Mariner Mars 1971 Tel Evision Picture Catalog

Total Page:16

File Type:pdf, Size:1020Kb

Mariner Mars 1971 Tel Evision Picture Catalog NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Technical Memorandum 33-585 Volume AI, Addendum 1 Mariner Mars 1971 Tel evision Picture Catalog Sequence Design and Picture Coverage P. E. Koskela N73-29 8 61 / (NASA-CR-133614) MARINER MARS 1971 TELEVISION PICTURE CATALOG: SEQUENCE DESIGN AND PICTURE COVERAGE, VOLUME 2, Unclas ADDENDUM 1 .(Jet Propulsion Lab.)/41-&6G p G3/30 11480 RBC $10.50 CSCL JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA July 1, 1973 TECHNICAL REPORT STANDARD TITLE PAGE I 1. Report No. 33-585, Vol. II 2. Government Accession No. 3. Recipient's Catalog No. Addendum 1 4. Title and Subtitle 5. Report Date July 1, 1973 MARINER MARS 1971 TELEVISION PICTURE CATALOG SEQUENCE DESIGN AND PICTURE COVERAGE 6. Performing Organization Code 7. Author(s) P. E. Koskela 8. Performing Organization Report No. 9. Performing Organization Name and Address 10. Work Unit No. JET PROPULSION LABORATORY California Institute of Technology 11. Contract or Grant No. 4800 Oak Grove Drive NAS 7-100 Pasadena, California 91103 13. Type of Report and Period Covered Technical Memorandum 12. Sponsoring Agency Name and Address NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546 W14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract This addendum to the Mariner Mars 1971 Television Picture Catalog, Volume II, contains data for the Mariner 9 TV pictures taken after Rev 262. Some of the data presented in Volume II is brought up to date. The new provisional mapping pole is discussed, and tables provide the latitude and longitude with respect to the new pole, prime meridian, and rotation rate for the centerpoints of all the Mariner 9 TV pictures. 17. Key Words (Selected by Author(s)) 18. Distribution Statement Mariner Mars 1971 Project Unclassified -- Unlimited Planetary Surfaces 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 6-97 I p Z , id or. I HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14" blank. Complete the remaining items as follows: 3. Recipient's Catalog No. Reserved for use by report recipients. 7. Author(s). Include corresponding information from the report cover. In addition, list the affiliation of an author if it differs from that of the performing organization. 8. Performing Organization Report No. Insert if performing organization wishes to assign this number. 10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72), which uniquely identifies the work unit under which the work was authorized. Non-NASA performing organizations will leave this blank. 11. Insert the number of the contract or grant under which the report was prepared. 15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with... Translation of (or by)... Presented at conference of... To be published in... 16. Abstract. Include a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a'classified report should be unclassified. If the report contains a significant bibliography or literature survey, mention it here. 17. Key Words. Insert terms or short phrases selected by the author that identify the principal subjects covered in the report, and that are sufficiently specific and precise to be used for cataloging. 18. Distribution Statement. Enter one of the authorized statements used to denote releasability to the public or a limitation on dissemination for reasons other than security of defense information. Authorized statements are "Unclassified-Unlimited, " "U. S. Government and Contractors only, " "U. S. Government Agencies only, " and "NASA and NASA Contractors only." 19. Security Classification (of report). NOTE: Reports carrying a security classification will require additional markings giving security and down- grading information as specified by the Security Requirements Checklist and the DoD Industrial Security Manual (DoD 5220. 22-M). 20. Security Classification (of this page). NOTE: Because this page may be used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, indicate sepa- rately the classification of the title and the abstract by following these items with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for classified items. 21. No. of Pages. Insert the number of pages. 22. Price. Insert the price set by the Clearinghouse for Federal Scientific and Technical Information or the Government Printing Office, if known. _7 j NATIONAL AERONAUTICS AND SPACE ADMINISTRATION echnicaMemorandum33-5 Technical Memorandum 33-585 Volume //, Addendum I Mariner Mars 1971 Television Picture Catalog Sequence Design and Picture Coverage P. E.' Koskela ""'Nd JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA July 1, 1973 I Prepared Under Contract No. NAS 7-100 National Aeronautics and Space Administration II PREFACE The work described in this report was performed by the Mission Analysis Division of the Jet Propulsion Laboratory. JPL TECHNICAL MEMORANDUM 33-585, VOL. II, ADD. 1 iii ACKNOWLEDGEMENTS Important up-date contributions were made to this Addendum by the Volume II co-authors M. R. Helton, L. N. Seeley, and S. J. Zawacki. Sections IVA to IVD and Tables 6-5 to 6-8 were abstracted from the work of F. M. Sturms, Jr. H. Ling coded the algorithm used to prepare Table 6-9. The continued support of M. Martin and T. Sesplaukis in supplying SEDR data in various formats, R. Rackus for his continued layout and design efforts, and M. Rackus for her continued expeditious vendor coordi- nating are all much appreciated. iv JPL TECHNICAL MEMORANDUM 33-585, VOL. II, ADD. 1 CONTENTS I Introduction . 1-1 6-1 Surface Feature Locations.......... 6-3 6-2 TV Picture Index ................ 6-4 II Mariner 9 Extended Mission ............ 2-1 6-3 Calendar Date Versus Day Number .... 6-18 A. Post-Sun Occultation Mission 6-4 Pictures in Final SEDR Files Deleted Description ................... 2-1 and/or Added Since Publication of B. Sequence Summaries and TV Picture VolumeII ..................... 6-20 Coverage and Data ............... 2-2 6-5 Mars Prime Meridian Angle from Earth Node . 6-29 III Up-Dates to Data in Volume II ........... 3-1 6-6 Corrections to Latitude and IV Latitude and Longitude Corrections for Longitude for New Pole New Mars Coordinate System ............ 4-1 (-80 ° < Lat < 800) ............... 6-35 6-7 Corrections to Latitude and A. New Mars Pole ................. 4-1 Pole B. Correction Formulas for New Pole .... 4-1 Longitude for New ° ° 6-36 C. Correction Tables for Mariner 9 Data (80 < Lat < 89 ) ............... for New Pole .................. 4-2 6-8 Corrections to Latitude and Pole D. New Mars Prime Meridian and Longitude for New 6-37 Rotation Rate .................. 4-3 (-890 < Lat < -80 ° ) .............. E. Mariner 9 TV Pictures Referred to 6-9 Mariner 9 TV Pictures Referred to Meridian and New Pole, Prime Meridian and New Pole, Prime 6-38 Rotation Rate .................. 4-3 Rotation Rate .................. V TV Picture Coverage and Data .......... 5-1 VI Tables and Figures ................... 6-1 TABLES 5-1 Sequence Summary, Revolution FIGURES Numbers 416-451 - Extended Mission . 5-51 5-1 Rev 529, Picture No. 9A, North Pole ... 5-50 5-2 Sequence Summary, Revolution 6-1 Index Map .................... 6-2 Numbers 458-676 - Extended 6-2 TV Pictures Added to SEDR Files ..... 6-22 Mission .................. .... 5-53 6-3 Geometry of Mars Pole Corrections .... 6-28 JPL TECHNICAL MEMORANDUM 33-585, VOL. II, ADD. 1 v/vi ABSTRACT This addendum to the Mariner Mars 1971 Television Picture Catalog, Volume II, contains data for the Mariner 9 TV pictures taken after Rev 262. Some of the data presented in Volume II is brought up to date. The new provisional mapping pole is dis- cussed, and tables provide the latitude and longitude with respect to the new pole, prime meridian, and rotation rate for the centerpoints of all the Mariner 9 TV pictures. JPL TECHNICAL MEMORANDUM 33-585, VOL. II, ADD. 1 vii ZIA viii JPL TECHNICAL MEMORANDUM 33-585, VOL. 11, ADD. I SECTION I INTRODUCTION This addendum to the Mariner Mars 1971 Television have been deleted from or added to the SEDR files since Picture Catalog, Volume II, Sequence Design and Picture the publication of Volume II is also provided. The reader Coverage, provides tables, plots and data for the post solar can use this list to up-date the data in Volume II1, thereby occultation portion of the extended mission. Data from obtaining a final record of all the Mariner 9 TV picture data. Rev 416 to the final picture received from Mariner 9, taken on Rev 676, are included. No TV pictures were taken during All plots and data contained in Volume II (and Sec- Revs 263 to 415. tion II of this addendum) are based upon the standard areocentric coordinate system discussed in Reference 1. A brief discussion of the objectives of the Mariner 9 Section IV contains a discussion and formulas for adjusting extended mission is given in Section II. Descriptive latitudes and longitudes from the former pole to a new pro- Sequence Summary Tables, along with orthographic and/or visional mapping pole. Tables provide the latitude and mercator plots and numerical data for all the extended longitude, with respect to the new pole, prime meridian, mission TV pictures are presented also. and rotation rate, for the center points for all the Mariner 9 TV pictures. In addition to providing a record of what took place on this final portion of the mission, some of the data contained The mission of Mariner 9 came to an end on 27 October, in Volume II is updated in Section III.
Recommended publications
  • Tests of Stellar Model Atmospheres by Optical Interferometry IV
    A&A 460, 855–864 (2006) Astronomy DOI: 10.1051/0004-6361:20066032 & c ESO 2006 Astrophysics Tests of stellar model atmospheres by optical interferometry IV. VINCI interferometry and UVES spectroscopy of Menkar M. Wittkowski1, J. P. Aufdenberg2, T. Driebe3, V. Roccatagliata4 , T. Szeifert5,andB.Wolff1 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA 3 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 4 Max-Planck-Institut für Astronomie, Königsstuhl 17, 69117 Heidelberg, Germany 5 European Southern Observatory, Casilla 19001, Santiago 19, Chile Received 13 July 2006 / Accepted 29 August 2006 ABSTRACT Aims. We present coordinated near-infrared K-band interferometric and optical spectroscopic observations of the M 1.5 giant α Cet (Menkar) obtained with the instruments VINCI and UVES at the Paranal Observatory. Spherically symmetric PHOENIX stellar model atmospheres are constrained by comparison to our interferometric and spectroscopic data, and high-precision fundamental parameters of Menkar are obtained. Methods. Our high-precision VLTI/VINCI observations in the first and second lobes of the visibility function directly probe the model-predicted strength of the limb darkening effect in the K-band and the stellar angular diameter. The high spectral resolution of UVES of R = 80 000–110 000 allows us to confront in detail observed and model-predicted profiles of atomic lines and molecular bands. Results. We show that our derived PHOENIX model atmosphere for Menkar is consistent with both the measured strength of the limb- darkening in the near-infrared K-band and the profiles of spectral bands around selected atomic lines and TiO bandheads from 370 nm to 1000 nm.
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • Dikes of Distinct Composition Intruded Into Noachian-Aged Crust Exposed in the Walls of Valles Marineris Jessica Flahaut, John F
    Dikes of distinct composition intruded into Noachian-aged crust exposed in the walls of Valles Marineris Jessica Flahaut, John F. Mustard, Cathy Quantin, Harold Clenet, Pascal Allemand, Pierre Thomas To cite this version: Jessica Flahaut, John F. Mustard, Cathy Quantin, Harold Clenet, Pascal Allemand, et al.. Dikes of dis- tinct composition intruded into Noachian-aged crust exposed in the walls of Valles Marineris. Geophys- ical Research Letters, American Geophysical Union, 2011, 38, pp.L15202. 10.1029/2011GL048109. hal-00659784 HAL Id: hal-00659784 https://hal.archives-ouvertes.fr/hal-00659784 Submitted on 19 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L15202, doi:10.1029/2011GL048109, 2011 Dikes of distinct composition intruded into Noachian‐aged crust exposed in the walls of Valles Marineris Jessica Flahaut,1 John F. Mustard,2 Cathy Quantin,1 Harold Clenet,1 Pascal Allemand,1 and Pierre Thomas1 Received 12 May 2011; revised 27 June 2011; accepted 30 June 2011; published 5 August 2011. [1] Valles Marineris represents the deepest natural incision and HiRISE (High Resolution Imaging Science Experiment) in the Martian upper crust.
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • The SDSS Standard BD +17 4708
    A&A 459, 613–625 (2006) Astronomy DOI: 10.1051/0004-6361:20065647 & c ESO 2006 Astrophysics Fundamental parameters and abundances of metal-poor stars: the SDSS standard BD +17 4708 I. Ramírez, C. Allende Prieto, S. Redfield, and D. L. Lambert McDonald Observatory and Department of Astronomy, University of Texas at Austin, RLM 15.306 Austin, TX, 78712-1083, USA e-mail: [ivan;callende;sredfield;dll]@astro.as.utexas.edu Received 22 May 2006 / Accepted 21 August 2006 ABSTRACT The atmospheric parameters and iron abundance of the Sloan Digital Sky Survey (SDSS) spectrophotometric standard star BD +17 4708 are critically examined using up-to-date Kurucz model atmospheres, LTE line formation calculations, and reli- able atomic data. We find Teff = 6141 ± 50 K, log g = 3.87 ± 0.08, and [Fe/H] = −1.74 ± 0.09. The line-of-sight interstellar reddening, bolometric flux, limb-darkened angular diameter, stellar mass, and the abundances of Mg, Si, and Ca are also obtained: −9 −2 −1 E(B−V) = 0.010 ± 0.003, fbol = (4.89±0.10) × 10 erg cm s , θ = 0.1016 ± 0.0023 mas, M = 0.91 ± 0.06 M,[Mg/Fe] = 0.40 ± 0.10, [Si/Fe] = 0.35 ± 0.11, [Ca/Fe] = 0.36 ± 0.11. This star is a unique example of a moderately metal-poor star for which the effective temperature (Teff) can be accurately constrained from the observed spectral energy distribution (corrected for reddening). Such analysis leads to a value that is higher than most spectroscopic results previously reported in the literature (∼5950 K).
    [Show full text]
  • Spring 1989 5
    MIDDLE EAST LIBRARIANS ASSOCIATION NUMBER 47 SPRING, 1989 TAOLE OF CONTENTS Editor.. ., Note 2 ASSOClA'I ION NEWS Fr°"' ttHt President 3 Librarian of Congress responds to HELA GENERAL NEWS Future Conferences Electronic Addr11sses 7 ARTICLES h1la111 in Canada by Salwa Ferahian B Iraq-Iran Wart a Bibliographical Project by J. Anthony Gardner 14 Conte111porary Pt!r11ian Press in E1till! by Hasan Javadi and Abazar Sepehri lB A Lone Bibliographer at her PC by Priscilla H. Ro~rts 7.b Increa sing Productivity and Public Satisfaction with Middle East and Judaic Library Services through Use of a Personal Co111puter by Oona S. Straley and A111non Zipin 33 BOO!< REVIEW !!I.~irat al-ma•3rif Ta ~hayyu~ reviewed by Abaiar Sepehri :Sb POSITIONS AVAILABLE Princeton Univers ity 38 Sultan Daboos University 39 University of Chicago '10 lntifatlah Publication,,. Available Inside Back Cover l u raeli Fon!ign Relations Documents AvaUablll! Inside Back Cover MH n NIJIHi IU!IN U.U1'1 J410 MIDDLE EAST LIBRARIANS ASSOCIATION EDWARD A. JAJKO PresidP-nt 1989 Moover Ins ti tut ion MEAYLE GASTON Vice-Pr esident & NeH York University Progral'I Chair 1?89 JAMES WEINBERGER Secretary- P~inceta11 ~liver·sity ' Treasurer 1987- 1989 BRENDA E. BICKETT Editor 1900-1990 Georgetown University !:l('ll\ Not•• I• publislurd three ti,.es a year, in ,.inter, "'Pring, and fal I. It i• distributed to ...,,,.bers of the Association and to 11onll'l"'"h"'r ••lh"<: r l born1. M•.,hur•hl11 1h1e11 of US$10.00 for North Afllerican addresses or IJUtl:l.00 fut' •do:Jres!le!& outside North AMerica bring the ~and ..,.' ul:hotr- 111•il !r111•· Bub11criptions are USSl0.00 lUSSl:l.OO outside No rth l'IMlft Ar:al 1nu t.alwlldlit' year, or USS3.00 per issue for 111ost back 11u111hat •, l\ddr••• rnrr••JllHUletir• r11q,11nll11Q •11l111criptioms, dues, or "''"'"b"r""hip In fur111111tiun hll .J•lll!'!!t M• l11l11o·o•r 1 B•cr•tary-Treasurer MELA, l'rtnec•lun llf1iv•r•ily l lhr.,y, lluM 1'10, Princ:•ton, NJ 08:1'10 USA.
    [Show full text]
  • Icelandic Analogs to Martian Flood Lavas
    Edinburgh Research Explorer Icelandic analogs to Martian flood lavas Citation for published version: Keszthelyi, L, Thordarson, T, McEwen, A, Haack, H, Guilbaud, MN, Self, S & Rossi, MJ 2004, 'Icelandic analogs to Martian flood lavas', Geochemistry, Geophysics, Geosystems, vol. 5, no. 11, Q11014, pp. 1-32. https://doi.org/10.1029/2004GC000758 Digital Object Identifier (DOI): 10.1029/2004GC000758 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Geochemistry, Geophysics, Geosystems Publisher Rights Statement: Published in Geochemistry, Geophysics, Geosystems by the American Geophysical Union (2004) General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Article Geochemistry 3 Volume 5, Number 11 Geophysics 23 November 2004 Q11014, doi:10.1029/2004GC000758 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH
    [Show full text]
  • Cerberus.Pdf
    (lP,IIP,U' By Gaynor Borade Greek mythology comprises a huge pantheon, extensive use of anthropomorphism and mythical creatures that ore symbotic. Cerberus, the three headed dog was believed to be the guardian of the reotm of death, or Hades. Cerberus, it was believed, prevented those who crossed the river of death, Styx, from escoping. River Styx was supposed to be the boundory belween the Underworld and Earth. Greek mythology propounded thot Hodes or ihe Underworld wos encircled nine times by River Styx and thot the rivers Phlegethon, Cocytus, Lelhe, Eridanos and Acheron converged with Styx on the 'Great Marsh'. Cerberus guorded the Great Marsh. Importance of Styx in Greek Mythotogy: Hades ond Persephone were believed to be the mortol portals in the Underworld. This reotm wos atso home to Phlegyos or guardian of the River Phlegethon, Charon or Kharon, the ferrymon, ond the living waters of Styx. Styx wos believed to have miraculous powers thot could make o person immorfol, resulting in the grove need for it to be guorded. This reolm relates to the concept of 'hel[' in Christianity and the 'Paradise losf', in the Iiterary genius of 'The Divine Comedy'. In Greek myihology, the ferrymon Charon was in charge of iransporting souls across the Styx, into the Underworld. Here, it was believed thaf the sullen were drowned in Sfyx's muddy waters. Cerberus:The Guardion Cerberus, the mythical guordian of River Styx has been immorlalized through many works of ancient Greek liferoture, ort ond orchitecture. Cerberus is easity recognizabte among the other members of the pontheon due to his three heads.
    [Show full text]
  • Accurate and Homogeneous Abundance Patterns in Solar-Type Stars of the Solar Neighbourhood: a Chemo-Chronological Analysis⋆
    A&A 542, A84 (2012) Astronomy DOI: 10.1051/0004-6361/201118751 & c ESO 2012 Astrophysics Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: a chemo-chronological analysis R. da Silva1,G.F.PortodeMello2,A.C.Milone1, L. da Silva3, L. S. Ribeiro1, and H. J. Rocha-Pinto2 1 INPE, Divisão de Astrofísica, Av. dos Astronautas, 1758 São José dos Campos, 12201-970, Brazil e-mail: [email protected] 2 UFRJ, Observatório do Valongo, Ladeira do Pedro Antônio 43, 20080-090 Rio de Janeiro, Brazil 3 Observatório Nacional, Rua Gal. José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro, Brazil Received 28 December 2011 / Accepted 22 April 2012 ABSTRACT Aims. We report the derivation of abundances of C, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Sm in a sample of 25 solar-type stars of the solar neighbourhood, correlating the abundances with the stellar ages, kinematics, and orbital parameters. Methods. The spectroscopic analysis, based on data of high resolution and high signal-to-noise ratio, was differential to the Sun and applied to atomic line equivalent widths supplemented by the spectral synthesis of C and C2 features. We also performed a statistical study by using the method of tree clustering analysis, searching for groups of stars sharing similar elemental abundance patterns. We derived the stellar parameters from various criteria, with average errors of 30 K, 0.13 dex, and 0.05 dex, respectively, for Teff , log g,and[Fe/H].
    [Show full text]
  • Chapter Vi Report of Divisions, Commissions, and Working
    CHAPTER VI REPORT OF DIVISIONS, COMMISSIONS, AND WORKING GROUPS Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 DIVISION I FUNDAMENTAL ASTRONOMY Division I provides a focus for astronomers studying a wide range of problems related to fundamental physical phenomena such as time, the intertial reference frame, positions and proper motions of celestial objects, and precise dynamical computation of the motions of bodies in stellar or planetary systems in the Universe. PRESIDENT: P. Kenneth Seidelmann U.S. Naval Observatory, 3450 Massachusetts Ave NW Washington, DC 20392-5100, US Tel. + 1 202 762 1441 Fax. +1 202 762 1516 E-mail: [email protected] BOARD E.M. Standish President Commission 4 C. Froeschle President Commisison 7 H. Schwan President Commisison 8 D.D. McCarthy President Commisison 19 E. Schilbach President Commisison 24 T. Fukushima President Commisison 31 J. Kovalevsky Past President Division I PARTICIPATING COMMISSIONS: COMMISSION 4 EPHEMERIDES COMMISSION 7 CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY COMMISSION 8 POSITIONAL ASTRONOMY COMMISSION 19 ROTATION OF THE EARTH COMMISSION 24 PHOTOGRAPHIC ASTROMETRY COMMISSION 31 TIME Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 COMMISSION 4: EPHEMERIDES President: H. Kinoshita Secretary: C.Y. Hohenkerk Commission 4 held one business meeting.
    [Show full text]
  • Rr Lyrae Calibration Using Sdss, Single-Epoch Spectroscopy
    University of Kentucky UKnowledge Theses and Dissertations--Physics and Astronomy Physics and Astronomy 2018 RR LYRAE CALIBRATION USING SDSS, SINGLE-EPOCH SPECTROSCOPY Stacy Long University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-0726-424X Digital Object Identifier: https://doi.org/10.13023/etd.2018.334 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Long, Stacy, "RR LYRAE CALIBRATION USING SDSS, SINGLE-EPOCH SPECTROSCOPY" (2018). Theses and Dissertations--Physics and Astronomy. 56. https://uknowledge.uky.edu/physastron_etds/56 This Doctoral Dissertation is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Physics and Astronomy by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • The Gravity of Hades
    VOL. 75, NO. 5, DECEMBER2002 335 The Gravityof Hades ANDREWJ. SIMOSON King College Bristol, TN 37620 [email protected] Imaginebeing beamedinto a chamberdeep withinthe Earth,such as depictedin the JulesVerne cavern of FIGURE1. Is the accelerationdue to gravitystronger or weaker in the chamberthan at the surfaceof the Earth?If the readeris hesitantin answering immediately,here's how LeonardEuler answered the questionin 1760 [3, volume I, LetterL, p. 182]: We are certain ... that gravity ... acts with the greatest force at the surface of the earth, and is diminished in proportion as it removesfrom thence, whether by penetrating towards the centre or rising above the surface of the globe. Figure1 Frontispiecefor Verne's1871 publication of Journeyto the Centerof the Earth, 100 miles below Iceland To answer this question, we consider various models of the Earth's structure that have been proposed over the years. We show that ? for homogeneouslydense planets-Euler's implicitmodel-gravity weakenswith descentfrom the surface; ? for a planetpossessing a homogeneousmantle that is less than 2/3 as dense as its core, a local minimumfor gravityintensity exists withina sufficientlythick mantle; ? for our own Earth,having a solid innercore, a less dense liquidouter core, and an extensiveeven less densemantle, gravity intensifies with descentfrom -9.8 m/s2 at the surfaceto an extremeof -10.8 m/s2 wherethe mantlemeets the core. We also give a conditioninvolving only surfacedensity and mean density that deter- mineswhether gravity increases or decreaseswith depthfrom the surfaceof a planet; and we concludewith an analysisof a body falling througha classicallyenvisioned hole through the Earth. 336 MATHEMATICSMAGAZINE Some preliminary classical mechanics To find the gravitational acceleration induced by the Earth on a particularpoint P, we follow Newton and first find the gravitational acceleration induced by each point of the Earth on P, and then take the aggregate of these accelerations as the total acceleration induced by the Earth.
    [Show full text]