KETCH1 Imports HYL1 to Nucleus for Mirna Biogenesis in Arabidopsis
KETCH1 imports HYL1 to nucleus for miRNA biogenesis in Arabidopsis Zhonghui Zhanga,b,1, Xinwei Guoa,c,1, Chunxiao Gea,1, Zeyang Maa, Mengqiu Jianga, Tianhong Lic, Hisashi Koiwad, Seong Wook Yange, and Xiuren Zhanga,2 aDepartment of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843; bGuangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; cCollege of Horticulture, China Agricultural University, Beijing 100193, China; dDepartment of Horticultural Sciences, Texas A&M University, College Station, TX 77843; and eDepartment of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea Edited by Xuemei Chen, University of California, Riverside, CA, and approved March 9, 2017 (received for review December 2, 2016) MicroRNA (miRNA) is processed from primary transcripts with hairpin premiRNAs in mammalians (11, 12). Importin-8 facilitates the structures (pri-miRNAs) by microprocessors in the nucleus. How recruitment of AGO2-containing RISC to target mRNAs to pro- cytoplasmic-borne microprocessor components are transported into mote efficient and specific gene silencing in the cytoplasm, whereas the nucleus to fulfill their functions remains poorly understood. Here, the protein can also transport AGO2 and AGO2 partners, GW we report KETCH1 (karyopherin enabling the transport of the proteins and miRNAs, into the nucleus to balance levels of cyto- cytoplasmic HYL1) as a partner of hyponastic leaves 1 (HYL1) protein, plasmic gene-silencing effectors (13–15). Arabidopsis encodes a core component of microprocessor in Arabidopsis and functional 18 importin β-proteins, among which few have also been reported counterpart of DGCR8/Pasha in animals.
[Show full text]