Cdk15 Igfals Lingo4 Gjb3 Tpbg Lrrc38 Serpinf1 Apod Trp73 Lama4 Chrnd Col9a1col11a1col5a2 Fgl2 Pitx2 Col2a1 Col3a1 Lamb3 Col24a1

Total Page:16

File Type:pdf, Size:1020Kb

Cdk15 Igfals Lingo4 Gjb3 Tpbg Lrrc38 Serpinf1 Apod Trp73 Lama4 Chrnd Col9a1col11a1col5a2 Fgl2 Pitx2 Col2a1 Col3a1 Lamb3 Col24a1 Bnc2 Wdr72 Ptchd1 Abtb2 Spag5 Zfp385a Trim17 Ier2 Il1rapl1 Tpd52l1 Fam20a Car8 Syt5 Plxnc1 Sema3e Ndrg4 Snph St6galnac5 Mcpt2 B3galt2 Sphkap Arhgap24 Prss34 Lhfpl2 Ermap Rnf165 Shroom1 Grm4 Mobp Dock2 Tmem9b Slc35d3 Otud7b Serpinb3a Sh3d19 Syt6 Zan Trim67 Clec18a Mcoln1 Tob1 Slc45a2 Pcdhb9 Pcdh17 Plscr1 Gpr143 Cela1 Frem1 Sema3f Lgi2 Igsf9 Fjx1 Cpne4 Adgb Depdc7 Gzmm C1qtnf5 Capn11 Sema3c H2-T22 Unc5c Sytl4 Galnt5 Sytl2 Arhgap11a Pcdha1 Cdh20 Slc35f2 Trim29 B3gnt5 Dock5 Trim9 Padi4 Pcdh19 Abi2 Cldn11 Slitrk1 Fam13a Nrgn Cpa4 Clmp Il1rap Trpm1 Fat4 Nexn Pmel Mmp15 Fat3 H2-M5 Prss38 Wdr41 Prtg Mlana Mettl22 Tnrc6b Cdh6 Sema3b Ptgfrn Cldn1 Cntn4 Bcl2a1b Capn6 Capn5 Pcdhb19 Tcf15 Bmf Rgs8 Tecrl Tyrp1 Rhot1 Rnf123 Cldn6 Adam9 Hlx Rilpl1 Disp1 Atcay Vwc2 Fat2 Srpx2 Cldn3 Unc13c Creb3l1 Rab39b Robo3 Gpnmb Bves Orai2 Slc22a2 Prss8 Cdh10 Scg3 Adam33 Nyx Dchs1 Chmp4c Syt9 Ap1m2 Megf10 Cthrc1 Penk Igsf9b Akap2 Ltbp3 Dnmbp Tff2 Pnoc Vldlr Cpa3 Snx18 Capn3 Btla Htr1b Gm17231 Pcdh9Rab27a Grm8 Cnih2 Scube2 Id2 Reep1 Cpeb3 Mmp16 Slc18b1 Snx33 Clcn5 Cckbr Pkp2 Drp2 Mapk8ip1 Lrrc3b Cxcl14 Zfhx3 Esrp1 Prx Dock3 Sec14l1 Prokr1 Pstpip2 Usp2 Cpvl Syn2 Ntn1 Ptger1 Rxfp3 Tyr Snap91 Htr1d Mtnr1a Gadd45g Mlph Drd4 Foxc2 Cldn4 Birc7 Cdh17 Twist2 Scnn1b Abcc4 Pkp1 Dlk2 Rab3b Amph Mreg Il33 Slit2 Hpse Micu1 Creb3l2 Dsp Lifr S1pr5 Krt15 Svep1 Ahnak Kcnh1 Sphk1 Vwce Clcf1 Ptch2 Pmp22 Sfrp1 Sema6a Lfng Hs3st5 Efcab1 Tlr5 Muc5acKalrn Vwa2 Fzd8 Lpar6 Bmp5 Slc16a9 Cacng4 Arvcf Igfbp2 Mrvi1 Dusp15 Krt5 Atp13a5 Dsg1a Kcnj14 Edn3Memo1 Ngef Prickle2 Cma1 Alx4 Bmp3 Blnk GastAgtr2 Fzd2Rab20 Plat Cym Dner Oprl1 F2rl1 Myof Krt19 Stx11 Etv4 Timp4 Kcnj3 Ptgfr Rgma Ttpa Kcnj6 Pax3 Scamp5 Pkd1l1 Sh3gl3 Sox10 Wif1 Hcrtr1 Grid2ip Wnt10a Afap1l2 Wnt5b Igfbp4 Foxn1 Pdgfc Dct Gpc4 Six2 Epn3 Fbln5 Kcnj12 Chga Slc9a3r1 Egfem1 Wnt2 Ntf3 Krt18 Itpr3 Kcna5 Ap2a1 Tjp1 Sncaip Ctsk Tbc1d4 Lpar2 Serpinb9 Wnt7a Sytl5 Uchl1 Chrm3 Nedd4l Cxcl12Prrx1 Kcnj4 Cd83 Il18Gfra2 Fzd9 Elovl7 Ppp1r3b Fzd1 Epha4 Mfrp Rspo1 Mmp28 Gdf10 Mt2 Sec14l5 Erbb3 Wnt4 Adamts1 Ptgds Tns1 Cd3g Stat5b Krt14 Epcam Fras1Krt8 Wnt3a Klkb1 Grem2 Prickle1 Gas1 Gadd45b Anxa1 Cdh3 Ppp1r14c Phlda1 Plch2Cacnb3 Camk2a Gm14327 Tlr2 Cpeb1 Gdf5 Apba1 Wfikkn2 Trpc6 Kcna1 Creb5 Tpsb2 Ceacam10 Fhl3 Gas6 NogF3 Inf2 Tmbim1 Kcnma1 Nlgn3 Dkk2Epha10 Fmo1 Lrp2 Corin Pappa Adamtsl1 Spink8 Kcnb1 Epha1Gdnf Wnt7b Ptx3 Sntb1 Nfasc Wnt9b Gpc2 Chst15 Slc38a5 Cftr Dnm1 Sfrp2 Serpinb6b Notch2Twist1 Ihh Neurl1a Spock3 Jph2 Kcnq5 Relb Ntrk2Tex264Nrg1 Dok1 Cacna1h Plce1 Adam10 Vcan Glrb Pip5kl1 Trim63 Dbx2 Scn5a Ntrk3 Bace2 Ankrd44Camk1g Egfr Ctnna2Efna2 Eln Shc3 Adamts7 Ifit3b Clcnka Atp2b4Cdo1 Rhou Kitl Gfra1 Met Fst Adamtsl4 Prkca Stat5a Wnt11 Col27a1 Hs3st6 Ryr2 Prkcb Foxl2 Myh7 Tnn Cd44 Col7a1 Cpeb2 Spg20 Shc1 Itga6 Col17a1 Fbln7 Mtmr7 Ankrd66 Lrrc7 Jam2 Cd19 Dst Fbn1 Casq2 Faim2 Bmp2 Mmp14 Klhl13 Stbd1 Ryr1 Lin7a Casp7 Efna3 Prom1 Nes Scn11a Kcnj11 Myh2 Coro2b FrkMyo5a Mmp2 Bmper Fxyd1 Cd24aTimp3 Spp1 Col25a1 Thbs4 Ifi35 Pla2g16 Stxbp2 Gli3 Col12a1 Osgin2 Kcnab2 Kcnq4 Scgn Alcam Kcnn3Gcg Cpeb4 Tmem125 Efcab2 Ngf Sct Fgfr3 Pitx2 H60b Klhl21 Dgkg Shank1 Lox Fgl2 Col8a1 Cacna1c Igf1 Boc Col2a1 Apoa2 Anxa2Reln Serpinf2 Col4a4 Fbn2 Enpp2 Hif3a Col24a1 Klhl34 Pla2g4a Myh7b Myo7b Gipc1 Col6a1 Cul3 Gprc5a Calb1 Herc4 Gja1 Lamb3 Clic6 Stat1 Alb Lrrc17 Dcn Sox4 Cacna1g Sgca Ada Rtn4rl2Mapk10 Gli1 A2m Anks1b Ank2 Dpf3 Plcd1 Gabrr1Anpep S100a4 Pdlim3Myh1 Gsn Col1a1 Ulbp1 Cachd1 Il17rd Flnc Fcgr2b Col3a1 Fbln2 St8sia1 Klhl14 Kcnab1 Alox5 Slc2a4 Fgf1 Axl Dbnl Itgb4 Itga2 Abcc8Gria2 Optc Col1a2 Col6a2 Kcnh3 Alox12e Calml3 Foxg1 Ace Lingo1 Maml2 Col13a1 Rps6ka2 Adcy2 Postn Cabp5 Slc11a1 Itga11 Fmod Bicc1 Trim34a Gabrg3 Myh6 Sh3pxd2bSh3pxd2a Pcsk6 Kera Rph3a Dgkh Plcd3 Myh15 Hmox1 Sox9 Sparcl1 Kcnc3 Sccpdh Tnc Vcam1 Adamts12 Pld1 Aqp1 Serpind1 Myh11 Itga8 Adamts2 Col9a3 Col20a1 Tnnt3 Dlgap1 Dgkk Pdk2 Klk4 Col8a2 Aqp5 Wisp1 Rbpjl Mical2 Emx2 Tbxas1 Kcnip3Ggct Tgm2 Ror2 Pak3 Aspn Samd4 Klhl5 Ifit3 Pnpla6 Tle2 Prkab2 Nrcam Irx3 Pdlim1 Atp7b Col5a1 Col9a2 Thsd4 Nrxn3 Podnl1 Lum Hyal5 Olfml3 Lpin1 Lrguk Sorbs3 Zfp36l1 Col16a1 Gabarapl1 Card14 Lrtm1 Trp63Pax7 Irf6 Musk Dlk1 Col14a1 Myo18b Mpp1 Npr1 Thbs2 Enc1 Rnf213 Qpct Clu Epyc Igtp Gpd1 Gck Fosl2 PdgfrlMapk4 Ogn Nup210l Fbxo2Cox6a2 Pla2g7 Fbxo32 Pde6a Glrx Lama4 Alox12 Rlbp1Prkag3 Ptges Adcy8Aqp4 Rhebl1 Col11a1 Dynlt3 Ephx2 Pde11a Ddr2 Nkain4 Gpx7 Fam49b Rbfox3 Rasl11b Lrrc38 Serpinf1 Fbxl13 Snta1 Mafg Igfals Col5a2 Nagk Utrn Tsc2 Slc6a5 Ramp3 Gas7 Acta2 Pde6bFabp4 Cdk15 Col9a1 Irx5 Hopx Gjb3 Glycam1 Arid5a Akr1b8 Pnpla3 Prkaa2 Lingo4 Prkag2 Mertk Lpl Styk1 Chn2 Chrnd Wdr78 Fgfrl1 Gm6710 Cdkn1cAdam12 Upp1 Aen Pak6 Atf3 Tpbg Mllt11 Mypn Nrap Pygm Cttnbp2 Sorbs1 Fhod3 Stambpl1 Slc6a1 Gad2Cyp2j9 Eno3 Myocd Trp73 Tmod1 Lpcat2 Tshr Apod Rnf19b Zfp185 Trib2 Bcl11b Cap2Cd55 Gstm7 Slc30a2 Abca1 Slc16a12 Lpin3 Mgst1 Actg2Hspb3 Nid2 Metap1 Txlnb HpgdsAdam19 Pde2aGm14322 Rbm38 Arhgdig Fut7 Pygo1 Crygn Crb1 Aldoc Slc1a2 Rbp4 Sox6 Spsb1 Gpx8 Cog2 Lrrn4 Ssh3 Lama2 Gdpd2 Gstp2 Mboat1 Adcy7 Cebpa Cx3cl1 Lrrn2 Gpx1 Pgam2 Lrrtm1 Ppp1r16b Med12l Dpep1 Efemp1 Slc17a8 Slc1a3 Arhgef16 Ndrg1 Chst5 Elovl6 Stk39 Zfp456 Fut9 Fbxl21 Pzp Cebpb Rbm20 S100a1 Sec11c Tubb6 Nnat Ppargc1b Uba7 Ldhb Gstm1 Pgm5 Lrrtm2 Espn Ppargc1a Chd3 Mdh1b Pck2 Foxl1 Specc1 Lrrc23 Gls2 Ndufs5 Ttr Hspb1 Tgfbi Akr1b10 Lim2 Scx Ddc Rgs6 Xpnpep2 Pde1a Hic1 Cngb3 Cpt2 Gucy1a2 Smarca2 Arhgap31 Lingo3 Clgn Entpd1 Zfp467 Gch1 Dusp23 Foxo6 Zbtb7b Chrng Grhpr Cplx3 Pltp Slc15a1 Rab32 Fah Fgfbp1 Ggt5 Me1 Npr3 Gm14418 Dync1i1 Gstp1 Reep2 Htatip2 Hrasls5 Pde3a Pipox Prdm6 Zfp57 Rara Vstm4 Eif5a2 Aldh1l1 Nfix Tril Nobox Flrt1 Syne2 Gss Gm14326 Satb2 Sohlh1 Ndufa1 Gja3 Klk1b26 Rdh12 Tbc1d7 Tfeb Gm14419 Slc26a7 Aass Rarg Kat2bHist2h3c1 Hist1h2bg Kdelr3 Dusp4 Sardh Auts2 Slc6a15 Mthfd1l Ikzf2 Adh1 Asns Gm14401 Pdia6 Zfp109 Hist2h3b Slc22a5 Aldh1a3 Gm14295 Hist1h4c Hmgcll1 Aldh7a1 Setd7 Mip Flad1 Prdm8 Srpk3 Gje1 Asb9 Gm14305 Cryl1 Rbp1 Hist1h2bl Srpx Rgs7bp Adhfe1 Zbtb8b Nacc2 Hist2h3c2 Ndufc1 Gulo Mapkapk3 Slc7a7 Gm2004 Aldh1a7 Gm14403 Hist3h2ba Hist1h2bf Cars Ptpru Slco1a5 Gm14391 Metrnl Tst Arntl2 Dnajb1 Hist1h2ac Dazl Ugt1a6a Cbr2 Cygb Ahr Hist1h2be Mecr Add2 Hist2h2ac Hist1h2ba Cryga Ass1 Enpp4 Ndst4 Hsd17b11 AI464131 Nr1h4 Ccdc3 Hist1h2bj Hsf4 Bfsp2 Crygb Tmem2 Rbp3 Slc7a12 Klf5 Mocs2 Aox4 Hist3h2a Cpne7 Rrm2b Mapre3Hist2h2ab Bdh2 Nfib Gm5424 Cbs Hist2h2aa1 Etfb Cyp26b1Slc6a11 Nr1i3 Hist1h2bhHist2h2aa2 Usp51 Cryba1 Cryaa Gls Slc7a2 Slc7a4 Dnajb2 Hist1h1c Ugt1a5 Poln Bcl11a Ugt1a1 Ing2 Crybb1 Uox Cryba4 Isoc2a Ugt1a6b Hist1h2bc Hist1h2al Zfp462 Hist1h1b Ugt1a8 Phactr1 Hist1h2bq Crygs Bfsp1 Slc7a5 Nap1l4 Crygc Cryge Cryab Mthfs Hist1h1a Crybb3 Hagh Cnksr2 Blvra Ugt1a7c Ebf2 Gm10735 Rec8 Kif26b Crygd Slc7a8 Cryba2 Pcbd2 Elavl2 Tex14 Ugt1a9 Kif1a Ugt1a2 Cyp7b1 Npas2 Hsd17b7 Scd2 Crabp2 Crygf Papss2 Vax2 Trerf1 Smoc2 Dhx32 Kif26a Acad10 Mafa Tex15 Glb1l2 Ces1e Ttc12 Slc26a11 Dnase2b Fads3 Cyb5r2 Scd3 Pbx4 Clip1 Khdrbs3 Eif5b Rab30 Snrpn Tdrd7 Cdnf Fdft1 Tdrd9 Hbs1l Nnmt Cyp2d22 Lss Lars2 Eif2s3y Nr1h5 Ttbk1 Bpnt1 Stard9 Idi1 Sult4a1 Lars Slc20a2 Zfp365 Tdrkh Meis3 Lctl Mxra8 Slc13a5 Rbpms2 Ipo5 Insig1 Tshz2 Plxdc1 Ipo8 Fndc5 Stard6 Gm5415 Antxr1 Pex5l Antxr2 Pianp Fam189a1 Olfr270 Eaf1 Tmem171 Olfr984 Sertad4 Elmod1 Ell2 Rsph3b Dcaf6 Arid3b Lrrc20 Frmd3 Spire1 Nudt17 BC027072 Rnf113a1 Spryd4 Esyt1 Hapln3 Cobll1 Cdrt4 Plekhs1 Tmem179 Olfr1393 Olfr875 Prr16 Nabp1 Cfap206 Nkain2 Emp2 Tmprss11e Dytn Ttc39a Fmn1 Nudt22 Ccdc126 Rhox1 Lyzl4 Esyt3 Fibin Slc38a11 Hs3st4 Klhdc7a Zmat4 Rsph3a.
Recommended publications
  • Genetic Associations Between Voltage-Gated Calcium Channels (Vgccs) and Autism Spectrum Disorder (ASD)
    Liao and Li Molecular Brain (2020) 13:96 https://doi.org/10.1186/s13041-020-00634-0 REVIEW Open Access Genetic associations between voltage- gated calcium channels and autism spectrum disorder: a systematic review Xiaoli Liao1,2 and Yamin Li2* Abstract Objectives: The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). Methods: A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. Results: From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACN A1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. Conclusions: Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype. Keywords: Autism spectrum disorder, Voltage-gated calcium
    [Show full text]
  • Age-Dependent Myocardial Transcriptomic Changes in the Rat
    Revista Română de Medicină de Laborator Vol. 22, Nr. 1, Martie, 2014 9 Research article DOI: 10.2478/rrlm-2014-0001 Age-dependent myocardial transcriptomic changes in the rat. Novel insights into atrial and ventricular arrhythmias pathogenesis Modificări transcriptomice dependente de vârstă în miocardul de șobolan. Noi aspecte referitoare la patogeneza aritmiilor atriale și ventriculare Alina Scridon1,2, Emmanuelle Fouilloux-Meugnier3, Emmanuelle Loizon3, Marcel Perian1, Sophie Rome3, Claude Julien2, Christian Barrès2, Philippe Chevalier2,4 1.Physiology Department, University of Medicine and Pharmacy of Tîrgu Mureș, 540139, Tîrgu Mureș, Romania 2. Unité de Neurocardiologie, EA4612, Université Lyon 1, F-69008, Lyon, France 3. Unité 1060 INSERM CarMen, Université Lyon 1, F-69008, Lyon, France 4. Hospices Civils de Lyon, Hôpital Louis Pradel, Service de Rythmologie, 69500, Bron, France Abstract Background: Aging is associated with significantly increased prevalence of cardiac arrhythmias, but tran- scriptional events that underlie this process remain to be established. To gain deeper insight into molecular mech- anisms of aging-related cardiac arrhythmias, we performed mRNA expression analysis comparing atrial and ven- tricular myocardium from Wistar-Kyoto (WKY) rats of different ages. Methods: Atrial and ventricular sampling was performed in 3 groups (n=4 each) of young (14-week-old), adult (25-week-old), and aging (47-week-old) WKY rats. mRNA expressions of 89 genes involved in cardiac arrhythmogenicity were investigated using TaqMan Low Density Array analysis. Results: Of the 89 studied genes, 40 and 64 genes presented steady atrial and ventricu- lar expressions, respectively. All genes differentially expressed within the atria of WKY rats were up-regulated with advancing age, mainly the genes encoding for various K+, Ca2+, Na+ channels, and type 6 collagen.
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Investigation of Copy Number Variations on Chromosome 21 Detected by Comparative Genomic Hybridization
    Li et al. Molecular Cytogenetics (2018) 11:42 https://doi.org/10.1186/s13039-018-0391-3 RESEARCH Open Access Investigation of copy number variations on chromosome 21 detected by comparative genomic hybridization (CGH) microarray in patients with congenital anomalies Wenfu Li, Xianfu Wang and Shibo Li* Abstract Background: The clinical features of Down syndrome vary among individuals, with those most common being congenital heart disease, intellectual disability, developmental abnormity and dysmorphic features. Complex combination of Down syndrome phenotype could be produced by partially copy number variations (CNVs) on chromosome 21 as well. By comparing individual with partial CNVs of chromosome 21 with other patients of known CNVs and clinical phenotypes, we hope to provide a better understanding of the genotype-phenotype correlation of chromosome 21. Methods: A total of 2768 pediatric patients sample collected at the Genetics Laboratory at Oklahoma University Health Science Center were screened using CGH Microarray for CNVs on chromosome 21. Results: We report comprehensive clinical and molecular descriptions of six patients with microduplication and seven patients with microdeletion on the long arm of chromosome 21. Patients with microduplication have varied clinical features including developmental delay, microcephaly, facial dysmorphic features, pulmonary stenosis, autism, preauricular skin tag, eye pterygium, speech delay and pain insensitivity. We found that patients with microdeletion presented with developmental delay, microcephaly, intrauterine fetal demise, epilepsia partialis continua, congenital coronary anomaly and seizures. Conclusion: Three patients from our study combine with four patients in public database suggests an association between 21q21.1 microduplication of CXADR gene and patients with developmental delay. One patient with 21q22.13 microdeletion of DYRK1A shows association with microcephaly and scoliosis.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • Patient-Based Cross-Platform Comparison of Oligonucleotide Microarray Expression Profiles
    Laboratory Investigation (2005) 85, 1024–1039 & 2005 USCAP, Inc All rights reserved 0023-6837/05 $30.00 www.laboratoryinvestigation.org Patient-based cross-platform comparison of oligonucleotide microarray expression profiles Joerg Schlingemann1,*, Negusse Habtemichael2,*, Carina Ittrich3, Grischa Toedt1, Heidi Kramer1, Markus Hambek4, Rainald Knecht4, Peter Lichter1, Roland Stauber2 and Meinhard Hahn1 1Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany; 2Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt am Main, Germany; 3Central Unit Biostatistics, Deutsches Krebsforschungszentrum, Heidelberg, Germany and 4Department of Otorhinolaryngology, Universita¨tsklinik, Johann-Wolfgang-Goethe-Universita¨t Frankfurt, Frankfurt, Germany The comparison of gene expression measurements obtained with different technical approaches is of substantial interest in order to clarify whether interplatform differences may conceal biologically significant information. To address this concern, we analyzed gene expression in a set of head and neck squamous cell carcinoma patients, using both spotted oligonucleotide microarrays made from a large collection of 70-mer probes and commercial arrays produced by in situ synthesis of sets of multiple 25-mer oligonucleotides per gene. Expression measurements were compared for 4425 genes represented on both platforms, which revealed strong correlations between the corresponding data sets. Of note, a global tendency towards smaller absolute ratios was observed when
    [Show full text]
  • Non-Coding Rnas in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases
    Review Non-Coding RNAs in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases Estefania Lozano-Velasco 1,2 , Amelia Aranega 1,2 and Diego Franco 1,2,* 1 Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; [email protected] (E.L.-V.); [email protected] (A.A.) 2 Fundación Medina, 18016 Granada, Spain * Correspondence: [email protected] Abstract: Cardiac arrhythmias are prevalent among humans across all age ranges, affecting millions of people worldwide. While cardiac arrhythmias vary widely in their clinical presentation, they possess shared complex electrophysiologic properties at cellular level that have not been fully studied. Over the last decade, our current understanding of the functional roles of non-coding RNAs have progressively increased. microRNAs represent the most studied type of small ncRNAs and it has been demonstrated that miRNAs play essential roles in multiple biological contexts, including normal development and diseases. In this review, we provide a comprehensive analysis of the functional contribution of non-coding RNAs, primarily microRNAs, to the normal configuration of the cardiac action potential, as well as their association to distinct types of arrhythmogenic cardiac diseases. Keywords: cardiac arrhythmia; microRNAs; lncRNAs; cardiac action potential Citation: Lozano-Velasco, E.; Aranega, A.; Franco, D. Non-Coding RNAs in the Cardiac Action Potential 1. The Electrical Components of the Adult Heart and Their Impact on Arrhythmogenic The adult heart is a four-chambered organ that propels oxygenated blood to the entire Cardiac Diseases. Hearts 2021, 2, body. It is composed of atrial and ventricular chambers, each of them with distinct left and 307–330.
    [Show full text]
  • V45n4a03.Pdf
    Montoya JC/et al/Colombia Médica - Vol. 45 Nº4 2014 (Oct-Dec) Colombia Médica colombiamedica.univalle.edu.co Original Article Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain Expresión diferencial global de genes localizados en la Región Crítica del Síndrome de Down en el cerebro humano normal Julio Cesar Montoya1,3, Dianora Fajardo2, Angela Peña2 , Adalberto Sánchez1, Martha C Domínguez1,2, José María Satizábal1, Felipe García-Vallejo1,2 1 Department of Physiological Sciences, School of Basic Sciences, Faculty of Health, Universidad del Valle. 2 Laboratory of Molecular Biology and Pathogenesis LABIOMOL. Universidad del Valle, Cali, Colombia. 3 Faculty of Basic Sciences, Universidad Autónoma de Occidente, Cali, Colombia. Montoya JC , Fajardo D, Peña A , Sánchez A, Domínguez MC, Satizábal JM, García-Vallejo F.. Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain. Colomb Med. 2014; 45(4): 154-61. © 2014 Universidad del Valle. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Article history Abstract Resumen Background: The information of gene expression obtained from Introducción: La información de la expresión de genes consignada Received: 2 July 2014 Revised: 10 November 2014 databases, have made possible the extraction and analysis of data en bases de datos, ha permitido extraer y analizar información acerca Accepted: 19 December 2014 related with several molecular processes involving not only in procesos moleculares implicados tanto en la homeostasis cerebral y su brain homeostasis but its disruption in some neuropathologies; alteración en algunas neuropatologías.
    [Show full text]
  • Repositório Da Universidade De Lisboa
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL TOWARDS THE IDENTIFICATION OF BIOMARKERS FOR CYSTIC FIBROSIS BY PROTEOMICS NUNO MIGUEL ANTUNES GARCIA CHARRO DOUTORAMENTO EM BIOLOGIA ESPECIALIDADE BIOLOGIA MOLECULAR 2011 ii iii iv UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL TOWARDS THE IDENTIFICATION OF BIOMARKERS FOR CYSTIC FIBROSIS BY PROTEOMICS Tese orientada pela Doutora Deborah Penque e Professora Doutora Ana Maria Viegas Gonçalves Crespo NUNO MIGUEL ANTUNES GARCIA CHARRO DOUTORAMENTO EM BIOLOGIA (BIOLOGIA MOLECULAR) 2011 v The research described in this thesis was conducted at Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA, I.P.), Lisbon, Portugal; Clinical Proteomics Facility, University of Pittsburgh Medical Centre, Pennsylvania, USA; and Laboratory of Proteomics and Analytical Technologies, National Cancer Institute at Frederick, Maryland, USA. Work partially supported by Fundação para a Ciência e a Tecnologia (FCT), Fundo Europeu para o Desenvolvimento (FEDER) (POCI/SAU-MMO/56163/2004), FCT/Poly-Annual Funding Program and FEDER/Saúde XXI Program (Portugal). Nuno Charro is a recipient of FCT doctoral fellowship (SFRH/BD/27906/2006). vi Agradecimentos/Acknowledgements “Nothing is hidden that will not be made known; Nothing is secret that will not come to light” Desde muito pequeno, a minha vontade em querer saber mais e porquê foi sempre presença constante. Ao iniciar e no decorrer da minha (ainda) curta na investigação científica, as perguntas foram mudando, o método também e várias pessoas contribuíram para o crescimento e desenvolvimento da minha personalidade científica e pessoal. Espero não me esquecer de ninguém e, se o fizer, não é intencional; apenas falibilidade.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]