PLEURONECTIDAE Des Oeufs Et Lames De (BY J

Total Page:16

File Type:pdf, Size:1020Kb

PLEURONECTIDAE Des Oeufs Et Lames De (BY J CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER Fiches d’identification PLEURONECTIDAE des oeufs et lames de (BY J. H. NICHOLS) poissons 1971 Fiches Nos 4-6 https://doi.org/10.17895/ices.pub.5170 2 Single-oil .globule s- A F Many oil globules B m Terminal mouth G Notocord Tentocle Morgtnol fins kc H \ \Ypigrnent bands Pectoral fins with pigment J YLoterol spines D Precaudal or abdominal vertibrne Preanal are0 I Postonal area E K length 3 Introduction This sheet deals only with the Pleuronectidae occurring within the areas listed in Table 1. Initial separation of flatfish larvae into the three families of Pleuronectidae, Bothidae and Soleidae must be made with the aid of the first larval key, before the specific Pleuronectidae key can be used. There are eight species occurring in the area covered by this sheet, and they can with some experience be easily separated. Some are unlikely to occur in the same area at the same time; therefore reference should be made to their distribution and spawning times (Tables 1 and 2). In addition to the larval key, each species is discussed separately and points of likely confusion between species are clarified. Descriptions of the eggs of the eight species are included separately, but for identification reference should be made to a complete egg key (EHRENBAUM1911; HOEK1911), or a size chart (SIMPSON1956). SIMPSON'Schart is summarized in Table 3. Material and methods Whenever possible my own specimens have been used, either from vertical plankton net samples from the wild, or from hatchery-reared stock. These specimens have all been fixed and preserved in 2 o/o hexamine buffered formalin, which may have caused up to 10 o/o shrinkage in some of them. All the figures have been drawn direct from a stereomicroscope with the Zeiss camera lucida attachment. For specimens not available in'iny own collection I have relied upon the best drawings from the many descriptions of these larvae in earlier works. These illustrations have all been redrawn, using the same technique as for my own specimens. Characters used in identifying pleuronectid larvae The black pigment is usually the only colouring remaining after fixation in formalin and even this disappears slowly after long preservation. The distribution of black pigment and especially the patterns formed on the postanal portion of the body are important diagnostic characters, particularly in the early larval stages. The pigment is most easily viewed with incident light, this often being the only method for viewing the delicate black spots, such as those which occur on the pectoral fins of Limnda limanda. The number of fin rays is in many cases specific and they can be counted after the onset of asymmetry, preferably using transmitted light. Vertebral counts should only be made as a last resort, since it is usually necessary to stain with Alizarin red (GURR1963) or at least use a clearing technique before the vertebrae of fixed specimens can be seen. The key and figures have all been compiled from specimens in excellent condition. However, with the increasing use of high-speed plankton samplers, the possibility of extensive damage, e.g. loss of dermal pigment, torn marginal fins and the destruction of the yolk-sac and gut, must be borne in mind. The possibility of reversed specimens of Pleuronectidae, though very small, should be considered when separating metamorphosing specimens of the three families. Reversed specimens of any of the species may occur, but are common only in PlaticthysJesus. A guide to the nomenclature used in this sheet will be found in Figures A-K. Identification A. Eggs Order Heterosomata - Family Pleuronectidae The eggs are planktonic, round, containing no oil globules. The yolk is homogeneously distributed. 1. Large egg, diameter 1.38-3.50 mm, with a large perivitelline space; spawning time 11-VI ............ ..... Hippoglossoides platessoides 2. Large or very large egg with a small perivitelline space. 2.1. Diameter of egg 3.00-4.25 mm, perhaps even larger, imperfectly known; spawning time 111-VIII. .......... Hippoglossus hippoglossus 2.2. Diameter of egg 4.00-4.50 mm, imperfectly known; spawning time 111-VI ............................. Reinhardtiur hippoglossoides 2.3. Diameter of egg 1.66-2.20 mm; spawning time XII-VI ................................................... Pleuroncctes platessa 2.4. Diameter of egg 1.13-1.45 mm; spawning time IV-X, but in the Channel 11-111. Black pigment develops on the yolk. Microstomus kiff 3. Medium or small egg with a small perivitelline space. 3.1. Diameter of egg 1.07-1.25 mm; spawning time 111-VIII .............................................. Glyptocephalrcs cynoglossus 3.2. Diameter of egg 0.82-1.13 mm; spawning time I-VII. ........................................................ PlaticthysJIesus 3.3. Diameter of egg 0.66-0.98 mm; spawning time I-VIII ...................................................... Limanda limanda B. Larvae Order Heterosomata The anus is almost at right angles to the larval axis and extends to the edge of the marginal fin. The body is laterally flattened. The pelvic fins are small and barely evident during the early larval stages; the dorsal and anal fins are single and continuous. There is asymmetry of the head at metamorphosis, with the subsequent adaption for lying on the right or left side. Three families are present in this order and they can be separated by the following characteristics. 4 1. Earb larval stages before the development of the hypural rudiment. Single oil globule in the yolk-sac, persisting through the early larval stages (Figure A). ........................... Bothidae Many oil globules in the yolk-sac; yolk segmented; vesicular expansion of the embryonic dorsal fin above the mid-brain; mid-brain protruding (Figure B) .................................................................... Soleidae No oil globule in the yolk-sac .................................................................. Pleuronectidae 2. Mid-larval stages prior to the onset of asymmetry A tentacle present on the head (Figure C) .............................................................. Bothidae Lateral (otocystic) spines on the head (Figure D) ......................................... ... ............. Bothidae Preanal area of larva about one half the total area, mid-brain not protruding .................................. Bothidae Preanal area of larva about one half the total area, mid-brain protruding (Figure E) ............................ Soleidae Preanal area of larva much less than half the total area and closer to one third .... Pleuronectidae 3. Metamorphosing larvae Right eye migrating; mouth terminal ................................................................ Bothidae Head distinctly rounded with a lateral mouth. Size at metamorphosis small, less than 9 mm; left eye migrating (Figure F) Soleidae Mouth terminal. Size at metamorphosis greater than 9 mm; left eye migrating (Figure G) ..................... Pleuronectidae Family Pleuronectidae Key to the pelagic stages prior to the onset of asymmetry. Pigment in the form of three to six bands or patches in the marginal fins and/or on the body ............. 1 Pigment not in the form of bands or patches. ....................................................... 2 1. Distance from the tip of the jaw to the anus less than one third of the total length of the larvae. .................... 1.1 Distance from the tip of the jaw to the anus greater than one third the total length of the larvae ....................... 1.2 1.1. Six postanal bands or patches of pigment on the body, three of which are distinct and present in the early larval stages in the marginal fins (Figure 5a-g) .......................................................... GlyPtocephalus cynoglossus 1.2. Less than six postanal bands or patches of pigment on the body. 1.2.1. Three or four indistinct bands of pigment on the postanal portion of the body. The marginal fin pigment correspond- ing to these bands is indistinct and variable (Figure 4a-b) ................................ Hippoglossoides platessoides 1.2.2. Four distinct postanal bands of pigment on the body with distinct patches corresponding to these bands at the edges of the marginal fins, giving the larva a distinctly striated appearance. Patches of pigment on the body, gut and dorsal marginal fin directly above the anus. The marginal fins are broad (Figure 6a-d). ............. Microstomus kitt 2. Larva large, greater than 7 mm at hatching and reaching at least 30 mm before metamorphosis; very long straight-lined lower jaw ..................................................................................... 2.1 Larva small, less than 7 mm on hatching, metamorphosing at 10-15 mm ......................................... 2.2 2.1. 2.1.1. Larva exceedingly nmrow and elongated; body and marginal fin pigment very light (Figure 8a-c) . Rekhardtius hippoglossoides 2.1.2. Larva broad with a stout head and a strong depression in front of the eyes; “pug nose” (Figure 7a-c) Hippoglossus hippoglossus 2.2. Double row of pigment spots along the whole length of the ventral postanal portion of the body, i.e. a single row on either side at the base of the anal fin. ................................................................ 2.2.1 This double row of pigment spots absent .............................................................. 2.2.2 2.2.1. 2.2.1.1. Pigment present in the form of distinct black pigment spots on the edges of the pectoral fins. Larva small at hatching, about 3 mm (Figure 2a-f)
Recommended publications
  • Redalyc.A Review of the Flatfish Fisheries of the South Atlantic Ocean
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Díaz de Astarloa, Juan M. A review of the flatfish fisheries of the south Atlantic Ocean Revista de Biología Marina y Oceanografía, vol. 37, núm. 2, diciembre, 2002, pp. 113-125 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47937201 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía 37 (2): 113 - 125, diciembre de 2002 A review of the flatfish fisheries of the south Atlantic Ocean Una revisión de las pesquerías de lenguados del Océano Atlántico sur Juan M. Díaz de Astarloa1 2 1CONICET, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina. [email protected] 2 Current address: Laboratory of Marine Stock-enhancement Biology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, kitashirakawa-oiwakecho, sakyo-ku, Kyoto, 606-8502 Japan. [email protected] Resumen.- Se describen las pesquerías de lenguados del Abstract.- The flatfish fisheries of the South Atlantic Atlántico sur sobre la base de series de valores temporales de Ocean are described from time series of landings between desembarcos pesqueros entre los años 1950 y 1998, e 1950 and 1998 and available information on species life información disponible sobre características biológicas, flotas, history, fleets and gear characteristics, and economical artes de pesca e importancia económica de las especies importance of commercial species.
    [Show full text]
  • Pleuronectidae, Poecilopsettidae, Achiridae, Cynoglossidae
    1536 Glyptocephalus cynoglossus (Linnaeus, 1758) Pleuronectidae Witch flounder Range: Both sides of North Atlantic Ocean; in the western North Atlantic from Strait of Belle Isle to Cape Hatteras Habitat: Moderately deep water (mostly 45–330 m), deepest in southern part of range; found on mud, muddy sand or clay substrates Spawning: May–Oct in Gulf of Maine; Apr–Oct on Georges Bank; Feb–Jul Meristic Characters in Middle Atlantic Bight Myomeres: 58–60 Vertebrae: 11–12+45–47=56–59 Eggs: – Pelagic, spherical Early eggs similar in size Dorsal fin rays: 97–117 – Diameter: 1.2–1.6 mm to those of Gadus morhua Anal fin rays: 86–102 – Chorion: smooth and Melanogrammus aeglefinus Pectoral fin rays: 9–13 – Yolk: homogeneous Pelvic fin rays: 6/6 – Oil globules: none Caudal fin rays: 20–24 (total) – Perivitelline space: narrow Larvae: – Hatching occurs at 4–6 mm; eyes unpigmented – Body long, thin and transparent; preanus length (<33% TL) shorter than in Hippoglossoides or Hippoglossus – Head length increases from 13% SL at 6 mm to 22% SL at 42 mm – Body depth increases from 9% SL at 6 mm to 30% SL at 42 mm – Preopercle spines: 3–4 occur on posterior edge, 5–6 on lateral ridge at about 16 mm, increase to 17–19 spines – Flexion occurs at 14–20 mm; transformation occurs at 22–35 mm (sometimes delayed to larger sizes) – Sequence of fin ray formation: C, D, A – P2 – P1 – Pigment intensifies with development: 6 bands on body and fins, 3 major, 3 minor (see table below) Glyptocephalus cynoglossus Hippoglossoides platessoides Total myomeres 58–60 44–47 Preanus length <33%TL >35%TL Postanal pigment bars 3 major, 3 minor 3 with light scattering between Finfold pigment Bars extend onto finfold None Flexion size 14–20 mm 9–19 mm Ventral pigment Scattering anterior to anus Line from anus to isthmus Early Juvenile: Occurs in nursery habitats on continental slope E.
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Aspects of the Life History of Hornyhead Turbot, Pleuronichthys Verticalis, Off Southern California
    Aspects of the Life History of Hornyhead Turbot, Pleuronichthys verticalis, off Southern California he hornyhead turbot T(Pleuronichthys verticalis) is a common resident flatfish on the mainland shelf from Magdalena Bay, Baja Califor- nia, Mexico to Point Reyes, California (Miller and Lea 1972). They are randomly distributed over the bottom at a density of about one fish per 130 m2 and lie partially buried in the sediment (Luckinbill 1969). Hornyhead turbot feed primarily on sedentary, tube-dwelling polychaetes (Luckinbill 1969, Allen 1982, Cross et al. 1985). They pull the tubes from the sediment, Histological section of a fish ovary. extract the polychaete, and then eject the tube (Luckinbill 1969). Hornyhead turbot are Orange County, p,p’-DDE Despite the importance of batch spawners and may averaged 362 μg/kg wet the hornyhead turbot in local spawn year round (Goldberg weight in hornyhead turbot monitoring programs, its life 1982). Their planktonic eggs liver and 5 μg/kg dry weight in history has received little are 1.00-1.16 mm diameter the sediments (CSDOC 1992). attention. The long-term goal (Sumida et al. 1979). Their In the same year in Santa of our work is to determine larvae occur in the nearshore Monica Bay, p,p’-DDE aver- how a relatively low trophic plankton throughout the year aged 7.8 mg/kg wet weight in level fish like the hornyhead (Gruber et al. 1982, Barnett et liver and 81 μg/kg dry weight turbot accumulates tissue al. 1984, Moser et al. 1993). in the sediments (City of Los levels of chlorinated hydrocar- Several agencies in South- Angeles 1992).
    [Show full text]
  • Identification of Larvae of Three Arctic Species of Limanda (Family Pleuronectidae)
    Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) Morgan S. Busby, Deborah M. Blood & Ann C. Matarese Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-017-2153-9 1 23 Your article is protected by copyright and all rights are held exclusively by 2017. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biol DOI 10.1007/s00300-017-2153-9 ORIGINAL PAPER Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) 1 1 1 Morgan S. Busby • Deborah M. Blood • Ann C. Matarese Received: 28 September 2016 / Revised: 26 June 2017 / Accepted: 27 June 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract Identification of fish larvae in Arctic marine for L. proboscidea in comparison to the other two species waters is problematic as descriptions of early-life-history provide additional evidence suggesting the genus Limanda stages exist for few species. Our goal in this study is to may be paraphyletic, as has been proposed in other studies.
    [Show full text]
  • Pleuronectidae
    FAMILY Pleuronectidae Rafinesque, 1815 - righteye flounders [=Heterosomes, Pleronetti, Pleuronectia, Diplochiria, Poissons plats, Leptosomata, Diprosopa, Asymmetrici, Platessoideae, Hippoglossoidinae, Psettichthyini, Isopsettini] Notes: Hétérosomes Duméril, 1805:132 [ref. 1151] (family) ? Pleuronectes [latinized to Heterosomi by Jarocki 1822:133, 284 [ref. 4984]; no stem of the type genus, not available, Article 11.7.1.1] Pleronetti Rafinesque, 1810b:14 [ref. 3595] (ordine) ? Pleuronectes [published not in latinized form before 1900; not available, Article 11.7.2] Pleuronectia Rafinesque, 1815:83 [ref. 3584] (family) Pleuronectes [senior objective synonym of Platessoideae Richardson, 1836; family name sometimes seen as Pleuronectiidae] Diplochiria Rafinesque, 1815:83 [ref. 3584] (subfamily) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Poissons plats Cuvier, 1816:218 [ref. 993] (family) Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Leptosomata Goldfuss, 1820:VIII, 72 [ref. 1829] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Diprosopa Latreille, 1825:126 [ref. 31889] (family) Platessa [no stem of the type genus, not available, Article 11.7.1.1] Asymmetrici Minding, 1832:VI, 89 [ref. 3022] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Platessoideae Richardson, 1836:255 [ref. 3731] (family) Platessa [junior objective synonym of Pleuronectia Rafinesque, 1815, invalid, Article 61.3.2 Hippoglossoidinae Cooper & Chapleau, 1998:696, 706 [ref. 26711] (subfamily) Hippoglossoides Psettichthyini Cooper & Chapleau, 1998:708 [ref. 26711] (tribe) Psettichthys Isopsettini Cooper & Chapleau, 1998:709 [ref. 26711] (tribe) Isopsetta SUBFAMILY Atheresthinae Vinnikov et al., 2018 - righteye flounders GENUS Atheresthes Jordan & Gilbert, 1880 - righteye flounders [=Atheresthes Jordan [D.
    [Show full text]
  • Greenland Turbot Assessment
    6HFWLRQ STOCK ASSESSMENT OF GREENLAND TURBOT James N. Ianelli, Thomas K. Wilderbuer, and Terrance M. Sample 6XPPDU\ Changes to this year’s assessment in the past year include: 1. new summary estimates of retained and discarded Greenland turbot by different target fisheries, 2. update the estimated catch levels by gear type in recent years, and 3. new length frequency and biomass data from the 1998 NMFS eastern Bering Sea shelf survey. Conditions do not appear to have changed substantively over the past several years. For example, the abundance of Greenland turbot from the eastern Bering Sea (EBS) shelf-trawl survey has found only spotty quantities with very few small fish that were common in the late 1970s and early 1980s. The majority of the catch has shifted to longline gear in recent years. The assessment model analysis was similar to last year but with a slightly higher estimated overall abundance. We attribute this to a slightly improved fit to the longline survey data trend. The target stock size (B40%, female spawning biomass) is estimated at about 139,000 tons while the projected 1999 spawning biomass is about 110,000 tons. The adjusted yield projection from F40% computations is estimated at 20,000 tons for 1999, and increase of 5,000 from last year’s ABC. Given the continued downward abundance trend and no sign of recruitment to the EBS shelf, extra caution is warranted. We therefore recommend that the ABC be set to 15,000 tons (same value as last year). As additional survey information become available and signs of recruitment (perhaps from areas other than the shelf) are apparent, then we believe that the full ABC or increases in harvest may be appropriate for this species.
    [Show full text]
  • A Review of Soles of the Genus Aseraggodes from the South Pacific, with Descriptions of Seven New Species and a Diagnosis of Synclidopus
    Memoirs of Museum Victoria 62(2): 191–212 (2005) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs/index.asp A review of soles of the genus Aseraggodes from the South Pacific, with descriptions of seven new species and a diagnosis of Synclidopus. JOHN E. RANDALL Bishop Museum, 1525 Bernice St. Honolulu, Hawai’i 96817–2704, USA ([email protected]) Abstract Randall, J.E. 2005. A review of soles of the genus Aseraggodes from the South Pacific, with descriptions of seven new species and a diagnosis of Synclidopus. Memoirs of Museum Victoria 62(2): 191–212 The soleid genus Parachirus Matsubara and Ochiai is referred to the synonymy of Aseraggodes Kaup. Aseraggodes persimilis (Günther) and A. ocellatus Weed are reclassified in the genus Pardachirus Günther. Synclidopus macleayanus (Ramsay) from Queensland and NSW is redescribed. A diagnosis is given for Aseraggodes, and a key and species accounts provided for the following 12 species of the genus from islands of Oceania in the South Pacific and the east coast of Australia: A. auroculus, sp. nov. from the Society Islands; A. bahamondei from Easter Island and Lord Howe Island; A. cyclurus, sp. nov. from the Society Islands; A. lateralis, sp. nov. from the Marquesas Islands; A. lenisquamis, sp. nov. from NSW; A. magnoculus sp. nov. from New Caledonia; A. melanostictus (Peters) from 73 m off Bougainville and a first record for the Great Barrier Reef from 115 m; A. nigrocirratus, sp. nov. from NSW; A. normani Chabanaud from southern Queensland and NSW; A. pelvicus, sp. nov.
    [Show full text]
  • CHAPTER 3 FISH and CRUSTACEANS, MOLLUSCS and OTHER AQUATIC INVERTEBRATES I 3-L Note
    )&f1y3X CHAPTER 3 FISH AND CRUSTACEANS, MOLLUSCS AND OTHER AQUATIC INVERTEBRATES I 3-l Note 1. This chapter does not cover: (a) Marine mammals (heading 0106) or meat thereof (heading 0208 or 0210); (b) Fish (including livers and roes thereof) or crustaceans, molluscs or other aquatic invertebrates, dead and unfit or unsuitable for human consumption by reason of either their species or their condition (chapter 5); flours, meals or pellets of fish or of crustaceans, molluscs or other aquatic invertebrates, unfit for human consumption (heading 2301); or (c) Caviar or caviar substitutes prepared from fish eggs (heading 1604). 2. In this chapter the term "pellets" means products which have been agglomerated either directly by compression or by the addition of a small quantity of binder. Additional U.S. Note 1. Certain fish, crustaceans, molluscs and other aquatic invertebrates are provided for in chapter 98. )&f2y3X I 3-2 0301 Live fish: 0301.10.00 00 Ornamental fish............................... X....... Free Free Other live fish: 0301.91.00 00 Trout (Salmo trutta, Salmo gairdneri, Salmo clarki, Salmo aguabonita, Salmo gilae)................................... X....... Free Free 0301.92.00 00 Eels (Anguilla spp.)..................... kg...... Free Free 0301.93.00 00 Carp..................................... X....... Free Free 0301.99.00 00 Other.................................... X....... Free Free 0302 Fish, fresh or chilled, excluding fish fillets and other fish meat of heading 0304: Salmonidae, excluding livers and roes: 0302.11.00 Trout (Salmo trutta, Salmo gairdneri, Salmo clarki, Salmo aguabonita, Salmo gilae)................................... ........ Free 2.2¢/kg 10 Rainbow trout (Salmo gairnderi), farmed.............................. kg 90 Other............................... kg 0302.12.00 Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar) and Danube salmon (Hucho hucho).............
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Witch Flounder, Glyptocephalus Cynoglossus, Life History and Habitat Characteristics
    NOAA Technical Memorandum NMFS-NE-139 Essential Fish Habitat Source Document: Witch Flounder, Glyptocephalus cynoglossus, Life History and Habitat Characteristics U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Region Northeast Fisheries Science Center Woods Hole, Massachusetts September 1999 Recent Issues 105. Review of American Lobster (Homarus americanus) Habitat Requirements and Responses to Contaminant Exposures. By Renee Mercaldo-Allen and Catherine A. Kuropat. July 1994. v + 52 p., 29 tables. NTIS Access. No. PB96-115555. 106. Selected Living Resources, Habitat Conditions, and Human Perturbations of the Gulf of Maine: Environmental and Ecological Considerations for Fishery Management. By Richard W. Langton, John B. Pearce, and Jon A. Gibson, eds. August 1994. iv + 70 p., 2 figs., 6 tables. NTIS Access. No. PB95-270906. 107. Invertebrate Neoplasia: Initiation and Promotion Mechanisms -- Proceedings of an International Workshop, 23 June 1992, Washington, D.C. By A. Rosenfield, F.G. Kern, and B.J. Keller, comps. & eds. September 1994. v + 31 p., 8 figs., 3 tables. NTIS Access. No. PB96-164801. 108. Status of Fishery Resources off the Northeastern United States for 1994. By Conservation and Utilization Division, Northeast Fisheries Science Center. January 1995. iv + 140 p., 71 figs., 75 tables. NTIS Access. No. PB95-263414. 109. Proceedings of the Symposium on the Potential for Development of Aquaculture in Massachusetts: 15-17 February 1995, Chatham/Edgartown/Dartmouth, Massachusetts. By Carlos A. Castro and Scott J. Soares, comps. & eds. January 1996. v + 26 p., 1 fig., 2 tables. NTIS Access. No. PB97-103782. 110. Length-Length and Length-Weight Relationships for 13 Shark Species from the Western North Atlantic.
    [Show full text]
  • Technical Reports
    Technical Report No. 30 A Bibliography on Atlantic Halibut (Hippoglossus hippoglossus) and.Pacific Halibut (Hippoglossus stenolepis) Culture, with Abstracts compiled by Robert R. Stickney and Damon Seawright School of Fisheries, University of Washington 25 FOREWORD This bibliography includes publications on the culture of Atlantic halibut (Hippoglossus hippoglossus) and Pacific halibut (H. stenolepis). The literature was surveyed through early 1993, with concentration on the past decade when efforts to culture halibut began in earnest. For publications with abstracts, the abstracts (sometimes slightly modified to maintain continuity of style) are reproduced here. In the case of some of the publications where there were no abstracts, a brief summary is provided. 26 A Bibliography on Atlantic Halibut (Hippoglossus hippoglossus) and Pacific Halibut (Hippoglossus stenolepis) Culture,with Abstracts compiled by Robert R. Stickney and Damon Seawright School of Fisheries, University of Washington Andreasen, T. Y., T. Haug, and E. Ringo. 1989. Food, condition, and the lipid and protein contents of young Atlantic halibut (Hippoglossus hippoglossus L.) captured in the autumn in north Norway. Int. Council Explor. Sea. C.M. 19891F:3. 17 p. The diet of young (2 - 4 years), immature Atlantic halibut (Hippoglossus hippoglossus ) from nursery areas in north Norway was dominated by O-group gadoids (cod (Gadus morhua) in particular) and sand eels (Ammodytes sp.). No variation was observed among the sexes in general condition (liver and body) or in the content of total lipids or proteins in red myotomal muscle, anal fin base and liver. In white myotomal muscle, however, significant intersexual heterogeneity was observed in lipid and protein contents. The muscle tissues showed a high content of polar lipids, reflecting the relatively low total lipid content, whereas the fin base notch and liver were totally dominated by the triglycerides of the neutral fraction.
    [Show full text]