&A 542, A84 (2012) Astronomy DOI: 10.1051/0004-6361/201118751 & c ESO 2012 Astrophysics Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: a chemo-chronological analysis R. da Silva1,G.F.PortodeMello2,A.C.Milone1, L. da Silva3, L. S. Ribeiro1, and H. J. Rocha-Pinto2 1 INPE, Divisão de Astrofísica, Av. dos Astronautas, 1758 São José dos Campos, 12201-970, Brazil e-mail: [email protected] 2 UFRJ, Observatório do Valongo, Ladeira do Pedro Antônio 43, 20080-090 Rio de Janeiro, Brazil 3 Observatório Nacional, Rua Gal. José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro, Brazil Received 28 December 2011 / Accepted 22 April 2012 ABSTRACT Aims. We report the derivation of abundances of C, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Sm in a sample of 25 solar-type stars of the solar neighbourhood, correlating the abundances with the stellar ages, kinematics, and orbital parameters. Methods. The spectroscopic analysis, based on data of high resolution and high signal-to-noise ratio, was differential to the Sun and applied to atomic line equivalent widths supplemented by the spectral synthesis of C and C2 features. We also performed a statistical study by using the method of tree clustering analysis, searching for groups of stars sharing similar elemental abundance patterns. We derived the stellar parameters from various criteria, with average errors of 30 K, 0.13 dex, and 0.05 dex, respectively, for Teff , log g,and[Fe/H].
    [Show full text]
  • MINIMO: a Search for Mini Proper Motion Stars in the Southern Sky
    Georgia State University ScholarWorks @ Georgia State University Physics and Astronomy Theses Department of Physics and Astronomy 5-3-2007 MINIMO: A Search for Mini Proper Motion Stars in the Southern Sky Charlie Thomas Finch Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_theses Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation Finch, Charlie Thomas, "MINIMO: A Search for Mini Proper Motion Stars in the Southern Sky." Thesis, Georgia State University, 2007. https://scholarworks.gsu.edu/phy_astr_theses/2 This Thesis is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. MINIMO: A SEARCH FOR MINI PROPER MOTION STARS IN THE SOUTHERN SKY by Charlie T. Finch Under the Direction of Todd J. Henry Abstract I report 1684 new proper motion systems in the southern sky (declinations ¡90± to ¡47±) with 000:50 yr¡1 > ¹ ¸ 000:18 yr¡1. This e®ort is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion search to lower proper motions than reported in Hambly et al. (2004); Henry et al. (2004); Subasavage et al. (2005a,b). Distance estimates are presented for the new systems, assuming that all stars are on the main sequence. I ¯nd that 34 systems are within 25 pc, including three systems | SCR 0838-5855, SCR 1826-6542, and SCR 0630-7643AB | anticipated to be within 10 pc.
    [Show full text]
  • The Atmospheric Chemistry of Magnetic Bp Stars
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-12-2013 12:00 AM The atmospheric chemistry of magnetic Bp stars Jeffrey D. Bailey The University of Western Ontario Supervisor Dr. John D. Landstreet The University of Western Ontario Graduate Program in Astronomy A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Jeffrey D. Bailey 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Bailey, Jeffrey D., "The atmospheric chemistry of magnetic Bp stars" (2013). Electronic Thesis and Dissertation Repository. 1420. https://ir.lib.uwo.ca/etd/1420 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. THE ATMOSPHERIC CHEMISTRY OF MAGNETIC BP STARS (Thesis format: Integrated Article) by Jeffrey Bailey Graduate Program in Astronomy A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada c Jeffrey Daniel Bailey 2013 Abstract The chemically peculiar magnetic A- and B-type (Ap/Bp) stars are characterised by large overabundances, of the order of 102 and 104 times the Sun, of Fe-peak and rare earth elements, respectively. Further, they possess strong, ordered magnetic fields (of order 1 kG) that are roughly dipolar in nature.
    [Show full text]
  • Arxiv:Astro-Ph/0603770V1 28 Mar 2006
    Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 parsecs: The Southern Sample R.O. Gray Department of Physics and Astronomy, Appalachian State University, Boone, NC 28608 [email protected] C.J. Corbally Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 [email protected] R.F. Garrison David Dunlap Observatory, P.O. Box 360, Station A, Richmond Hill, ON L4C 4Y6, Canada [email protected] M.T. McFadden, E.J. Bubar1 and C.E. McGahee Department of Physics and Astronomy, Appalachian State University, Boone, NC 28608 A.A. O’Donoghue and E.R. Knox Dept of Physics, St. Lawrence University, Canton, NY 13617 ABSTRACT We are obtaining spectra, spectral types and basic physical parameters for the nearly 3600 dwarf and giant stars earlier than M0 in the Hipparcos catalog within 40pc of the Sun. Here we report on results for 1676 stars in the southern hemisphere observed at Cerro Tololo Interamer- arXiv:astro-ph/0603770v1 28 Mar 2006 ican Observatory and Steward Observatory. These results include new, precise, homogeneous spectral types, basic physical parameters (including the effective temperature, surface gravity, and metallicity, [M/H]) and measures of the chromospheric activity of our program stars. We include notes on astrophysically interesting stars in this sample, the metallicity distribution of the solar neighborhood and a table of solar analogues. We also demonstrate that the bimodal ′ nature of the distribution of the chromospheric activity parameter log RHK depends strongly on the metallicity, and we explore the nature of the “low-metallicity” chromospherically active K-type dwarfs.
    [Show full text]
  • A Meta-Analysis of Coordinate Systems and Bibliography of Their Use on Pluto from Charon’S Discovery to the Present Day ⇑ Amanda Zangari
    Icarus 246 (2015) 93–145 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus A meta-analysis of coordinate systems and bibliography of their use on Pluto from Charon’s discovery to the present day ⇑ Amanda Zangari Southwest Research Institute, 1050 Walnut St, Suite 300, Boulder, CO 80302, United States Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States article info abstract Article history: This paper aims to alleviate the confusion between many different ways of defining latitude and Received 21 January 2014 longitude on Pluto, as well as to help prevent future Pluto papers from drawing false conclusion due Revised 15 October 2014 to problems with coordinates. In its 2009 meeting report, the International Astronomical Union Working Accepted 21 October 2014 Group on Cartographic Coordinates and Rotational Elements redefined Pluto coordinates to follow a Available online 4 November 2014 right-handed system (Archinal, B.A., et al. [2011a]. Celest. Mech. Dynam. Astron. 109, 101–135; Archinal, B.A., et al. [2011b]. Celest. Mech. Dynam. Astron. 110, 401–403). However, before this system was Keywords: redefined, both the previous system (defining the north pole to be north of the invariable plane), and Pluto the ‘‘new’’ system (the right-hand rule system) were commonly used. A summary of major papers on Charon Pluto, surface Pluto and the system each paper used is given. Several inconsistencies have been found in the literature. The vast majority of papers and most maps use the right-hand rule, which is now the IAU system and the system recommended here for future papers.
    [Show full text]
  • Congressional Record United States Th of America PROCEEDINGS and DEBATES of the 116 CONGRESS, SECOND SESSION
    E PL UR UM IB N U U S Congressional Record United States th of America PROCEEDINGS AND DEBATES OF THE 116 CONGRESS, SECOND SESSION Vol. 166 WASHINGTON, THURSDAY, FEBRUARY 27, 2020 No. 39 House of Representatives The House met at 10 a.m. and was into law, calling it ‘‘a new kind of na- RECOGNIZING THE 176TH ANNIVER- called to order by the Speaker pro tem- tional park.’’ Today, nearly 40 years SARY OF DOMINICAN REPUBLIC pore (Mr. CUELLAR). later, our Nation touts 55 National Her- INDEPENDENCE f itage Areas across the country. The SPEAKER pro tempore. The I am proud of the 12 National Herit- Chair recognizes the gentleman from DESIGNATION OF SPEAKER PRO age Areas in Pennsylvania, more than New York (Mr. ESPAILLAT) for 5 min- TEMPORE any other State in the Nation. Na- utes. The SPEAKER pro tempore laid be- tional Heritage Areas in Pennsylvania Mr. ESPAILLAT. Mr. Speaker, today fore the House the following commu- span 57 of our 67 counties, and these is February 27, and we celebrate the nication from the Speaker: areas are truly an economic develop- 176th anniversary of independence of ment powerhouse. the Dominican Republic, which gained WASHINGTON, DC, In 2014, tourists spent an estimated $2 February 27, 2020. billion worth of goods and services dur- its independence in 1844 from the Re- I hereby appoint the Honorable HENRY ing their travels to Pennsylvania’s Na- public of Haiti. CUELLAR to act as Speaker pro tempore on Led by Juan Pablo Duarte, Sanchez, tional Heritage Areas. That is $2 bil- this day.
    [Show full text]
  • Space Math VI Math Space I
    National Aeronautics and Space Administration Space Math VI Math Space i This collection of activities is based on a weekly series of space science problems distributed to thousands of teachers during the 2009- 2010 school year. They were intended for students looking for additional challenges in the math and physical science curriculum in grades 5 through 12. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. The problems were designed to be ‘one-pagers’ with a Teacher’s Guide and Answer Key as a second page. This compact form was deemed very popular by participating teachers. For more weekly classroom activities about astronomy and space visit the NASA website, http://spacemath.gsfc.nasa.gov Add your email address to our mailing list by contacting Dr. Sten Odenwald at [email protected] Front and back cover credits: Lagrange points (WMAP/NASA); Saturn hexagon clouds (Cassini/NASA); Gravity waves from binary black hole system (LISA); Eta Carina Nebula (Hubble/NASA) Interior Illustrations:6) Chandra/NASA; 7)JPL/NASA; 8)SOHO/ESA/NASA; 9)Author; Fermilab; 11)Aqua/NASA; 12)Deep Impact/NASA; 13)GeoEye; 16)Chandra/NASA; 17)HST/NASA; 18)SOHO/ESA/NASA; 21)Chandra/NASA; 22)NASA Orbital Debris Program Office; NASA Photo 125e006995; 24)HST/NASA; 25)HST/NASA; 27)NASA; 31)Palomar Digital Sky Survey; Carnegie Institution; 34)Digital Globe Inc; 39) NASA/JPL-Caltech; 40)ESO/L.Calcada; 41) Robert Rhodr-Global Warming Art; 48) LHC-Peter Limon; 53) Webb Space Telescope; NASA; 55) NIAID/RML; 71)USDoI/USGS; 83) BP Image from Public Domain Video; 89-91) NASA/Ares; 93) NASA/Sonoma State/Aurore Simonnet; 94-95)NASA/Chandra; 110) LRO/NASA This booklet was created through an education grant NNH06ZDA001N- EPO from NASA's Science Mission Directorate.
    [Show full text]
  • A Spectroscopic Survey of the Youngest Field Stars in the Solar
    A&A 612, A96 (2018) https://doi.org/10.1051/0004-6361/201732028 Astronomy & © ESO 2018 Astrophysics A spectroscopic survey of the youngest field stars in the solar neighborhood II. The optically faint sample ?,?? A. Frasca1, P. Guillout2, A. Klutsch1, R. Freire Ferrero2,†, E. Marilli1, K. Biazzo1, D. Gandolfi3, and D. Montes4 1 INAF - Osservatorio Astrofisico di Catania, via S. Sofia, 78, 95123 Catania, Italy e-mail: [email protected] 2 Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, 67000 Strasbourg, France 3 Dipartimento di Fisica, Università di Torino, via P. Giuria, 1, 10125 Torino, Italy 4 Departamento de Astrofísica y Ciencias de la Atmósfera, Universidad Complutense de Madrid, 28040 Madrid, Spain Received 2 October 2017 / Accepted 28 December 2017 ABSTRACT Context. Star formation in the solar neighborhood is mainly traced by young stars in open clusters, associations, and in the field, which can be identified, for example, by their X-ray emission. The determination of stellar parameters for the optical counterparts of X-ray sources is crucial for a full characterization of these stars. Aims. This work extends the spectroscopic study of the RasTyc sample, obtained by the cross-correlation of the Tycho and ROSAT All- Sky Survey catalogs, to stars fainter than V = 9:5 mag and aims to identify sparse populations of young stars in the solar neighborhood. Methods. We acquired 625 high-resolution spectra for 443 presumably young stars with four different instruments in the northern hemisphere. The radial and rotational velocity (v sin i) of our targets were measured by means of the cross-correlation technique, which is also helpful to discover single-lined (SB1), double-lined spectroscopic binaries (SB2), and multiple systems.
    [Show full text]
  • Orbital Mechanics for Engineering Students to My Parents, Rondo and Geraldine, and My Wife, Connie Dee Orbital Mechanics for Engineering Students
    Orbital Mechanics for Engineering Students To my parents, Rondo and Geraldine, and my wife, Connie Dee Orbital Mechanics for Engineering Students Howard D. Curtis Embry-Riddle Aeronautical University Daytona Beach, Florida AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 30 Corporate Drive, Burlington, MA 01803 First published 2005 Copyright © 2005, Howard D. Curtis. All rights reserved The right of Howard D. Curtis to be identified as the author of this work has been asserted in accordance with the Copyright, Design and Patents Act 1988 No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1T 4LP. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://www.elsevier.com), by selecting ‘Customer Support’ and then ‘Obtaining Permissions’ British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication Data A catalogue record for this book is available from the Library of Congress ISBN 0 7506 6169 0 For information on all Elsevier Butterworth-Heinemann publications visit our website at http://books.elsevier.com Typeset by Charon Tec Pvt.
    [Show full text]
  • THE 100 BRIGHTEST X-RAY STARS WITHIN 50 PARSECS of the SUN Valeri V
    The Astronomical Journal, 126:1996–2008, 2003 October # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 100 BRIGHTEST X-RAY STARS WITHIN 50 PARSECS OF THE SUN Valeri V. Makarov Universities Space Research Association, 1101 17th Street, NW, Washington, DC 20024; and US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392; [email protected] Received 2003 April 21; accepted 2003 July 2 ABSTRACT Based on the Hipparcos and Tycho-2 astrometric catalogs and the ROSAT surveys, a sample of 100 stars most luminous in X-rays within or around a distance of 50 pc is culled. The smallest X-ray luminosity in the 29 À1 sample, in units of 10 ergs s ,isLX = 9.8; the strongest source in the solar neighborhood is II Peg, a RS CVn star, at LX = 175.8. With respect to the origin of X-ray emission, the sample is divided into partly overlapping classes of pre–main-sequence, post–T Tauri, and very young ZAMS objects (type XY), RS CVn–type binary stars (type RS), other active short-period binaries, including binary BY Dra–type objects (type XO), apparently single or long-period binary active evolved stars (type XG), contact binaries of WU UMa kind (type WU), apparently single or long-period binary variable stars of BY Dra kind (type BY), and objects of unknown nature (type X?). Chromospherically active, short-period binaries (RS and XO) make up 40% of the brightest X-ray emitters, followed by young stars (XY) at 30% and unknown sources (X?) at 15%.
    [Show full text]