Tistrella Mobilis Gen. Nov., Sp. Nov., a Novel Polyhydroxyalkanoate-Producing Bacterium Belonging to Α-Proteobacteria

Total Page:16

File Type:pdf, Size:1020Kb

Tistrella Mobilis Gen. Nov., Sp. Nov., a Novel Polyhydroxyalkanoate-Producing Bacterium Belonging to Α-Proteobacteria J. Gen. Appl. Microbiol., 48, 335–343 (2002) Full Paper Tistrella mobilis gen. nov., sp. nov., a novel polyhydroxyalkanoate- producing bacterium belonging to a-Proteobacteria Bin-Hai Shi, Vullapa Arunpairojana,1 S. Palakawong,1 and Akira Yokota* Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113–0032, Japan 1 Thailand Institute of Scientific and Technological Research, 196, Phahonyothin Road, Chatuchak, Bangkok 10900, Thailand (Received October 2, 2001; Accepted November 13, 2002) Strain IAM 14872, isolated from wastewater in Thailand, is capable of producing polyhydrox- yalkanoate. This bacterium is Gram-negative, rod-shaped, strictly aerobic and highly motile with a single polar flagellum. Both oxidase and catalase activities are positive. The G؉C content of DNA is 67.5% and Q-10 is the major quinone. The major cellular fatty acids are C18:1w7c, 2-OH C18:0 and 3-OH C14:0. On the basis of the 16S rDNA sequence analysis and phenotypic properties, it is proposed that the strain IAM 14872 be classified in a new genus as Tistrella mobilis gen. .(TISTR 1108T؍) nov., sp. nov. The type strain is IAM 14872T Key Words——PHA and polyhydroxyalkanoate; a-Proteobacteria; 16S rDNA; taxonomy; Tistrella mo- bilis gen. nov., sp. nov. Introduction used for the microbial transformation of carbohydrate feedstock via PHA into chiral depolymerization prod- Polyhydroxyalkanoates (PHAs) are known to be pro- ucts (Seebach and Zuger, 1985) or small-molecule or- duced as intracellular granules by a variety of bacteria, ganic chemicals by pyrolysis (Anderson and Dawes, such as Alcaligenes eutrophus, Pseudomonas oleovo- 1990). So far, these biodegradable PHAs, however, rans, Rhodospirillum rubrum, etc. (Anderson and are not priced competitively mainly because of the Dawes, 1990). PHA accumulation usually occurs high cost, which lies in both the use of glucose as a under aerobic conditions when the carbon source is fermentation feedstock and the low product yield. present in excess but one or more other nutrients are For the purpose of isolating strains capable of pro- limited (Liu et al., 2000), and some phototrophic purple ducing PHA efficiently, we tried to isolate bacteria from sulfur bacteria accumulate PHAs when growing anaer- samples collected from various sources, including soil, obically in the light (Mas and Gemerden, 1995). Poly- compost, garbage, activated sludge, raw sewage, b-hydroxybutyrate (PHB) is the most common repre- freshwater, wastewater and estuarine environments. sentative of PHA. PHA is a biodegradable, biocompati- Nine strains of PHA-producing bacteria were isolated. ble and thermoplastic material, which has a potential Among these strains, strain IAM 14872T showed good role as a so-called biomass transducer, i.e., it can be ability in producing PHA efficiently. In this paper we report on the phenotypic and phylo- genetic characterization of strain IAM 14872T. On the * Address reprint requests to: Dr. Akira Yokota, Institute of Molecular and Cellular Biosciences, The University of Tokyo, basis of the results presented, we propose that strain T 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan. IAM 14872 be classified as Tistrella mobilis gen. nov., E-mail: [email protected] sp. nov. 336 SHI, ARUNPAIROJANA, and YOKOTA Vol. 48 Materials and Methods al., 1994). PCR (Mullis and Faloona, 1987) was per- formed with Ex Taq polymerase (TaKaRa, Shiga, Bacterial strains and isolation.Twenty samples Japan) and the following primers: 8F 5Ј-AGAGT- were collected from soil, compost, garbage, activated TTGATCCTGGCTCAG-3Ј, 1510R 5Ј-GGCTACCT- sludge, raw sewage, freshwater, wastewater and estu- TGTTACGA-3Ј (according to Escherichia coli number- arine environments. Screenings were performed in ing). DNA was purified using GFXTM PCR DNA and order to isolate PHA-producing microorganisms from Gel Band Purification Kit (Amersham Pharmacia the 20 samples. In the screenings for PHA-producing Biotech, Inc., Piscataway, NJ, USA). Sequencing was strains, the mineral salt medium was prepared with carried out with the DNA Sequencing Kit (Applied TM 0.81 mM MgSO4, 0.58 mM CaSO4, 18 mM FeSO4, 1.0 mM Biosystems, Foster City, CA, USA) using ABI PRISM NaMoO4 in 5 mM potassium phosphate, 50 mM ferric cit- 310 Genetic Analyzer (Applied Biosystems). Se- rate, 3% glucose and 15 mM ammonium acetate (pH quences were aligned and the phylogenetic tree in the 7.1). The PHA content in bacterial colonies was deter- neighbor-joining (NJ) method (Saitou and Nei, 1987) mined qualitatively by observing the presence of visi- was constructed using the CLUSTAL W program ble, intracellular granules using a phase-contrast mi- (Thompson et al., 1994). The similarity values were croscope. To recognize PHA-rich colonies, colonies calculated using PAUP 3.1.1 package (Swofford, grown on nitrogen-deficient agar after 5-day incubation 1993). at 30°C were stained with sudanblack B (0.02% in Quinone system. Quinone system was determined 96% ethanol). The dye was removed after 20 min, and by the method of Uchino et al. (1998). Quinone frac- the plates were then treated for 1 min with 10 ml of tions were extracted with chloroform-methanol (2 : 1, 96% ethanol. The colonies of PHA-rich cells retained v/v) from the lyophilized cells. Then the fractions were the dye and appeared dark blue, whereas those of separated with thin-layer chromatography (TLC) devel- PHA-deficient cells decolorized and appeared light oped with hexane : diethyl ether (85 : 15, v/v). Quinones gray. Strain IAM 14872T, isolated from a wastewater were detected under UV light at 275 nm. The spots of sample, showed good ability in the PHA-producing quinones were scraped off and quinones were ex- test. The composition of PHA was determined by gas tracted with acetone. After concentration, the quinone chromatography. samples were analyzed with a HPLC machine (Shi- Electron microscopy. Flagellation was observed madzu, Kyoto, Japan). using a model JEM-100 SX scanning electron micro- GϩC content of DNA. DNA was extracted and pu- scope (JEOL, Ltd., Tokyo, Japan) after negative-stain- rified according to the method of Saito and Miura ing with phosphotungstic acid. For ultra-thin section (1963). The GϩC content of DNA was determined by electron microscopy, cells were prefixed in 3% glu- HPLC as described by Mesbah et al. (1989). taraldehyde, fixed in OsO4, stained with uranyl ac- Cellular fatty acids. Fatty acid methyl esters were etate, embedded in Epon 812, sectioned, post-stained prepared from biomass that was scraped from Tryptic with lead acetate and examined with an electron mi- Soy Agar medium (Difco, MD, USA), and incubated at croscope, model JEOL 1210. 30°C for 2 days. Cellular fatty acids of the test strains Physiological and biochemical test. The biochemi- were analyzed as methyl esters by GC according to cal properties were tested using the API 50CHE and the instructions of the Microbial Identification System API 20NE gallery methods (bioMérieux, Paris, France) (MIDI, Inc., Newark, DE, USA). according to the manufacturer’s instructions. Acetic Photosynthetic analysis.The phototrophic ability acid production from ethanol was tested by the method was determined by observing the growth under anaer- of Asai et al. (1964). Oxidase activity was determined obic conditions with light. The detection of bacteri- by oxidation of 1% tetramethyl-p-phenylenediamine on ochlorophyll a was performed both in vivo and in vitro filter paper and catalase activity was determined by by the method of Uchino et al. (1998). In vivo spectra observing bubble production in a 3% hydrogen perox- were determined on cell suspension in 60% sucrose ide solution. solution from 3-day cultures grown aerobically in nutri- 16S rDNA sequencing and phylogenetic analysis. ent broth. In vitro spectra were determined using Cell lysate was made from 1 ml culture suspension methanol extracts of 3-day cultures grown aerobically with Proteinase K solution and BL buffer (Hiraishi et on nutrient broth agar. With Rhodobacter capsulatus 2002 Tistrella mobilis gen. nov. 337 (IAM 14232T) as a positive control, the absorbance Results values both in vivo and in vitro were examined using a Shimadzu UV-3000 spectrophotometer. Bacterial strains Nucleotide sequence accession numbers. The ac- Among nine strains of PHA-producing bacteria iso- cession number of 16S rDNA sequence of strain IAM lated from 20 samples, strain IAM 14872T showed 14872T in DDBJ/EMBL/GenBank is AB071665. The good PHA-producing ability. Fed-batch culture studies other accession numbers of the published 16S rDNA of strain IAM 14872T showed that the yield of PHA ac- sequences in this study are X74066 (Acetobacter aceti counted for 19.6% cell dry weight under nitrogen limi- T ϩ NCIB 8621 ), D86512 (Acidisphaera rubrifaciens JCM tation with the concentrations of NH4 (sole nitrogen 10600T), D30773 (Acidiphilium cryptum ATCC source) and cane molasses (sole carbon source) 33463T), D30774 (Acidocella facilis ATCC 35904T), being 0.1% w/v and 5% w/v, respectively. The analysis X77468 (Acidomonas methanolica MB 58T), of PHA by gas chromatography compared to the stan- AB025928 (Asaia bogoresis JCM 10569T), Z29619 dard chromatograms of methyl-n-butyrate, methyl-n- (Azospirillum lipoferum NCIMB 11861T), D85828 valerate and methyl esters of eight- to twelve-carbon (Craurococcus roseus JCM 9933T), X80725 (Esch- atoms fatty acid indicated that the biopolymer con- erichia coli ATCC 11775T), X75617 (Gluconacetobac- sisted of four-, five- and eight- to ten-carbon ter liquefaciens IFO 12388T), X73820 (Gluconobacter monomers. oxydans DSM 3503T), AB056321 (Kozakia baliensis Yo-3T), Y10109 (Magnetospirillum gryphisealdense Morphological characteristics DSM 6361T), Y10110 (Magnetospirillum magneto- The ultra-thin section electron micrograph (Fig. 1A) tacticum DSM 3856T), D85827 (Paracraurococcus showed that the cells were short straight rods occur- ruber NS 89T), D14433 (Phaeospirillum fulvum NCIMB ring in pairs or as single cells. PHAs were accumu- 11762T), D12701 (Rhodocista centenaria IAM 14193T), lated in the cytoplasm. Intracytoplasmic membranes D86513 (Rhodopila globiformis DSM 161T), X99671 (ICMs) were not observed.
Recommended publications
  • Identification of Strains Isolated in Thailand and Assigned to the Genera Kozakia and Swaminathania
    JOURNAL OF CULTURE COLLECTIONS Volume 6, 2008-2009, pp. 61-68 IDENTIFICATION OF STRAINS ISOLATED IN THAILAND AND ASSIGNED TO THE GENERA KOZAKIA AND SWAMINATHANIA Jintana Kommanee1, Somboon Tanasupawat1,*, Ancharida Akaracharanya2, Taweesak Malimas3, Pattaraporn Yukphan3, Yuki Muramatsu4, Yasuyoshi Nakagawa4 and Yuzo Yamada3,† 1Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; 2Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; 3BIOTEC Culture Collection, National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand; 4Biological Resource Center, Department of Biotechnology, National Institute of Technology and Evaluation, Kisarazu 292-0818, Japan; †JICA Senior Overseas Volunteer, Japan International Cooperation Agency, Shibuya-ku, Tokyo 151-8558, Japan; Professor Emeritus, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan *Corresponding author, e-mail: [email protected] Summary Four isolates, isolated from fruit of sapodilla collected at Chantaburi and designated as CT8-1 and CT8-2, and isolated from seeds of ixora („khem” in Thai, Ixora species) collected at Rayong and designated as SI15-1 and SI15-2, were examined taxonomically. The four isolates were selected from a total of 181 isolated acetic acid bacteria. Isolates CT8-1 and CT8-2 were non motile and produced a levan-like mucous polysaccharide from sucrose or D-fructose, but did not produce a water-soluble brown pigment from D-glucose on CaCO3-containing agar slants. The isolates produced acetic acid from ethanol and oxidized acetate and lactate to carbon dioxide and water, but the intensity of the acetate and lactate oxidation was weak. Their growth was not inhibited by 0.35 % acetic acid (v/v) at pH 3.5.
    [Show full text]
  • Ameyamaea Chiangmaiensis Gen. Nov., Sp. Nov., an Acetic Acid Bacterium in the -Proteobacteria
    Biosci. Biotechnol. Biochem., 73 (10), 2156–2162, 2009 Ameyamaea chiangmaiensis gen. nov., sp. nov., an Acetic Acid Bacterium in the -Proteobacteria Pattaraporn YUKPHAN,1 Taweesak MALIMAS,1 Yuki MURAMATSU,2 Mai TAKAHASHI,2 Mika KANEYASU,2 Wanchern POTACHAROEN,1 Somboon TANASUPAWAT,3 Yasuyoshi NAKAGAWA,2 Koei HAMANA,4 Yasutaka TAHARA,5 Ken-ichiro SUZUKI,2 y Morakot TANTICHAROEN,1 and Yuzo YAMADA1; ,* 1BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand 2Biological Resource Center (NBRC), Department of Biotechnology, National Institute of Technology and Evaluation (NITE), Kisarazu 292-0818, Japan 3Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand 4School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi 371-8514, Japan 5Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan Received January 27, 2009; Accepted July 8, 2009; Online Publication, October 7, 2009 [doi:10.1271/bbb.90070] Two isolates, AC04T and AC05, were isolated from Key words: Ameyamaea chiagmaiensis gen. nov., sp. the flowers of red ginger collected in Chiang Mai, nov.; acetic acid bacteria; 16S rRNA gene Thailand. In phylogenetic trees based on 16S rRNA sequences; 16S rRNA gene restriction anal- gene sequences, the two isolates were included within a ysis; Acetobacteraceae lineage comprised of the genera Acidomonas, Glucona- cetobacter, Asaia, Kozakia, Swaminathania, Neoasaia, In acetic acid bacteria, several new genera have been Granulibacter, and Tanticharoenia, and they formed an reported for strains isolated from isolation sources independent cluster along with the type strain of obtained in Southeast Asia. The first was the genus Tanticharoenia sakaeratensis.
    [Show full text]
  • Dissection of Exopolysaccharide Biosynthesis in Kozakia Baliensis Julia U
    Brandt et al. Microb Cell Fact (2016) 15:170 DOI 10.1186/s12934-016-0572-x Microbial Cell Factories RESEARCH Open Access Dissection of exopolysaccharide biosynthesis in Kozakia baliensis Julia U. Brandt, Frank Jakob*, Jürgen Behr, Andreas J. Geissler and Rudi F. Vogel Abstract Background: Acetic acid bacteria (AAB) are well known producers of commercially used exopolysaccharides, such as cellulose and levan. Kozakia (K.) baliensis is a relatively new member of AAB, which produces ultra-high molecular weight levan from sucrose. Throughout cultivation of two K. baliensis strains (DSM 14400, NBRC 16680) on sucrose- deficient media, we found that both strains still produce high amounts of mucous, water-soluble substances from mannitol and glycerol as (main) carbon sources. This indicated that both Kozakia strains additionally produce new classes of so far not characterized EPS. Results: By whole genome sequencing of both strains, circularized genomes could be established and typical EPS forming clusters were identified. As expected, complete ORFs coding for levansucrases could be detected in both Kozakia strains. In K. baliensis DSM 14400 plasmid encoded cellulose synthase genes and fragments of truncated levansucrase operons could be assigned in contrast to K. baliensis NBRC 16680. Additionally, both K. baliensis strains harbor identical gum-like clusters, which are related to the well characterized gum cluster coding for xanthan synthe- sis in Xanthomanas campestris and show highest similarity with gum-like heteropolysaccharide (HePS) clusters from other acetic acid bacteria such as Gluconacetobacter diazotrophicus and Komagataeibacter xylinus. A mutant strain of K. baliensis NBRC 16680 lacking EPS production on sucrose-deficient media exhibited a transposon insertion in front of the gumD gene of its gum-like cluster in contrast to the wildtype strain, which indicated the essential role of gumD and of the associated gum genes for production of these new EPS.
    [Show full text]
  • Asaia Spp., Acetic Acid Bacteria Causing the Spoilage of Non-Alcoholic Beverages
    Kvasny prumysl (2019) 65:1-5 https://doi.org/10.18832/kp2019.65.1 Research Institute of Brewing anf Malting, Plc. Asaia spp., acetic acid bacteria causing the spoilage of non-alcoholic beverages Iveta Šístková*, Iveta Horsáková, Mariana Hanková, Helena CížkovᡠDepartment of Food Preservation, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic *Corresponding author :[email protected] Abstract After a general introduction and introduction to acetic acid bacteria, this work focuses on the genus Asaia, which causes sensory defects in non-alcoholic beverages. Asaia representatives have strong adhesive properties for materials used in the food industry, where they subsequently form biofilms and are highly resistant to chemical preservatives. After the basic characteristics of the genus Asaia and its influence on humans, the main part of the paper deals with microbial contami- nation of beverages by these bacteria. The paper summarizes the knowledge of the influence of packaging materials on the development of defects in beverages and the use of natural bioactive substances and plant extracts as an alternative to maintaining the microbiological stability of beverages. Key words: Asaia spp., soft drinks, sensory defect 1. Introduction and succinic acids, acetaldehyde and ketone compounds. Final products depend on the type of bacteria and the Acetic acid bacteria (AAB) get their name because of growth conditions (Juvonen et al., 2011). No glycolysis is their ability to oxidize ethanol to acetic acid (except the performed due to the lack of phosphofructokinase enzyme. Asaia genus), which is used in the industry for the pro- AAB were isolated from plants, fruits, fermented foods duction of vinegar and other compounds such as L-ascorbic and beverages, or insects (Crotti et al., 2010).
    [Show full text]
  • Microbiota Dynamics During Host-Plant Adaptation of Whiteflies
    The ISME Journal (2020) 14:847–856 https://doi.org/10.1038/s41396-019-0576-8 ARTICLE Inside out: microbiota dynamics during host-plant adaptation of whiteflies 1 1 2 1 Diego Santos-Garcia ● Natividad Mestre-Rincon ● Einat Zchori-Fein ● Shai Morin Received: 1 June 2019 / Accepted: 17 December 2019 / Published online: 2 January 2020 © The Author(s) 2020. This article is published with open access Abstract While most insect herbivores are selective feeders, a small proportion of them feed on a wide range of plants. This polyphagous habit requires overcoming a remarkable array of defenses, which often necessitates an adaptation period. Efforts for understanding the mechanisms involved mostly focus on the insect’s phenotypic plasticity. Here, we hypothesized that the adaptation process might partially rely on transient associations with bacteria. To test this, we followed in a field-like experiment, the adaptation process of Bemisia tabaci, a generalist sap feeder, to pepper (a less-suitable host), after switching from watermelon (a suitable host). Amplicon sequencing of 16S rRNA transcripts from hundreds of dissected guts revealed the presence of active “core” and “transient” bacterial communities, dominated by the phyla Proteobacteria, 1234567890();,: 1234567890();,: Actinobacteria, and Firmicutes, and increasing differences between populations grown on watermelon and pepper. Insects grown on pepper for over two generations presented a significant increase in specific genera, mainly Mycobacterium, with a predicted enrichment in degradative pathways of xenobiotics and secondary metabolites. This result correlated with a significant increase in the insect’s survival on pepper. Taken together, our findings suggest that gut-associated bacteria can provide an additional flexible metabolic “tool-box” to generalist sap feeders for facilitating a quick host switching process.
    [Show full text]
  • Kozakia Baliensis Gen. Nov., Sp. Nov., a Novel Acetic Acid Bacterium in The
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 813–818 DOI: 10.1099/ijs.0.01982-0 Kozakia baliensis gen. nov., sp. nov., a novel NOTE acetic acid bacterium in the α-Proteobacteria 1 Laboratory of General and Puspita Lisdiyanti,1 Hiroko Kawasaki,2 Yantyati Widyastuti,3 Applied Microbiology, 3 2 1 1 Department of Applied Susono Saono, Tatsuji Seki, Yuzo Yamada, † Tai Uchimura Biology and Chemistry, and Kazuo Komagata1 Faculty of Applied Bioscience, Tokyo University of Agriculture, Author for correspondence: Yuzo Yamada. Tel\Fax: j81 54 635 2316. 1-1-1 Sakuragaoka, e-mail: yamada-yuzo!mub.biglobe.ne.jp Setagaya-ku, Tokyo 156- 8502, Japan 2 The International Center Four bacterial strains were isolated from palm brown sugar and ragi collected for Biotechnology, Osaka in Bali and Yogyakarta, Indonesia, by an enrichment culture approach for University, 2-1 Yamadaoka, Suita, Osaka 565-0871, acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences Japan showed that the four isolates constituted a cluster separate from the genera 3 Research and Development Acetobacter, Gluconobacter, Acidomonas, Gluconacetobacter and Asaia with a Centre for Biotechnology, high bootstrap value in a phylogenetic tree. The isolates had high values of Indonesian Institute of DNA–DNA similarity (78–100%) between one another and low values of the Sciences (LIPI), Jalan Raya Bogor Km 46, Cibinong similarity (7–25%) to the type strains of Acetobacter aceti, Gluconobacter 16911, Indonesia oxydans, Gluconacetobacter liquefaciens and Asaia bogorensis. The DNA base composition of the isolates ranged from 568to572 mol% GMC with a range of 04 mol%. The major quinone was Q-10.
    [Show full text]
  • The Diversity of Cultivable Hydrocarbon-Degrading Bacteria Isolated from Crude Oil Contaminated Soil and Sludge from Arzew Refinery in Algeria
    THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA Sonia SEKKOUR1*, Abdelkader BEKKI1, Zoulikha BOUCHIBA1, Timothy M. Vogel2, Elisabeth NAVARRO2 Address(es): Ing. Sonia SEKKOUR PhD., 1Université Ahmed Benbella, Faculté des sciences de la nature et de la vie, Département de Biotechnologie, Laboratoire de biotechnologie des rhizobiums et amélioration des plantes, 31000 Oran, Algérie. 2Environmental Microbial Genomics Group, Laboratoire Ampère, Centre National de la Recherche Scientifique, UMR5005, Institut National de la Recherche Agronomique, USC1407, Ecole Centrale de Lyon, Université de Lyon, Ecully, France. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2019.9.1.70-77 ARTICLE INFO ABSTRACT Received 27. 3. 2018 The use of autochtonious bacterial strains is a valuable bioremediation strategy for cleaning the environment from hydrocarbon Revised 19. 2. 2019 pollutants. The isolation, selection and identification of hydrocarbon-degrading bacteria is therefore crucial for obtaining the most Accepted 14. 3. 2019 promising strains for decontaminate a specific site. In this study, two different media, a minimal medium supplemented with petroleum Published 1. 8. 2019 and with oil refinery sludge as sole carbon source, were used for the isolation of native hydrocarbon-degrading bacterial strains from crude oil contaminated soils and oil refinery sludges which allowed isolation of fifty-eight strains.The evalution of diversity of twenty- two bacterials isolates reveled a dominance of the phylum Proteobacteria (20/22 strains), with a unique class of Alphaproteobacteria, Regular article the two remaining strains belong to the phylum Actinobacteria. Partial 16S rRNA gene sequencing performed on isolates showed high level of identity with known sequences.
    [Show full text]
  • Open NAL Thesis V6.Pdf
    The Pennsylvania State University The Graduate School Department of Civil and Environmental Engineering CLASSIFICATION OF POLYPHOSPHATE-ACCUMULATING BACTERIA IN BENTHIC BIOFILMS A Thesis in Environmental Engineering by Nicholas Locke 2015 Nicholas Locke Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2015 ii The thesis of Nicholas Locke was reviewed and approved* by the following: John Regan Professor of Environmental Engineering Thesis Advisor William Burgos Professor of Environmental Engineering Chair of Civil and Environmental Engineering Graduate Programs Anthony Buda Adjunct Assistant Professor of Ecosystem Science and Management *Signatures are on file in the Graduate School iii ABSTRACT Polyphosphate accumulating organisms (PAOs) are microorganisms known to store excess phosphorus (P) as polyphosphate (poly-P) in environments subject to alternating aerobic and anaerobic conditions. There has been considerable research on PAOs in biological wastewater treatment systems, but very little investigation of these microbes in freshwater systems. We hypothesize that putative PAOs in benthic biofilms of shallow streams where daily light cycles induce alternating aerobic and anaerobic conditions are similar to those found in EBPR. To test this hypothesis, cells with poly-P inclusions were isolated, classified, and described. Eight benthic biofilms taken from a first-order stream in Mahantango Creek Watershed (Klingerstown, PA) represented high and low P loadings from a series of four flumes and were found to contain 0.39 - 6.19% PAOs. A second set of eight benthic biofilms from locations selected by Carrick and Price (2011) were from third- order streams in Pennsylvania and contained 11-48% putative PAOs based on flow cytometry particle counts.
    [Show full text]
  • Swaminathania Salitolerans Gen. Nov., Sp. Nov., a Salt-Tolerant, Nitrogen-fixing and Phosphate-Solubilizing Bacterium from Wild Rice (Porteresia Coarctata Tateoka)
    International Journal of Systematic and Evolutionary Microbiology (2004), 54, 1185–1190 DOI 10.1099/ijs.0.02817-0 Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka) P. Loganathan and Sudha Nair Correspondence M. S. Swaminathan Research Foundation, 111 Cross St, Tharamani Institutional Area, Chennai, Sudha Nair Madras 600 113, India [email protected] A novel species, Swaminathania salitolerans gen. nov., sp. nov., was isolated from the rhizosphere, roots and stems of salt-tolerant, mangrove-associated wild rice (Porteresia coarctata Tateoka) using nitrogen-free, semi-solid LGI medium at pH 5?5. Strains were Gram-negative, rod-shaped and motile with peritrichous flagella. The strains grew well in the presence of 0?35 % acetic acid, 3 % NaCl and 1 % KNO3, and produced acid from L-arabinose, D-glucose, glycerol, ethanol, D-mannose, D-galactose and sorbitol. They oxidized ethanol and grew well on mannitol and glutamate agar. The fatty acids 18 : 1v7c/v9t/v12t and 19 : 0cyclo v8c constituted 30?41 and 11?80 % total fatty acids, respectively, whereas 13 : 1 AT 12–13 was found at 0?53 %. DNA G+C content was 57?6–59?9 mol% and the major quinone was Q-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that these strains were related to the genera Acidomonas, Asaia, Acetobacter, Gluconacetobacter, Gluconobacter and Kozakia in the Acetobacteraceae. Isolates were able to fix nitrogen and solubilized phosphate in the presence of NaCl. Based on overall analysis of the tests and comparison with the characteristics of members of the Acetobacteraceae, a novel genus and species is proposed for these isolates, Swaminathania salitolerans gen.
    [Show full text]
  • Marine Natural Products from Tunicates and Their Associated Microbes
    marine drugs Review Marine Natural Products from Tunicates and Their Associated Microbes Chatragadda Ramesh 1,2,*, Bhushan Rao Tulasi 3, Mohanraju Raju 2, Narsinh Thakur 4 and Laurent Dufossé 5,* 1 Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India 2 Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India; [email protected] 3 Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India; [email protected] 4 Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India; [email protected] 5 Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France * Correspondence: [email protected] (C.R.); [email protected] (L.D.); Tel.: +91-(0)-832-2450636 (C.R.); +33-668-731-906 (L.D.) Abstract: Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisi- tion of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, “tambjamines”, produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily Citation: Ramesh, C.; Tulasi, B.R.; originated from their bacterial symbionts, which are involved in their chemical defense function, indi- Raju, M.; Thakur, N.; Dufossé, L. cating the ecological role of symbiotic microbial association with tunicates. This review has garnered Marine Natural Products from comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts.
    [Show full text]
  • Novel Fructans from Acetic Acid Bacteria
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Technische Mikrobiologie Novel fructans from acetic acid bacteria Frank Jakob Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. S. Scherer Prüfer der Dissertation: 1. Univ.-Prof. Dr. R. F. Vogel 2. Univ.-Prof. Dr. W. Liebl 3. apl. Prof. Dr. P. Köhler Die Dissertation wurde am 23.01.2014 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 15.04.2014 angenommen. VORWORT Die vorliegende Arbeit wurde durch Fördermittel des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV) über die Bundesanstalt für Landwirtschaft und Ernährung (BLE) unterstützt (Projekt 28-1-63.001-07). Mein besonderer Dank gilt meinem Doktorvater Prof. Dr. Rudi F. Vogel für die Möglichkeit, diese Dissertation an seinem Institut durchzuführen. Zudem möchte ich mich für seine konstruktiven Anregungen zu dieser Arbeit, sein entgegengebrachtes Vertrauen, seinen ständigen Einsatz für meine Weiterbeschäftigung an seinem Institut und für seine Unterstützung, mich wissenschaftlich weiter entwickeln zu können, bedanken. Mein außerordentlicher Dank gilt ihm außerdem für sein entgegengebrachtes Verständnis in schwierigen Phasen. Bei Dr. Daniel Meißner und Dr. Susanne Kaditzky möchte ich mich für die hilfreiche und angenehme Betreuung und bei Maria Hermann für die gute Zusammenarbeit im Projekt bedanken. Mein besonderer Dank gilt zudem Stefan Steger für die Durchführung von Backversuchen. Bei Dr. Andre Pfaff und Dr. Ramon Novoa-Carballal möchte ich mich für die entspannte Kooperation, die Durchführung von NMR-Messungen und die Bereitstellung von aufgenommenen Spektren bedanken.
    [Show full text]
  • Le 23 Novembre 2017 Par Aurélia CAPUTO
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE T H È S E Présentée et publiquement soutenue à l'IHU – Méditerranée Infection Le 23 novembre 2017 Par Aurélia CAPUTO ANALYSE DU GENOME ET DU PAN-GENOME POUR CLASSIFIER LES BACTERIES EMERGENTES Pour obtenir le grade de Doctorat d’Aix-Marseille Université Mention Biologie - Spécialité Génomique et Bio-informatique Membres du Jury : Professeur Antoine ANDREMONT Rapporteur Professeur Raymond RUIMY Rapporteur Docteur Pierre PONTAROTTI Examinateur Professeur Didier RAOULT Directeur de thèse Unité de recherche sur les maladies infectieuses et tropicales émergentes, UM63, CNRS 7278, IRD 198, Inserm U1095 Avant-propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’École Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe et qui permet un meilleur rangement que les thèses traditionnelles. Par ailleurs, les parties introductions et bibliographies sont remplacées par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]