Dd. Muscular System Anatomy

Total Page:16

File Type:pdf, Size:1020Kb

Dd. Muscular System Anatomy 2. Control of Body Openings and Passages Muscular System ring-like sphincter muscles around eyelids, The Muscular System consists of about 700 muscle pupils, mouth, urethra, anus organs that are typically attached to bones across a joint to produce all voluntary usually also associated with involuntary internal sphincters movements eg. anal, urethral sphincters the design and integration of our muscles is the 3. Posture & Stability result of millions of years of evolutionary pressures sustained partial contractions eg. new analyses (2004) indicate that the the anatomy and at any moment most of our muscles are probably at physiology of humans became adapted toward distance least partially contracted running and spear throwing about 2 M years ago resists gravity, prevents unwanted running was perhaps an adaptation for hunting à running movements prey to exhaustion a well conditioned human can run 5 miles or more as good 4. Communication as wild dogs, zebras, anteloes and wildebeasts facial expression, hand gestures, body it would also allow us to compete with dogs and hyenas for widely dispersed carcasses language, writing, speech eg. humans are the only primates who can launch a spear or 5. Control of Body Temperature rock overhand with speed, force, and precision all other primates throw underarm with poor aim muscles comprise 40-50% of body mass General Functions of Muscular System: metabolism requires lots of energy (ATP) for movement 1. movement ~25% = energy of movement ~75% = heat energy voluntary – skeletal muscles skeletal muscles generate up to 85% of our Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 1 Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 2 body heat individual cells = endomysium fascicles = perimysium Muscle Organs: whole organ = epimysium almost 700 muscle organs in body epimysium also called deep fascia as distinct from superficial fascia of skin each limb is operated by over 50 muscles not very tough and strong yet flexible, very elastic including many stabilizer muscles àcollagen fibers mostly muscle organs range from extremely small to broad very strong, rarely separated from bone or muscle flat sheets extends beyond muscle and attaches muscle to muscle organs consists of several kinds of tissue: bone or to other muscles 1. fibrous connective tissue (between each end is body of muscle) 2. nervous tissue 3. muscle tissue tough strap = tendon (=sinews) 1. Fibrous Connective Tissue broad sheet = aponeurosis Fascia (=sheets of fibrous connective tissue) are found between the skin and muscles and surrounding muscle tissue tendons are continuous with periosteum of bones superficial fascia lies beneath the skin elastic recoil of tendons increases power of deep fascia below this is part of muscle organ muscle (eg kangaroos and jumping animals) forms continuous sheath (series elastic tendons are often surrounded by tendon sheath components) of tissue from endomysium to of synovial membrane bone matrix àfluid lubricates tendons to reduce friction arranged in overlapping layers: also are synovial sacs = bursae Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 3 Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 4 scattered between tendons and muscles NT crosses synapse to trigger contraction wherever ther is lots of friction and tension (30-40 M ACh receptors/motor end plate) 2. Nervous Tissue binding opens channelsà creates action potential almost all muscles in the body are under direct or 3. Muscle Tissue indirect control of the CNS, esp skeletal muscles close to half of body consists of muscle tissue skeletal muscles are innervated by elongated cells, spindle shaped, up to 1 ft long somatic motor neurons (voluntary) = muscle fibers skeletal muscles will not contract without very little matrix, instead embedded in framework stimulation of fibrous connective tissue each motor neuron branches into 200 or so highly contractile and elastic synaptic knobs (within a motor end plate) muscle cells stop dividing at birth (# fixed at birth) each muscle cell in innervated by only one motor àbut each cell can expand greatly in volume neuron development is affected by sex hormones each neuron typically innervates ~200 muscle cells à males’ muscles respond better than females’ to exercise connection between neuron and muscle cell there are three kinds of muscle tissue: = neuromuscular junction at motor end plate 1. striated: most abundant, voluntary most attached to two or more bones not a direct connection, synapse or gap across a joint neurotransmitter, Acetylcholine, is released Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 5 Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 6 all organs of the muscular system are made muscle fiber of striated muscle tissues all skeletal muscles receive ~1.25 liter of 2. smooth: internal organs; arranged in two or blood/min at rest (~1/4th total blood supply) more layers eg circular and longitudinal during heavy exercise they can use up to 11.6 produce several kinds of movements: liters/min (>3/4th ‘s of all blood) eg. peristalsis increased demand for oxygen and glucose =slow wavelike contractions that are used to push materials down a “tube” within the body Muscle Compartments eg. segmentation =a mixing motion made by smooth muscle lining the digestive tract muscles of the limbs are arranged into tightly packed “compartments” eg. sphincters =involuntary (reflex) control over various internal fascia surround and enclose the muscles, nerves and body openings blood vessels within each compartment 3. cardiac: heart only if the blood vessels within a compartment are main movement is: damaged blood and tissue fluid accumulate systole/diastole à fascia prevent swelling and relief of pressure =coordinated contraction and relaxation of the chambers of the heart à blood vessels and nerves are compressed and Blood Supply to Muscles obstructed our voluntary muscles have a rich blood supply to if pressure persists for >2-4 hrs nerves begin bring needed oxygen and energy molecules to the to die cells endomysium is full of capillaries that reach every Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 7 Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 8 intrinsic muscles are entirely contained within a particular region (both origin and insertion) Some Basic Principles of extrinsic muscles has its origin in place different Voluntary Muscle Function than insertion 1. Bones act as levers and pivots (fulcrums) eg. some muscles that move fingers 2. Muscles can only pull not push most skeletal muscles are arranged in bundles with ends attached to two different bones any movement requires coordination of several muscles muscles pull across joints to produce movement eg. opposing pairs Each muscle must attach to at least two eg. functional groups different bones on opposite sides of an articulation: prime mover synergist (including fixators) origin – proximal, less mobile point of attachment antagonists body – most muscle fibers grouped here 3. Kinds of body movements: insertion – distal and more mobile point of attachment the synovial joints of the body each allow specific kinds of voluntary movements, *Usually the body of the muscle that moves a such as: part does not lie over the part it moves flexion/extension Intramuscular Injections: muscles with thick bellies commonly used when drug must be = decrease vs increase angle absorbed more slowly or is given in large doses (inc. hyperextension (beyond anatomical position) eg. deltoid, gluteus medius, vastus lateralis supination/pronation = rotate outward vs inward intrinsic vs extrinsic muscles: Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 9 Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 10 adduction/abduction = toward vs away from median origin and insertion (sternocleidomastoid) levator/depressor = produces upward vs downward movement number of origins (biceps, triceps) rotation/circumduction = pivot vs describe cone shape (deltoid, trapezius) eversion/inversion = turns sole outward vs inward action (flexors, extensors) dorsiflexion/plantarflexion = toes up vs toes down flexes foot vs extends foot at ankle joint other kinds of muscle movements: tensor = makes body part more rigid sphincter =decreases size of opening (orbicularis); voluntary or smooth muscles 4. Skeletal muscle are named in several ways: direction of muscle fibers (rectus, transverse, oblique) location (temporalis, orbicularis oris) size (maximus, minimus) Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 11 Biol 2401: Anatomy & Physiology I: Muscular System; Ziser Lecture Notes, 2016.3 12 flexes fingers flexor digitorum Examples of extends fingers extensor digitorum Human Muscle Groups: E. Muscles that move thigh Muscles of the Appendages abduct/adduct abduct thigh tensor fascia latae A. Muscles that move the pectoral girdle adduct thigh adductor longus adductor magnus levate/depress gracilis levates & depresses scapula trapezius flex/extend depresses scapula latissimus dorsi flexors sartorius several movements of scapula pectoralis major rectus femoris tensor fascia latae B. Muscles that move the upper arm extensors gluteus maximus biceps femoris adduct/abduct semitendinosus abduct arm deltoid semimembranosus adduct arm pectoralis major latissimus
Recommended publications
  • The Human Body Systems for Kids
    1 Maine Regional School Unit #67 Chester, Lincoln, Mattawamkeag The Human Body Systems for Kids KidsKonnect.com and kidshealth.org provide links to more detailed information about each of the systems listed below. The first group of systems are commonly taught in the elementary grades. Teachers wishing more detailed information should consult sources beyond this handout. There are many systems in the human body. • Skeletal System (bones) • Respiratory System (nose, trachea, lungs) • Circulatory System (heart, blood, vessels) • Digestive System (mouth, esophogus, stomach, intestines) • Muscular System (muscles) • Nervous System (brain, spinal cord, nerves) • Excretory System (lungs, large intestine, kidneys) • Urinary System (bladder, kidneys) • Endocrine System (glands) • Reproductive System (male and female reproductive organs) • Immune System (many types of protein, cells, organs, tissues) 2 The Skeletal System has three major jobs: • It protects our vital organs such as the brain, the heart, and the lungs. • It gives us the shape that we have. • It allows us to move. Because muscles are attached to bones, when muscles move, they move the bones and the body moves. http://kidshealth.org/kid/htbw/bones.html The Respiratory System is the system of the body that deals with breathing. When we breathe, the body takes in the oxygen that it needs and removes the carbon dioxide that it doesn't need. The organ most closely connected with this system is the lung. The human body has two lungs. http://kidshealth.org/kid/htbw/lungs.html 3 The Circulatory System is the system by which oxygen and nutrients reach the body's cells, and waste materials are carried away.
    [Show full text]
  • The Muscular System
    THE MUSCULAR SYSTEM COMPILED BY HOWIE BAUM 1 Muscles make up the bulk of the body and account for 1/3 of its weight.!! Blood vessels and nerves run to every muscle, helping control and regulate each muscle’s function. The muscular system creates body heat and also moves the: Bones of the Skeletal system Food through Digestive system Blood through the Circulatory system Fluids through the Excretory system MUSCLE TISSUE The body has 3 main types of muscle tissue 1) Skeletal, 2) Smooth, and 3) Cardiac SKELETAL MUSCLE SMOOTH MUSCLE CARDIAC MUSCLE Skeletal muscles attach to and move bones by contracting and relaxing in response to voluntary messages from the nervous system. Skeletal muscle tissue is composed of long cells called muscle fibers that have a striated appearance. Muscle fibers are organized into bundles supplied by blood vessels and innervated by motor neurons. Muscle structure Skeletal (striated or voluntary) muscle consists of densely packed groups of hugely elongated cells known as myofibers. These are grouped into bundles (fascicles). A typical myofiber is 2–3 centimeters ( 3/4–1 1/5 in) long and 0.05millimeters (1/500 inch) in diameter and is composed of narrower structures – myofibrils. These contain thick and thin myofilaments made up mainly of the proteins actin and myosin. Numerous capillaries keep the muscle supplied with the oxygen and glucose needed to fuel contraction. Skeletal Muscles • Skeletal muscles attach to bones by tendons (connective tissue) and enable movement. • Skeletal muscles are mostly voluntary Feel the back of your ankle to feel your Achilles tendon - the largest tendon in your body.
    [Show full text]
  • THE 6 MAJOR BODY SYSTEMS and How They Interact with Each Other to Keep the “Body Machine” Alive and Working Well
    THE 6 MAJOR BODY SYSTEMS And how they interact with each other to keep the “body machine” alive and working well. CIRCULATORY SYSTEM / CARDIOVASCULAR SYSTEM PRIMARY PURPOSE: transport blood throughout the body by circulating PRIMARY ORGANS/PARTS: Heart, blood vessels (arteries, veins, capillaries) (1) Transports/carries nutrients and oxygen through the blood to most parts of the body (2) Transports/carries waste in cells and carbon-dioxide (CO2) away from the parts: (a) Cell waste goes to the kidneys for filter and disposal (b) Carbon-dioxide (CO2) goes to the lungs to exhale (breathe out) Kidneys and Lungs have a close relationship with Cardiovascular system Kidneys: filter through blood to take out the waste and get it eventually out of the body Lungs: breathes in oxygen and gives it to the blood for Circulatory system to carry throughout the body; and takes unneeded carbon-dioxide (CO2) from the blood and breathes that out. Circulatory/Cardiovascular System through the blood to most parts of the body provides nutrients and oxygen ​ which is needed for our bodies to have ENERGY! RESPIRATORY SYSTEM PRIMARY PURPOSE: Breathing - taking in Oxygen, pushing out Carbon-Dioxide (CO2) PRIMARY ORGANS: Lungs, trachea (tube going from lungs to nose/mouth) (1) Inhales (breathes in) Oxygen - good for the body - gives it to the Circulatory System to be transported throughout the body through the blood. (2) Exhales (breathes out) Carbon-Dioxide (CO2) - lungs get this gas from the blood (Circ. Sys.) and pushes it out of the body DIGESTIVE SYSTEM PRIMARY PURPOSE: take in food; break down food into nutrients (good) and waste (unneeded) PRIMARY ORGANS: Stomach, large and small intestines, esophagus (tube from stomach to mouth) (1) Digestive System gets nutrients (good) from food and hands it over to the blood and Circulatory System then carries those nutrients where they need to go.
    [Show full text]
  • Body Systems Work Together by Cindy Grigg
    Body Systems Work Together By Cindy Grigg 1 You know that your body is made of cells. When groups of cells do the same kind of work, they are called tissues. The word tissue comes from a Latin word meaning to "weave." Cells that make up tissues are sometimes "woven" together. 2 You have four main types of tissues: epithelial, nervous, muscle, and connective tissue. Epithelial tissue covers the outside of the body. It also lines organs and cavities. Nervous tissue sends electrical signals. Muscle tissue helps you move. Connective tissue joins bones and cushions organs. 3 When groups of tissues work together, they are called organs. Some examples of organs are the heart, lungs, skin, and stomach. When organs work together, they are called systems. For example, your heart, lungs, blood, and blood vessels work together. They make up the circulatory system. 4 There are eleven systems in the human body: muscular system, respiratory system, digestive system, integumentary system (skin), skeletal system, circulatory (or cardiovascular) system, excretory (or urinary) system, reproductive system, nervous system, lymphatic system, and endocrine system. Each system has a special job. 5 All of your body systems have to work together to keep you healthy. Your bones and muscles work together to support and move your body. Your respiratory system takes in oxygen from the air. It also gets rid of carbon dioxide. 6 Your digestive system absorbs water and nutrients from the food you eat. 7 Your circulatory system carries oxygen, water, and nutrients to cells throughout your body. Wastes from the cells are eliminated by your respiratory system, your excretory system, and your skin.
    [Show full text]
  • Our Body: the Universe Within at the Puyallup Fair
    PART 4 Our Body: The Universe Within at the Puyallup Fair SYSTEMS OF THE BODY Your body is made of systems that all work to keep you going strong. Learn about the digestive, circulatory and musculoskeletal systems today and explore other systems of your body during your visit to the fee-based exhibit Our Body: The Universe Within at the Puyallup Fair. DIGESTIVE SYSTEM The digestive system processes food and breaks it down into usable proteins, fats, minerals, carbohydrates and other substances. The digestion process begins in your mouth when salivary glands produce saliva, secretions that mix with food and break it down. The food then goes down your esophagus in peristaltic waves, or waves of muscular contractions, to the stomach. The stomach contains chemicals like hydrochloric acid and enzymes. The stomach gradually releases materials into the small intestine, where digestion is further completed. All the nutrients are absorbed into the bloodstream, leaving the rest as unusable residue which passes through the large intestine to the rectum. The digestive system is composed of the stomach, small and large intestines, liver and pancreas. Fun Facts: 1. About 2/3 of the body is water. 2. Scientists estimate that almost 400,000 cases of cancer in the U.S. could be prevented solely through changes in the diet. 3. The liver is the largest gland and the second-largest organ in the human body. 4. Digestion begins when you chew your food. CIRCULATORY SYSTEM The circulatory system has three distinct parts: pulmonary circulation (lungs), coronary circulation (heart), and systemic circulation (veins and arteries).
    [Show full text]
  • Lesson 8: Muscular and Digestive Systems and Hepatitis B Glossary
    Lesson 8: Muscular and Digestive Systems and Hepatitis B Glossary 1. cardiac muscles: found only in the heart, they pump blood through the heart and body 2. esophagus: food moves down this tube-like body part after you swallow, with the help of muscle contractions 3. gallbladder: this organ stores the bile from the liver and releases it into the small intestine, which helps break down the fat in foods 4. Hepatitis B (HBV): a virus that causes inflammation of the liver and may lead to severe liver damage 5. large intestine (also called bowel or colon): undigested food from the small intestine ends up here, where excess water is absorbed by the body 6. liver: this organ filters toxins out of your blood; the liver also makes a fluid called bile, which helps release nutrients from your food 7. muscular system: works with the skeletal system to make body movement possible; your body moves when muscles contract 8. rectum and anus: food from the large intestine passes through the rectum and anus, where waste is eliminated 9. skeletal muscles: sometimes called voluntary muscles, skeletal muscles are associated with voluntary movement (such as picking up a cup) 10. small intestine: food moves from the stomach to the small intestine, where major digestion happens and nutrients are absorbed into the circulatory system 11. smooth muscle: known as involuntary muscle, it is found in all systems of the body responsible for unconscious movement (such as the movement of food down the esophagus) 12. stomach: strong acid (hydrochloric acid) in this organ breaks down proteins in your food 13.
    [Show full text]
  • Muscular System Essential Question
    1.04 Remember the structures of the muscular system Essential Question • What are the structures of the muscular system? 1.04 Remember the structures of 2 the muscular system The Muscular System • Comprises nearly half our weight. • Over 650 muscles. • Each muscle is made up of hundreds or thousands of muscle fibers. 1.04 Remember the structures of 3 the muscular system The Muscular System: Muscle Fibers • Bundles of threadlike structures called myofibrils – Composed of: • Myosin • Actin – Form overlapping pattern called sarcomere muscle muscle fiber sarcolemma sarcomere functional unit of muscle movement 1.04 Remember the structures of 4 the muscular system Structures of the muscular system Muscles Connective tissue . Skeletal . Tendons . Smooth . Fascia . Cardiac . Sphincter 1.04 Remember the structures of 5 the muscular system Structures of the muscular system Types of muscle . Skeletal . Smooth . Cardiac . Sphincter 1.04 Remember the structures of 6 the muscular system Structures of the muscular system Types of Muscle Skeletal muscles . Attached to bone . Striated (striped) appearance . Voluntary . Multinucleated muscle cell bundles 1.04 Remember the structures of 7 the muscular system Structures of the muscular system Types of Muscle Smooth muscles . Also known as visceral muscles . Involuntary . Located in walls of digestive system, uterus & blood vessels 1.04 Remember the structures of 8 the muscular system Structures of the muscular system Types of Muscle Cardiac muscle . Found only in the heart . Striated, branched . Involuntary . Cells are fused- when one contracts, they all contract, creating the heartbeat 1.04 Remember the structures of 9 the muscular system Structures of the muscular system Types of Muscle Sphincter muscles .
    [Show full text]
  • Diseases of the Muscular System
    Muscular System Honors Anatomy & Physiology Susan Chabot Lemon Bay High School Skeletal, Smooth, or Cardiac SKELETAL SMOOTH CARDIAC Striated Not striated Striated Voluntary Involuntary Involuntary Multinucleated Single nucleus Single nucleus Bound to bones In hollow Heart muscle organs/ stomach Moves skeleton Moves food Moves blood • The remainder of the chapter will focus on SKELETAL MUSCLE • Smooth/Visceral muscle will be covered in the DIGESTIVE system • Cardiac muscle will be covered in the CARDIOVASCULAR system. Introduction Muscles are: organs made of specialized cells that use nutrients for energy to contract. Skeletal Muscle action provide: Movement of skeleton Muscle tone and posture Stabilizes joints Generate body heat Not included in book BUT important Protect abdominal organs Make a Cell Using the clay provided, construct a typical cell. Cell vs. Muscle cell/Muscle fiber Typical body cells are round with a single, central nucleus. Muscle cells/FIBERS are elongated often with several nuclei pushed to the outside of the cytoplasm. Skeletal Muscle Structure Composed of several tissue types: Skeletal muscle tissue Nervous tissue Blood (Connective tissue) Dense Connective tissue Attached to bone through a tendon. Attached to other muscles or organs through a sheet-like tendon called an aponeuroses. Connective Tissue Used to separate individual skeletal muscles and hold in position. Insulates and bundles individual skeletal muscle cells, aka muscle fibers. Allows for blood vessels and nerves to pass into the muscle fiber. Allows different parts of the muscle to move independently. TENDON EPImysium ENDOmysium Bone MYOFIBRIL PERImysium MUSCLE FIBER/cell FASCICLE Transform your cell into a muscle fiber Skeletal Muscle Fiber An individual muscle cell.
    [Show full text]
  • Rat External Anatomy the Muscular System of The
    Rat External Anatomy Procedure: Obtained your rat and observe the general characteristics. Key terms are highlighted in grey. The rat's body is divided into six anatomical regions: cranial region - head cervical region - neck pectoral region - area where front legs attach thoracic region - chest area abdomen - belly pelvic region - area where the back legs attach 1. Note the hairy coat that covers the rat and the sensory hairs (whiskers) located on the rat's face, called vibrissae. 2. The mouth has a large cleft in the upper lip which exposes large front incisors. Rats are gnawing mammals, and these incisors will continue to grow for as long as the rat lives. 3. Note the eyes with the large pupil and the nictitating membrane found at the inside corner of the eye. This membrane can be drawn across the eye for protection. The eyelids are similar to those found in humans. 4. The ears are composed of the external part, called the pinna, and the auditory meatus, the ear canal. 5. Locate the teats on the ventral surface of the rat. Check a rat of another sex and determine whether both sexes have teats. 6. Examine the tail, the tails of rats do not have hair. Though some rodents, like gerbils, have hair on their tails. 7. Locate the anus, which is ventral to the base of the tale. 8. Determine whether your rat is male or female by looking near the tail for the male or female genital organs. The Muscular System of the Rat Checkpoint—have Your teacher initial lab before continuing.
    [Show full text]
  • Muscle and Nerve -1 Small
    MUSCULAR SYSTEM Introduction – Functions and basic types of muscle cells Skeletal muscle cells and connective tissues The nervous system Mechanism of muscle contraction Motor unit Action potential – basis of EMG Length tension characteristics Force regulation in skeletal muscles Energy consideration of muscle contraction Cellular respiration Fatigue in static and dynamic muscular work Functions The muscular system is composed of specialized cells called muscle fibers. Their main characteristic is their ability to contract. Muscles, where attached to bones or internal organs and blood vessels, are responsible for movement. Nearly all movements in the body are the result of muscle contraction. The integrated action of joints, bones, and skeletal muscles produces obvious movements such as walking and running. Skeletal muscles also produce more subtle movements that result in various facial expressions, eye movements, and respiration. In addition to movement, muscle contraction also fulfills some other important functions in the body, such as posture, joint stability, and heat production. Posture, such as sitting and standing, is maintained as a result of force produced by muscle contraction. The skeletal muscles are continually making fine adjustments that hold the body in stationary positions. The tendons of many muscles extend over joints and in this way contribute to joint stability. This is particularly evident in the knee and shoulder joints, where muscle tendons are a major factor in stabilizing the joint. Heat production, to maintain body temperature, is an important by-product of muscle metabolism. Nearly 85 percent of the heat produced in the body is the result of muscle contraction. A. K. Sengupta 9/9/2010 1/12 Muscles Types There are three types of muscles: skeletal, smooth, and cardiac.
    [Show full text]
  • Anatomy and Physiology Model Guide Book
    Anatomy & Physiology Model Guide Book Last Updated: August 8, 2013 ii Table of Contents Tissues ........................................................................................................................................................... 7 The Bone (Somso QS 61) ........................................................................................................................... 7 Section of Skin (Somso KS 3 & KS4) .......................................................................................................... 8 Model of the Lymphatic System in the Human Body ............................................................................. 11 Bone Structure ........................................................................................................................................ 12 Skeletal System ........................................................................................................................................... 13 The Skull .................................................................................................................................................. 13 Artificial Exploded Human Skull (Somso QS 9)........................................................................................ 14 Skull ......................................................................................................................................................... 15 Auditory Ossicles ....................................................................................................................................
    [Show full text]
  • Musculoskeletal System
    4 Musculoskeletal System Learning Objectives Upon completion of this chapter, you will be able to • Identify and define the combining forms, prefixes, and suffixes introduced in this chapter. • Correctly spell and pronounce medical terms and major anatomical structures relating to the musculoskeletal system. • Locate and describe the major organs of the musculoskeletal system and their functions. • Correctly place bones in either the axial or the appendicular skeleton. • List and describe the components of a long bone. • Identify bony projections and depressions. • Identify the parts of a synovial joint. • Describe the characteristics of the three types of muscle tissue. • Use movement terminology correctly. • Identify and define musculoskeletal system anatomical terms. • Identify and define selected musculoskeletal system pathology terms. • Identify and define selected musculoskeletal system diagnostic procedures. • Identify and define selected musculoskeletal system therapeutic procedures. • Identify and define selected medications relating to the musculoskeletal system. • Define selected abbreviations associated with the musculoskeletal system. 83 M04_FREM0254_06_SE_C04.indd 83 18/12/14 10:12 pm Section I: Skeletal System at a Glance Function The skeletal system consists of 206 bones that make up the internal framework of the body, called the skeleton. The skeleton supports the body, protects internal organs, serves as a point of attachment for skeletal muscles for body movement, produces blood cells, and stores minerals. Organs Here
    [Show full text]