Grundlehren Der Mathematischen Wissenschaften 336 a Series of Comprehensive Studies in Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Grundlehren Der Mathematischen Wissenschaften 336 a Series of Comprehensive Studies in Mathematics Grundlehren der mathematischen Wissenschaften 336 A Series of Comprehensive Studies in Mathematics Series editors M. Berger B. Eckmann P. de la Harpe F. Hirzebruch N. Hitchin L. Hörmander M.-A. Knus A. Kupiainen G. Lebeau M.Ratner D.Serre Ya.G.Sinai N.J.A. Sloane A. Vershik M. Waldschmidt Editor-in-Chief A. Chenciner J. Coates S.R.S. Varadhan Peter M. Gruber Convex and Discrete Geometry ABC Peter M. Gruber Institute of Discrete Mathematics and Geometry Vienna University of Technology Wiedner Hauptstrasse 8-10 1040 Vienna, Austria e-mail: [email protected] Library of Congress Control Number: 2007922936 Mathematics Subject Classification (2000): Primary: 52-XX, 11HXX Secondary: 05Bxx, 05Cxx, 11Jxx, 28Axx, 46Bxx, 49Jxx, 51Mxx, 53Axx, 65Dxx, 90Cxx, 91Bxx ISSN 0072-7830 ISBN 978-3-540-71132-2 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2007 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting by the author and SPi using a Springer LTA EX macro package Cover design: design & production GmbH, Heidelberg Printed on acid-free paper SPIN: 11966739 41/SPi 543210 Preface In this book we give an overview of major results, methods and ideas of convex and discrete geometry and their applications. Besides being a graduate-level introduction to the field, the book is a practical source of information and orientation for convex geometers. It should also be of use to people working in other areas of mathematics and in the applied fields. We hope to convince the reader that convexity is one of those happy notions of mathematics which, like group or measure, satisfy a genuine demand, are sufficiently general to apply to numerous situations and, at the same time, sufficiently special to admit interesting, non-trivial results. It is our aim to present convexity as a branch of mathematics with a multitude of relations to other areas. Convex geometry dates back to antiquity. Results and hints to problems which are of interest even today can already be found in the works of Archimedes, Euclid and Zenodorus. We mention the Platonic solids, the isoperimetric problem, rigidity of polytopal convex surfaces and the problem of the volume of pyramids as examples. Contributions to convexity in modern times started with the geometric and analytic work of Galileo, the Bernoullis, Cauchy and Steiner on the problems from antiquity. These problems were solved only in the nineteenth and early twentieth century by Cauchy, Schwarz and Dehn. Results without antecedents in antiquity include Euler’s polytope formula and Brunn’s inequality. Much of modern convexity came into being with Minkowski. Important later contributors are Blaschke, Hadwiger, Alexandrov, Pogorelov, and Klee, Groemer, Schneider, McMullen together with many further living mathematicians. Modern aspects of the subject include surface and curva- ture measures, the local theory of normed spaces, best and random approximation, affine-geometric features, valuations, combinatorial and algebraic polytope theory, algorithmic and complexity problems. Kepler was the first to consider problems of discrete geometry, in particular pack- ing of balls and tiling. His work was continued by Thue, but the systematic research began with Fejes Toth´ in the late 1940s. The Hungarian school deals mainly with packing and covering problems. Amongst numerous other contributors we mention Rogers, Penrose and Sloane. Tiling problems are a classical and also a modern topic. The ball packing problem with its connections to number theory, coding and the VI Preface theory of finite groups always was and still is of great importance. More recent is the research on arrangements, matroids and the relations to graph theory. The geometry of numbers, the elegant older sister of discrete geometry, was cre- ated by Lagrange, Gauss, Korkin, Zolotarev, Fedorov, the leading figures Minkowski and Vorono˘ı, by Blichfeldt, by Delone, Ryshkov and the Russian school, by Siegel, Hlawka, Schmidt, Davenport, Mahler, Rogers and others. Central problems of mod- ern research are the theory of positive definite quadratic forms, including reduction, algorithmic questions and the lattice ball packing problem. From tiny branches of geometry and number theory a hundred years ago, con- vexity, discrete geometry and geometry of numbers developed into well-established areas of mathematics. Now their doors are wide open to other parts of mathematics and a number of applied fields. These include algebraic geometry, number theory, in particular Diophantine approximation and algebraic number theory, theta series, error correcting codes, groups, functional analysis, in particular the local theory of normed spaces, the calculus of variations, eigenvalue theory in the context of partial differential equations, further areas of analysis such as geometric measure theory, potential theory, and also computational geometry, optimization and econometrics, crystallography, tomography and mathematical physics. We start with convexity in the context of real functions. Then convex bodies in Euclidean space are investigated, making use of analytic tools and, in some cases, of discrete and combinatorial ideas. Next, various aspects of convex polytopes are stud- ied. Finally, we consider geometry of numbers and discrete geometry, both from a rather geometric point of view. For more detailed descriptions of the contents of this book see the introductions of the individual chapters. Applications deal with measure theory, the calculus of variations, complex function theory, potential theory, numer- ical integration, Diophantine approximation, matrices, polynomials and systems of polynomials, isoperimetric problems of mathematical physics, crystallography, data transmission, optimization and other areas. When writing the book, I became aware of the following phenomena in convex and discrete geometry. (a) Convex functions and bodies which have certain prop- erties, have these properties often in a particularly strong form. (b) In complicated situations, the average object has often almost extremal properties. (c) In simple situations, extremal configurations are often regular or close to regular. The reader will find numerous examples confirming these statements. In general typical, rather than refined results and proofs are presented, even if more sophisticated versions are available in the literature. For some results more than one proof is given. This was done when each proof sheds different light on the problem. Tools from other areas are used freely. The reader will note that the proofs vary a lot. While in the geometry of numbers and in some more analytic branches of convex geometry most proofs are crystal clear and complete, in other cases details are left out in order to make the ideas of the proofs better visible. Sometimes we used more intuitive arguments which, of course, can be made precise by inserting addi- tional detail or by referring to known results. The reader should keep in mind that all this is typical of the various branches of convex and discrete geometry. Some proofs are longer than in the original literature. While most results are proved, there are Preface VII some important theorems, the proofs of which are regrettably omitted. Some of the proofs given are complicated and we suggest skipping these at a first reading. There are plenty of comments, some stating the author’s personal opinions. The emphasis is more on the systematic aspect of convexity theory. This means that many interest- ing results are not even mentioned. In several cases we study a notion in the context of convexity in one section (e.g. Jordan measure) and apply additional properties of it in another section (e.g. Fubini’s theorem). We have tried to make the attributions to the best of our knowledge, but the history of convexity would form a complicated book. In spite of this, historical remarks and quotations are dispersed throughout the book. The selection of the material shows the author’s view of convexity. Several sub-branches of convex and discrete geometry are not touched at all, for example axiomatic and abstract convexity, arrangements and matroids, and finite packings, others are barely mentioned. I started to work in the geometry of numbers as a student and became fascinated by convex and discrete geometry slightly later. My interest was greatly increased by the study of the seminal little books of Blaschke, Fejes Toth,´ Hadwiger and Rogers, and I have been working in these fields ever since. For her great help in the preparation of the manuscript I am obliged to Edith Rosta and also to Franziska Berger who produced most of the figures. Kenneth Stephenson provided the figures in the context of Thurston’s
Recommended publications
  • Abstract Regular Polytopes
    ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Abstract Regular Polytopes PETER MMULLEN University College London EGON SCHULTE Northeastern University PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org c Peter McMullen and Egon Schulte 2002 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2002 Printed in the United States of America Typeface Times New Roman 10/12.5 pt. System LATEX2ε [] A catalog record for this book is available from the British Library. Library of Congress Cataloging in Publication Data McMullen, Peter, 1955– Abstract regular polytopes / Peter McMullen, Egon Schulte. p. cm. – (Encyclopedia of mathematics and its applications) Includes bibliographical references and index. ISBN 0-521-81496-0 1. Polytopes. I. Schulte, Egon, 1955– II. Title. III. Series. QA691 .M395 2002 516.35 – dc21 2002017391 ISBN 0 521 81496 0 hardback Contents Preface page xiii 1 Classical Regular Polytopes 1 1A The Historical Background 1 1B Regular Convex Polytopes 7 1C Extensions
    [Show full text]
  • Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
    Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166).
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]
  • Four-Dimensional Regular Polytopes
    faculty of science mathematics and applied and engineering mathematics Four-dimensional regular polytopes Bachelor’s Project Mathematics November 2020 Student: S.H.E. Kamps First supervisor: Prof.dr. J. Top Second assessor: P. Kiliçer, PhD Abstract Since Ancient times, Mathematicians have been interested in the study of convex, regular poly- hedra and their beautiful symmetries. These five polyhedra are also known as the Platonic Solids. In the 19th century, the four-dimensional analogues of the Platonic solids were described mathe- matically, adding one regular polytope to the collection with no analogue regular polyhedron. This thesis describes the six convex, regular polytopes in four-dimensional Euclidean space. The focus lies on deriving information about their cells, faces, edges and vertices. Besides that, the symmetry groups of the polytopes are touched upon. To better understand the notions of regularity and sym- metry in four dimensions, our journey begins in three-dimensional space. In this light, the thesis also works out the details of a proof of prof. dr. J. Top, showing there exist exactly five convex, regular polyhedra in three-dimensional space. Keywords: Regular convex 4-polytopes, Platonic solids, symmetry groups Acknowledgements I would like to thank prof. dr. J. Top for supervising this thesis online and adapting to the cir- cumstances of Covid-19. I also want to thank him for his patience, and all his useful comments in and outside my LATEX-file. Also many thanks to my second supervisor, dr. P. Kılıçer. Furthermore, I would like to thank Jeanne for all her hospitality and kindness to welcome me in her home during the process of writing this thesis.
    [Show full text]
  • Regular Polyhedra Through Time
    Fields Institute I. Hubard Polytopes, Maps and their Symmetries September 2011 Regular polyhedra through time The greeks were the first to study the symmetries of polyhedra. Euclid, in his Elements showed that there are only five regular solids (that can be seen in Figure 1). In this context, a polyhe- dron is regular if all its polygons are regular and equal, and you can find the same number of them at each vertex. Figure 1: Platonic Solids. It is until 1619 that Kepler finds other two regular polyhedra: the great dodecahedron and the great icosahedron (on Figure 2. To do so, he allows \false" vertices and intersection of the (convex) faces of the polyhedra at points that are not vertices of the polyhedron, just as the I. Hubard Polytopes, Maps and their Symmetries Page 1 Figure 2: Kepler polyhedra. 1619. pentagram allows intersection of edges at points that are not vertices of the polygon. In this way, the vertex-figure of these two polyhedra are pentagrams (see Figure 3). Figure 3: A regular convex pentagon and a pentagram, also regular! In 1809 Poinsot re-discover Kepler's polyhedra, and discovers its duals: the small stellated dodecahedron and the great stellated dodecahedron (that are shown in Figure 4). The faces of such duals are pentagrams, and are organized on a \convex" way around each vertex. Figure 4: The other two Kepler-Poinsot polyhedra. 1809. A couple of years later Cauchy showed that these are the only four regular \star" polyhedra. We note that the convex hull of the great dodecahedron, great icosahedron and small stellated dodecahedron is the icosahedron, while the convex hull of the great stellated dodecahedron is the dodecahedron.
    [Show full text]
  • Convex Polytopes and Tilings with Few Flag Orbits
    Convex Polytopes and Tilings with Few Flag Orbits by Nicholas Matteo B.A. in Mathematics, Miami University M.A. in Mathematics, Miami University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Abstract of Dissertation The amount of symmetry possessed by a convex polytope, or a tiling by convex polytopes, is reflected by the number of orbits of its flags under the action of the Euclidean isometries preserving the polytope. The convex polytopes with only one flag orbit have been classified since the work of Schläfli in the 19th century. In this dissertation, convex polytopes with up to three flag orbits are classified. Two-orbit convex polytopes exist only in two or three dimensions, and the only ones whose combinatorial automorphism group is also two-orbit are the cuboctahedron, the icosidodecahedron, the rhombic dodecahedron, and the rhombic triacontahedron. Two-orbit face-to-face tilings by convex polytopes exist on E1, E2, and E3; the only ones which are also combinatorially two-orbit are the trihexagonal plane tiling, the rhombille plane tiling, the tetrahedral-octahedral honeycomb, and the rhombic dodecahedral honeycomb. Moreover, any combinatorially two-orbit convex polytope or tiling is isomorphic to one on the above list. Three-orbit convex polytopes exist in two through eight dimensions. There are infinitely many in three dimensions, including prisms over regular polygons, truncated Platonic solids, and their dual bipyramids and Kleetopes. There are infinitely many in four dimensions, comprising the rectified regular 4-polytopes, the p; p-duoprisms, the bitruncated 4-simplex, the bitruncated 24-cell, and their duals.
    [Show full text]
  • REGULAR POLYTOPES in Zn Contents 1. Introduction 1 2. Some
    REGULAR POLYTOPES IN Zn ANDREI MARKOV Abstract. In [3], all embeddings of regular polyhedra in the three dimen- sional integer lattice were characterized. Here, we prove some results toward solving this problem for all higher dimensions. Similarly to [3], we consider a few special polytopes in dimension 4 that do not have analogues in higher dimensions. We then begin a classification of hypercubes, and consequently regular cross polytopes in terms of the generalized duality between the two. Fi- nally, we investigate lattice embeddings of regular simplices, specifically when such simplices can be inscribed in hypercubes of the same dimension. Contents 1. Introduction 1 2. Some special cases, and a word on convexity. 2 3. Hypercubes and Cross Polytopes 4 4. Simplices 4 5. Corrections 6 Acknowledgments 7 References 7 1. Introduction Definition 1.1. A regular polytope is a polytope such that its symmetry group action is transitive on its flags. This definition is not all that important to what we wish to accomplish, as the classification of all such polytopes is well known, and can be found, for example, in [2]. The particulars will be introduced as each case comes up. Definition 1.2. The dual of a polytope of dimension n is the polytope formed by taking the centroids of the n − 1 cells to be its vertices. The dual of the dual of a regular polytope is homothetic to the original with respect to their mutual center. We will say that a polytope is \in Zn" if one can choose a set of points in the lattice of integer points in Rn such that the points can form the vertices of said polytope.
    [Show full text]
  • Regular Incidence Complexes, Polytopes, and C-Groups
    Regular Incidence Complexes, Polytopes, and C-Groups Egon Schulte∗ Department of Mathematics Northeastern University, Boston, MA 02115, USA March 13, 2018 Abstract Regular incidence complexes are combinatorial incidence structures generalizing regu- lar convex polytopes, regular complex polytopes, various types of incidence geometries, and many other highly symmetric objects. The special case of abstract regular poly- topes has been well-studied. The paper describes the combinatorial structure of a regular incidence complex in terms of a system of distinguished generating subgroups of its automorphism group or a flag-transitive subgroup. Then the groups admitting a flag-transitive action on an incidence complex are characterized as generalized string C-groups. Further, extensions of regular incidence complexes are studied, and certain incidence complexes particularly close to abstract polytopes, called abstract polytope complexes, are investigated. Key words. abstract polytope, regular polytope, C-group, incidence geometries MSC 2010. Primary: 51M20. Secondary: 52B15; 51E24. arXiv:1711.02297v1 [math.CO] 7 Nov 2017 1 Introduction Regular incidence complexes are combinatorial incidence structures with very high combina- torial symmetry. The concept was introduced by Danzer [12, 13] building on Gr¨unbaum’s [17] notion of a polystroma. Regular incidence complexes generalize regular convex polytopes [7], regular complex polytopes [8, 42], various types of incidence geometries [4, 5, 21, 44], and many other highly symmetric objects. The terminology and notation is patterned after con- vex polytopes [16] and was ultimately inspired by Coxeter’s work on regular figures [7, 8]. ∗Email: [email protected] 1 The first systematic study of incidence complexes from the discrete geometry perspective occurred in [33] and the related publications [13, 34, 35, 36].
    [Show full text]
  • Realizing Regular Polytopes Over Q
    REGULAR POLYTOPES REALIZED OVER Q TREVOR HYDE A regular polytope is a d-dimensional generalization of a regular polygon and a Platonic solid. Roughly, they are convex geometric objects with maximal rotational symmetry. To avoid stating a precise definition we appeal to a known complete classification of all regular polytopes. The codimension 1 parts of a polytope are called facets. For example, the facets of a cube are squares. • Dimension 2: In two dimensions, the regular polytopes are the familiar regular polygons. There is a regular n-gon for every n ≥ 3. • Dimension 3: There are five regular polytopes in three dimensions, these are the Platonic solids: ◦ Tetrahedron, or 3-simplex ◦ Cube, or 3-cube ◦ Octahedron, or 3-orthoplex ◦ Dodecahedron ◦ Icosahedron Each regular polytope P has a dual—also a regular polytope—formed by placing vertices at the center of each facet of P and then taking the convex hull of these vertices. Taking the dual of the resulting polytope gives us a copy of the original polytope, hence the terminology. Each regular n-gon is its own dual. The tetrahedron is its own dual. The cube and octahedron are dual, as are the dodecahedron and icosahedron. • Dimension 4: We have six regular polytopes in four dimensions described below by their three dimensional facets: ◦ 4-simplex (3-simplex facets) ◦ 4-cube (3-cube facets) ◦ 4-orthoplex (3-simplex facets) ◦ 24-cell (octahedral facets) ◦ 120-cell (dodecahedral facets) ◦ 600-cell (3-simplex facets) The 4-simplex and the 24-cell are both self-dual. The 4-cube and 4-orthoplex are dual, as are the 120-cell and 600-cell.
    [Show full text]
  • Regular Polytope Networks Federico Pernici, Matteo Bruni, Claudio Baecchi and Alberto Del Bimbo, Member, IEEE
    1 Regular Polytope Networks Federico Pernici, Matteo Bruni, Claudio Baecchi and Alberto Del Bimbo, Member, IEEE, Abstract—Neural networks are widely used as a model for ℝ푑 ℝ푑 ℝ푑 classification in a large variety of tasks. Typically, a learnable transformation (i.e. the classifier) is placed at the end of such models returning a value for each class used for classification. 퐰 This transformation plays an important role in determining how 퐰푖 푖 the generated features change during the learning process. In 퐰푖 this work, we argue that this transformation not only can be fixed (i.e. set as non-trainable) with no loss of accuracy and with a reduction in memory usage, but it can also be used 퐟 퐟 퐟 to learn stationary and maximally separated embeddings. We show that the stationarity of the embedding and its maximal separated representation can be theoretically justified by setting DCNN DCNN DCNN the weights of the fixed classifier to values taken from the coordinate vertices of the three regular polytopes available in d R , namely: the d-Simplex, the d-Cube and the d-Orthoplex. These regular polytopes have the maximal amount of symmetry Fig. 1. Regular Polytope Networks (RePoNet). The fixed classifiers derived d that can be exploited to generate stationary features angularly from the three regular polytopes available in R with d ≥ 5 are shown. centered around their corresponding fixed weights. Our approach From left: the d-Simplex, the d-Cube and the d-Orthoplex fixed classifier. improves and broadens the concept of a fixed classifier, recently The trainable parameters wi of the classifier are replaced with fixed values proposed in [1], to a larger class of fixed classifier models.
    [Show full text]
  • Stereographic Visualization of 5-Dimensional Regular Polytopes
    S S symmetry Article Stereographic Visualization of 5-Dimensional Regular Polytopes Xingchang Wang 1, Tao Yu 1,* , Kwokwai Chung 2, Krzysztof Gdawiec 3 and Peichang Ouyang 1 1 School of Mathematics and Physics, Jinggangshan University, Ji’an 343009, China; [email protected] (X.W.); [email protected] (P.O.) 2 Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong; [email protected] 3 Institute of Mathematics, University of Silesia, 40-007 Katowice, Poland; [email protected] * Correspondence: [email protected] Received: 30 January 2019; Accepted: 15 March 2019; Published: 18 March 2019 Abstract: Regular polytopes (RPs) are an extension of 2D (two-dimensional) regular polygons and 3D regular polyhedra in n-dimensional (n ≥ 4) space. The high abstraction and perfect symmetry are their most prominent features. The traditional projections only show vertex and edge information. Although such projections can preserve the highest degree of symmetry of the RPs, they can not transmit their metric or topological information. Based on the generalized stereographic projection, this paper establishes visualization methods for 5D RPs, which can preserve symmetries and convey general metric and topological data. It is a general strategy that can be extended to visualize n-dimensional RPs (n > 5). Keywords: five-dimensional regular polytopes; fundamental root systems; stereographic projection; kaleidoscope principle 1. Introduction Regular polytopes (RPs) are an extension of 2D regular polygons and 3D regular polyhedra in n-dimensional Euclidean space Rn (n ≥ 4), which have high abstraction and perfect symmetry [1–3]. For instance, the 5D hypercube f4, 3, 3, 3g has 32 vertices, 80 edges, 80 squares, 40 3D cubes, and 10 4D regular polytopes f4, 3, 3g.
    [Show full text]
  • Discrete Geometry and Symmetry
    Springer Proceedings in Mathematics & Statistics Volume 234 Springer Proceedings in Mathematics & Statistics This book series features volumes composed of selected contributions from workshops and conferences in all areas of current research in mathematics and statistics, including operation research and optimization. In addition to an overall evaluation of the interest, scientific quality, and timeliness of each proposal at the hands of the publisher, individual contributions are all refereed to the high quality standards of leading journals in the field. Thus, this series provides the research community with well-edited, authoritative reports on developments in the most exciting areas of mathematical and statistical research today. More information about this series at http://www.springer.com/series/10533 Marston D. E. Conder • Antoine Deza Asia Ivić Weiss Editors Discrete Geometry and Symmetry Dedicated to Károly Bezdek and Egon Schulte on the Occasion of Their 60th Birthdays 123 Editors Marston D. E. Conder Asia Ivić Weiss Department of Mathematics Department of Mathematics University of Auckland and Statistics Auckland York University New Zealand Toronto, ON Canada Antoine Deza Department of Computing and Software McMaster University Hamilton, ON Canada ISSN 2194-1009 ISSN 2194-1017 (electronic) Springer Proceedings in Mathematics & Statistics ISBN 978-3-319-78433-5 ISBN 978-3-319-78434-2 (eBook) https://doi.org/10.1007/978-3-319-78434-2 Library of Congress Control Number: 2018939138 Mathematics Subject Classification (2010): 05B40,
    [Show full text]