Using Natural History Attributes of Stream Invertebrates to Measure Stream Health
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of Animal Species with Ranks October 2017
Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa -
Introduction
INTRODUCTION A BRIEF HISTORY OF MAYFLY of larvae could be made by the investigator, who did CLASSIFICATION not know the taxonomic significance of many characters shown on them. Many supraspecies taxa established by Eaton were natural, although they did In the early classifications (Linnaeus 1758, et al.) all not have sufficient diagnoses. mayflies, constituting a single holophyletic genus Later (Lestage 1917, et al.) ephemeropterologists Ephemera Linnaeus 1758 (placed to artificial order paid more and more attention to larval characters Neuroptera), were divided into two groups according rather than to imaginal ones, and established classifi- to the number of imaginal caudalii – 3 or 2. Each of cations based mainly or solely on larval characters. these groups was actually polyphyletic. The imagi- Since the artificial Linnaean order Neuroptera nal paracercus is developed in the majority of Euro- was completely divided into smaller natural orders pean Furcatergaliae and vestigial in the majority of (the process started by Burmeister 1829, and European Tridentiseta and Branchitergaliae; thus if finished by Packard 1886 and Handlirsch 1903), one studies superficially the European species only, mayflies got ordinal rank and were divided into a an impression could appear that this character allows number of families and superfamilies, which in large one to divide mayflies into natural groups. However, degree corresponded to sections, series and groups more detailed examination of mayflies reveals that proposed by Eaton (1883–1888) to the former family representatives with 3 and 2 caudalii occur in many Ephemeridae. Basing mainly on larval characters, evidently holophyletic taxa (see Index of characters authors of new classifications changed many of [2.3.20]). -
Annual Newsletter and Bibliography of the International Society of Plecopterologists PERLA NO. 28, 2010
PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Pteronarcella regularis (Hagen), Mt. Shasta City Park, California, USA. Photograph by Bill P. Stark PERLA NO. 28, 2010 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences And Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Biología Animal Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Kenneth W. Stewart Department of Biological Sciences University of North Texas Denton, Texas 76203, USA E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 2 TABLE OF CONTENTS Subscription policy……………………………………………………………………….4 Publication of the Proceedings of the International Joint Meeting on Ephemeroptera and Plecoptera 2008…………………………………….………………….………….…5 Ninth North American Plecoptera Symposium………………………………………….6 -
In Baltic Amber 85
Overview and descriptions of fossil stoneflies (Plecoptera) in Baltic amber 85 Entomologie heute 22 (2010): 85-97 Overview and Descriptions of Fossil Stoneflies (Plecoptera) in Baltic Amber Übersicht und Beschreibungen von fossilen Steinfliegen (Plecoptera) im Baltischen Bernstein CELESTINE CARUSO & WILFRIED WICHARD Summary: Three new fossil species of stoneflies (Plecoptera: Nemouridae and Leuctridae) from Eocene Baltic amber are being described: Zealeuctra cornuta n. sp., Lednia zilli n. sp., and Podmosta attenuata n. sp.. Extant species of these three genera are found in Eastern Asia and in the Nearctic region. It is very probably that the genera must have been widely spread across the northern hemisphere in the Cretaceous period, before Europe was an archipelago in Eocene. The current state of knowledge about the seventeen Plecoptera species of Baltic amber is shortly presented. Due to discovered homonymies, the following nomenclatural corrections are proposed: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 and Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010. Keywords: Fossil insects, fossil Plecoptera, Eocene, paleobiogeography Zusammenfassung: In dieser Arbeit werden drei neue fossile Steinfliegen-Arten (Plecoptera: Nemouridae und Leuctridae) des Baltischen Bernsteins beschrieben: Zealeuctra cornuta n. sp., Lednia zilli n. sp., Podmosta attenuata n. sp.. Rezente Arten der drei Gattungen sind in Ostasien und in der nearktischen Region nachgewiesen. Sehr wahrscheinlich breiteten sich die Gattungen in der Krei- dezeit über die nördliche Hemisphäre aus, noch bevor Europa im Eozän ein Archipel war. Der gegenwärtige Kenntnisstand über die siebzehn Plecoptera Arten des Baltischen Bernsteins wird kurz dargelegt. Wegen bestehender Homonymien werden folgende nomenklatorische Korrekturen vorgenommen: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 und Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010. -
Insecta, Ephemeroptera, Ephemerellidae, Attenella Margarita (Needham, 1927): Southeastern Range Istributio
ISSN 1809-127X (online edition) © 2010 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution N Insecta, Ephemeroptera, Ephemerellidae, Attenella margarita (Needham, 1927): Southeastern range ISTRIBUTIO D extension to North Carolina, USA 1* 2 RAPHIC Luke M. Jacobus and Eric D. Fleek G EO G N 1 Indiana University, Department of Biology, 1001 East Third Street, Bloomington, IN, 47405, USA. O 2 Environmental Sciences Section, North Carolina Division of Water Quality, 4401 Reedy Creek Road, Raleigh, NC, 27606, USA. * Corresponding author. E-mail: [email protected] OTES N Abstract: New data from the Great Smoky Mountains, in Swain County, North Carolina, USA, extend the geographic range of Attenella margarita (Needham, 1927) (Insecta, Ephemeroptera, Ephemerellidae) southeast by approximately 1,300 A. margarita Head, thoracic and abdominal characters for distinguishing larvae of A. margarita from the sympatric species, A. attenuata (McDunnough,km. We confirm 1925), that are illustrated has and a disjunctdiscussed. east-west distribution in North America, which is rare among mayflies. Needham (1927) described Ephemerella margarita Figure 4), so its diagnostic utility is limited. Adults were Needham, 1927, (Ephemeroptera: Ephemerellidae) based associated with Needham’s (1927) larvae tentatively by on larvae from Utah, USA (Traver 1935). Allen (1980) McDunnough (1931) and Allen and Edmunds (1961). established the present binomial combination, Attenella Jacobus and McCafferty (2008) recently reviewed margarita, by elevating subgenera of Ephemerella Walsh the systematics of Attenella. The genus is restricted to to genus status. Attenella margarita larvae (Figure 1) are North America and solely comprises the tribe Attenellini distinguishable from other Attenella Edmunds species McCafferty of the subfamily Timpanoginae Allen. -
TB142: Mayflies of Maine: an Annotated Faunal List
The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 4-1-1991 TB142: Mayflies of aine:M An Annotated Faunal List Steven K. Burian K. Elizabeth Gibbs Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the Entomology Commons Recommended Citation Burian, S.K., and K.E. Gibbs. 1991. Mayflies of Maine: An annotated faunal list. Maine Agricultural Experiment Station Technical Bulletin 142. This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0734-9556 Mayflies of Maine: An Annotated Faunal List Steven K. Burian and K. Elizabeth Gibbs Technical Bulletin 142 April 1991 MAINE AGRICULTURAL EXPERIMENT STATION Mayflies of Maine: An Annotated Faunal List Steven K. Burian Assistant Professor Department of Biology, Southern Connecticut State University New Haven, CT 06515 and K. Elizabeth Gibbs Associate Professor Department of Entomology University of Maine Orono, Maine 04469 ACKNOWLEDGEMENTS Financial support for this project was provided by the State of Maine Departments of Environmental Protection, and Inland Fisheries and Wildlife; a University of Maine New England, Atlantic Provinces, and Quebec Fellow ship to S. K. Burian; and the Maine Agricultural Experiment Station. Dr. William L. Peters and Jan Peters, Florida A & M University, pro vided support and advice throughout the project and we especially appreci ated the opportunity for S.K. Burian to work in their laboratory and stay in their home in Tallahassee, Florida. -
Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA)
University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 1-1-2018 Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA) Audrey B. Harrison University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Biology Commons Recommended Citation Harrison, Audrey B., "Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA)" (2018). Electronic Theses and Dissertations. 1352. https://egrove.olemiss.edu/etd/1352 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. EFFECTS OF HYDROLOGICAL CONNECTIVITY ON THE BENTHOS OF A LARGE RIVER (LOWER MISSISSIPPI RIVER, USA) A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences The University of Mississippi by AUDREY B. HARRISON May 2018 Copyright © 2018 by Audrey B. Harrison All rights reserved. ABSTRACT The effects of hydrological connectivity between the Mississippi River main channel and adjacent secondary channel and floodplain habitats on macroinvertebrate community structure, water chemistry, and sediment makeup and chemistry are analyzed. In river-floodplain systems, connectivity between the main channel and the surrounding floodplain is critical in maintaining ecosystem processes. Floodplains comprise a variety of aquatic habitat types, including frequently connected secondary channels and oxbows, as well as rarely connected backwater lakes and pools. Herein, the effects of connectivity on riverine and floodplain biota, as well as the impacts of connectivity on the physiochemical makeup of both the water and sediments in secondary channels are examined. -
Automated Taxonomic Identification of Insects with Expert-Level
Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology Syst. Biol. 68(6):876–895, 2019 © The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. DOI:10.1093/sysbio/syz014 Advance Access publication March 2, 2019 Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks , , ,∗ , , MIROSLAV VALAN1 2 3 ,KAROLY MAKONYI1 4,ATSUTO MAKI5,DOMINIK VONDRÁCEKˇ 6 7, AND FREDRIK RONQUIST2 1Savantic AB, Rosenlundsgatan 52, 118 63 Stockholm, Sweden; 2Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Frescativagen 40, 114 18 Stockholm, Sweden; 3Department of Zoology, Stockholm University, Universitetsvagen 10, 114 18 Stockholm, Sweden; 4Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics, Uppsala University, 751 20 Uppsala, Sweden; 5School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, SE-10044 Sweden; 6Department of Zoology, Faculty of Science, Charles University in Prague, Viniˇcná 7, CZ-128 43 Praha 2, Czech Republic; 7Department of Entomology, National Museum, Cirkusová 1740, CZ-193 00 Praha 9 - Horní Poˇcernice, Czech -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -