Investigation of Electrical Contacts to P-Grid in Sic Power Devices Based on Charge Storage Effect and Dynamic Degradation

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Electrical Contacts to P-Grid in Sic Power Devices Based on Charge Storage Effect and Dynamic Degradation electronics Article Investigation of Electrical Contacts to p-Grid in SiC Power Devices Based on Charge Storage Effect and Dynamic Degradation Meng Zhang 1,2, Baikui Li 1,*, Mengyuan Hua 3 and Jin Wei 4 1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; [email protected] 2 Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China 3 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; [email protected] 4 Institute of Microelectronics, Peking University, Beijing 100871, China; [email protected] * Correspondence: [email protected] Received: 4 September 2020; Accepted: 11 October 2020; Published: 19 October 2020 Abstract: P-grid is a typical feature in power devices to block high off-state voltage. In power devices, the p-grid is routinely coupled to an external electrode with an Ohmic contact, but Schottky contact to the p-grid is also proposed/adopted for certain purposes. This work investigates the role of contact to p-grid in power devices based on the commonly adopted technology computer-aided design (TCAD) device simulations, with the silicon carbide (SiC) junction barrier Schottky (JBS) diode as a case study. The static characteristics of the JBS diode is independent of the nature of the contact to p-grid, including the forward voltage drop (VF) and the breakdown voltage (BV). However, during the switching process, a Schottky contact would cause storage of negative charges in the p-grid, which leads to an increased VF during switching operation. On the contrary, an Ohmic contact provides an effective discharging path for the stored negative charges in the p-grid, which eliminates the dynamic degradation issues. Therefore, the necessity of an Ohmic contact to p-grid in power devices is clarified. Keywords: electrical contacts; stored charges; dynamic performance; SiC JBS diode 1. Introduction Power devices typically feature p-grids inside the device active regions to block the high off-state voltage or to protect certain vulnerable structures [1]. With the key challenges, such as low channel resistance [2], channel mobility [3,4], and oxide reliability [5] being addressed, silicon carbide (SiC) devices are now commercially available from several vendors [6,7]. The SiC devices are widely used in power electronics—for example, SiC transistors adopted as switches in inverter circuit, SiC diodes used in rectifier circuit and as a freewheeling diode in inverter circuit. In a power metal-oxide-semiconductor field-effect transistor (MOSFET), the p-grid is grounded to the source electrode, while in a junction barrier Schottky (JBS) diode, the p-grid is connected to the anode. In blocking state, the PN junction (between p-grid and n-drift region) is reversely biased to withstand the high voltage. In power devices, the metal contact to the p-grid is mostly an Ohmic contact. However, Schottky contact is also proposed and adopted for certain purposes. For example, for an insulated gate bipolar transistor (IGBT), a Schottky contact to the p-body has been proposed to enhance the minority carrier concentration near the emitter side without any sacrifice in the off-state breakdown voltage (BV)[8]. In the emerging Electronics 2020, 9, 1723; doi:10.3390/electronics9101723 www.mdpi.com/journal/electronics Electronics 2020, 9, 1723 Electronics 2020, 9, x FOR PEER REVIEW 2 of 9 2 of 9 In the emerging gallium nitride (GaN) power transistors, a Schottky contact to the p-region is widely gallium nitride (GaN)used power to enlarge transistors, the gate a Schottky voltage contact swing to[9,10], the p-region or explored is widely as a method used to to enlarge adjust the the threshold voltage gate voltage swing [[11,12].9,10], or Furthermore, explored as a methodthe injection to adjust of minority the threshold carrier voltage through [11,12 the]. Furthermore, PN junction is likely to cause the injection of minoritybipolar carrier degradation through in the SiC PN power junction devices, is likely such to as cause body bipolar diodes degradationof SiC MOSFETs in [13,14] and SiC SiC power devices,bipolar such as junction body diodes transistor of SiC (BJT) MOSFETs [15]. If [13 the,14 metal] and SiCcontact bipolar to p-grid junction is non-Ohmic transistor —e.g., a Schottky (BJT) [15]. If the metalcontact contact is used to p-gridinstead is— non-Ohmic—e.g.,the conduction through a Schottky the PN contact junction is usedcan be instead— completely suppressed, so the conduction throughthe bipolar the PN degradation junction can beand completely poor revers suppressed,e recovery socan the be bipolar avoided degradation [16,17]. and poor reverse recovery canThis be avoidedwork aims [16 ,to17 ].discuss the role of the contact to p-grid in certain power devices, whose This work aimsmetal/p-region to discuss contacts the role are of under the contact investigation. to p-grid The SiC in certainJBS diode power is adopted devices, in this work as a case whose metal/p-regionstudy. contacts SiC power are under devices investigation. have attracted The worldwide SiC JBS diode attention is adopted because in of this the work high critical breakdown as a case study. SiCfield power in SiC devices [18]— havefor example, attracted SiC worldwide MOSFET attentionwith protruded because p-base of the [19], high split-gate critical SiC MOSFET [20], breakdown field inSiC SiC diodes [18]—for [21], example, and GaN/SiC SiC MOSFET hybrid withfield-effect protruded transistors p-base [22]. [19], In split-gate this work, SiC we present that the MOSFET [20], SiC diodescontact [21 to], the and p-grid GaN/SiC exerts hybrid little field-e influenceffect transistorson the static [22 characteristics]. In this work, of we the present SiC JBS diode, including that the contact to thethe p-gridforward exerts voltage little drop influence (VF) and on the the BV static. However, characteristics the SiC of JBS the diode SiC JBS with diode, Schottky contact to the including the forwardp-grid voltage suffers drop from (VF) severely and the BVdegraded. However, dynamic the SiC V JBSF during diode the with switching Schottky operation. contact The cause of the to the p-grid suffersdynamic from severely degradation degraded is found dynamic to beV theF during charge the stor switchingage in the operation. p-grid. An The Ohmic cause contact to the p-grid of the dynamic degradationeffectively is discharges found to be the the p-grid charge and storage eliminates in the the p-grid. dynamic An Ohmic degradation. contact to the p-grid effectively dischargesTechnology the p-grid computer-aided and eliminates design the dynamic (TCAD) degradation. Sentaurus device simulations and mixed mode Technology computer-aidedsimulations are designdeployed (TCAD) to reveal Sentaurus the internal device dynamics simulations of the devices. and mixed A Sentaurus mode Structure Editor simulations are deployedis used to for reveal structure the internal and mesh dynamics construction. of the devices. A Sentaurus A Sentaurus Device Structureis used for Editor device simulations and is used for structuremixed-mode and mesh construction.circuit simulati Aons. Sentaurus The physics Device models is used such for device as Auger simulations and Shockley–Reed–Hall and mixed-mode circuitcombination, simulations. impact The ionization physics (Lackner models such model), as Auger incomplete and Shockley–Reed–Hall ionization, high-field saturation effects, combination, impactdoping ionization dependent (Lackner transport, model), band incomplete narrowing, ionization, and anisotropic high-field mobility saturation model effects, are all considered. doping dependent transport, band narrowing, and anisotropic mobility model are all considered. 2. Device Structure and Static Characteristics 2. Device Structure and Static Characteristics Figure 1 shows the schematic structures of SiC JBS diodes with either an Ohmic contact or a Figure1 showsSchottky the schematic contact structures to the p-grid. of SiC The JBS work diodes function with eitherof the anSchottky Ohmic contact contact is or assumed a to be 4.33 eV. Schottky contact toThe the n-drift p-grid. region The work has a function thickness of of the 12 Schottkyµm, and contacta doping is concentration assumed to be of 4.33 8 × 10 eV.15 cm−3. The width of 15 3 The n-drift region hasthe ap-grid thickness in one of cell 12 µ ism, W andgrid =a 2 dopingµm. The concentration width of the junction of 8 10 gatecm field-effect− . The width transistor (JFET) region × of the p-grid in oneis cell WJFET is W= 2grid µm= unless2 µm. otherwise The width specified. of the junction The key gate device field-e parametersffect transistor of the diodes (JFET) are listed in Table 1. region is WJFET = 2 µThem unlesstemperature otherwise is set specified. as room Thetemperature key device (300 parameters K) in the following of the diodes TCAD are listedsimulations. in Table1. The temperature is set as room temperature (300 K) in the following TCAD simulations. (a) (b) Figure 1. Schematic structuresFigure 1. ofSchematic (a) the SiC structures junction of barrier (a) the Schottky SiC junction (JBS) barrier diode withSchottky Ohmic (JBS) contacts diode with Ohmic contacts to the p-grids and (b)to the the SiC p-grids JBS diode and with(b) the Schottky SiC JBS contacts diode with to the Schottky p-grids. contacts to the p-grids. Electronics 2020, 9, x FOR PEER REVIEW 3 of 9 Table 1. Key device parameters in the studied SiC JBS diodes. Parameter Value Unit n-drift thickness 12 µm Electronics 2020, 9, 1723 n-drift doping 8 × 1015 cm−3 3 of 9 cell pitch 4 µm Table 1. KeyW devicep-grid parameters in the studied2 SiC JBS diodes.µm WJFET 2 µm p-gridParameter doping Value1 × 1018 Unit cm−3 n+ substraten-drift thicknessdoping 1 12 × 1019 µm cm−3 n-drift doping 8 1015 cm 3 × − The static I-V characteristics ofcell the pitch SiC JBS diodes 4are plottedµ min Figure 2.
Recommended publications
  • Extremely High-Gain Source-Gated Transistors
    Extremely high-gain source-gated transistors Jiawei Zhanga,1, Joshua Wilsona,1, Gregory Autonb, Yiming Wangc, Mingsheng Xuc, Qian Xinc, and Aimin Songa,c,1,2 aSchool of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, United Kingdom; bNational Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; and cState Key Laboratory of Crystal Materials, Centre of Nanoelectronics and School of Microelectronics, Shandong University, Jinan 250100, People’s Republic of China Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved January 29, 2019 (received for review December 6, 2018) Despite being a fundamental electronic component for over 70 turn-on voltage (19, 20). This susceptibility to negative bias illu- years, it is still possible to develop different transistor designs, mination temperature stress (NBITS) is one of the main factors including the addition of a diode-like Schottky source electrode delaying the wide-scale adoption of IGZO in the display industry. to thin-film transistors. The discovery of a dependence of the Another major problem is that TFTs require precise lithography source barrier height on the semiconductor thickness and deriva- to enable large-area uniformity, and difficulties with registration tion of an analytical theory allow us to propose a design rule to between different TFT layers are likely to be compounded by the achieve extremely high voltage gain, one of the most important use of flexible substrates. One major advantage of the SGT is that figures of merit for a transistor. Using an oxide semiconductor, an it does not require such precise registration, because the current intrinsic gain of 29,000 was obtained, which is orders of magni- is controlled by the dimensions of the source contact rather than tude higher than a conventional Si transistor.
    [Show full text]
  • Lecture 3: Diodes and Transistors
    2.996/6.971 Biomedical Devices Design Laboratory Lecture 3: Diodes and Transistors Instructor: Hong Ma Sept. 17, 2007 Diode Behavior • Forward bias – Exponential behavior • Reverse bias I – Breakdown – Controlled breakdown Æ Zeners VZ = Zener knee voltage Compressed -VZ scale 0V 0.7 V V ⎛⎞V Breakdown V IV()= I et − 1 S ⎜⎟ ⎝⎠ kT V = t Q Types of Diode • Silicon diode (0.7V turn-on) • Schottky diode (0.3V turn-on) • LED (Light-Emitting Diode) (0.7-5V) • Photodiode • Zener • Transient Voltage Suppressor Silicon Diode • 0.7V turn-on • Important specs: – Maximum forward current – Reverse leakage current – Reverse breakdown voltage • Typical parts: Part # IF, max IR VR, max Cost 1N914 200mA 25nA at 20V 100 ~$0.007 1N4001 1A 5µA at 50V 50V ~$0.02 Schottky Diode • Metal-semiconductor junction • ~0.3V turn-on • Often used in power applications • Fast switching – no reverse recovery time • Limitation: reverse leakage current is higher – New SiC Schottky diodes have lower reverse leakage Reverse Recovery Time Test Jig Reverse Recovery Test Results • Device tested: 2N4004 diode Light Emitting Diode (LED) • Turn-on voltage from 0.7V to 5V • ~5 years ago: blue and white LEDs • Recently: high power LEDs for lighting • Need to limit current LEDs in Parallel V R ⎛⎞ Vt IV()= IS ⎜⎟ e − 1 VS = 3.3V ⎜⎟ ⎝⎠ •IS is strongly dependent on temp. • Resistance decreases R R R with increasing V = 3.3V S temperature • “Power Hogging” Photodiode • Photons generate electron-hole pairs • Apply reverse bias voltage to increase sensitivity • Key specifications: – Sensitivity
    [Show full text]
  • Comparing Trench and Planar Schottky Rectifiers
    Whitepaper Comparing Trench and Planar Schottky Rectifiers Trench technology delivers lower Qrr, reduced switching losses and wider SOA By Dr.-Ing. Reza Behtash, Applications Marketing Manager, Nexperia The Schottky diode - named after its inventor, the German physicist Walter Hans Schottky - consists essentially of a metal-semiconductor interface. Because of its low forward voltage drop and high switching speed, the Schottky diode is widely used in a variety of applications, such as a boost diode in power conversion circuits. The electrical performance of a Schottky diode is, of course, subject to physical trade-offs, primarily between the forward voltage drop, the leakage current and the reverse blocking voltage. The Trench Schottky diode is a development on the original Schottky diode, providing greater capabilities than its planar counterpart. In this paper the structure and the benefits of Trench Schottky rectifiers are discussed. Schottky operation Trench technology The ideal rectifier would have a low forward voltage drop, Given this explanation, one might ask how the major a high reverse blocking voltage, zero leakage current and advantage of Schottky rectifiers - namely, a low voltage a low parasitic capacitance, facilitating a high switching drop across the metal semiconductor interface - is preserved, speed. When considering the forward voltage drop, despite the demand for a low leakage current and a high there are two main elements: the voltage drop across the reverse blocking voltage? Here, Trench rectifiers prove very junction - PN junction in case of PN rectifiers and metal- useful. The concept behind the Trench Schottky rectifier semiconductor junction in case of Schottky rectifiers; and is termed ‘RESURF’ (reduced surface field).
    [Show full text]
  • Schottky Diode Replacement by Transistors: Simulation and Measured Results
    SCHOTTKY DIODE REPLACEMENT BY TRANSISTORS: SIMULATION AND MEASURED RESULTS Martin Pospisilik Department of Computer and Communication Systems Faculty of Applied Informatics Tomas Bata University in Zlin 760 05, Zlin, Czech Republic E-mail: [email protected] KEYWORDS MOTIVATION Model, SPICE, MOSFET, Electronic Diode, Voltage The expansion of metal oxide field effect transistors has Drop, Power Dissipation led to efforts to substitute conventional diodes by electronic circuit that behave in the same way as the ABSTRACT diodes, but show considerably lower power dissipation The software support for simulation of electrical circuits as the voltage drop over the transistor can be eliminated has been developed for more than sixty years. Currently, to very low levels. In Fig. 1 there is a block diagram of a the standard tools for simulation of analogous circuits backup power source for the devices that use Power are the simulators based on the open source package over Ethernet technology. This solution, that has been Simulation Program with Integrated Circuit Emphasis developed at Tomas Bata University in Zlin, enables generally known as SPICE (Biolek 2003). There are immediate switching from the main supply to the backup many different applications that provide graphical one together with gentle charging of the accumulator, interface and extended functionalities on the basis of unlike the conventional on-line uninterruptable power SPICE or, at least, using SPICE models of electronic sources do (Pospisilik and Neumann 2013). devices. The author of this paper performed a simulation of a circuit that acts as an electronic diode in Multisim and provides a comparison of the simulation results with the results obtained from measurements on the real circuit.
    [Show full text]
  • Basics of Transistors and Circuits Dr
    BASICS OF TRANSISTORS AND CIRCUITS DR. HEATHER QUINN, LANL TEXTBOOK For these slides I am using many figures from the second edition of the Principles of CMOS VLSI Design by Weste and Esharaghain, and the fourth edition of CMOS VLSI Design: A Circuit and Systems Perspective INTRODUCTION There are two ways to view radiation effects in electronics: Start from the material science and work upward to transistors to circuits Start from computer circuits and work downward to transistors and then to material science There are advantages and disadvantages to both TOP/BOTTOM VS. BOTTOM/TOP Top/Bottom Bottom/Top Pros: Pros: Understanding of how the entire circuit Deep understanding of the mechanism works (sort of) Deep understanding the potential of the Understanding of the effect of electrical, effect, able to determine whether new temporal, and logical masking, which can be effects are possible used to limit the effects to the ones that cause noticeable effect Cons: Cons: Lack of understanding about electrical, temporal, and logical masking Hard to scale down to the material science Hard to scale up Might not understand the mechanism WHICH WAY TO GO? Likely depends on your background I’m a computer architect that learned radiation effects OJT, so I feel more comfortable personally going top down Some of my team is better versed in radiation effects are learning the circuit part OJT Either way, it is almost impossible to do both well, unless you would like to earn two PhDs, so working in teams is always best At the end of
    [Show full text]
  • Design and Fabrication of Schottky Diode with Standard CMOS Process3
    第 26 卷 第 2 期 半 导 体 学 报 Vol. 26 No. 2 2005 年 2 月 CHINESEJOURNAL OF SEMICONDUCTORS Feb. ,2005 Design and Fabrication of Schottky Diode with Standard CMOS Process 3 Li Qiang , Wang J unyu, Han Yifeng, and Min Hao ( State Key L aboratory of A S IC &System , Fudan U niversity , S hanghai 200433 , China) Abstract : Design and fabrication of Schottky barrier diodes (SBD) with a commercial standard 0135μm CMOS process are described. In order to reduce the series resistor of Schottky contact ,interdigitating the fingers of schottky diode layout is adopted. The I2V , C2V ,and S parameter are measured. The parameters of realized SBD such as the saturation current , breakdown voltage ,and the Schottky barrier height are given. The SPICE simulation model of the realized SBDs is given. Key words : CMOS; Schottky diode; integration EEACC : 2560H; 2570D CLC number : TN311 + 17 Document code : A Article ID : 025324177 (2005) 0220238205 sured results[5 ,6 ] . In this paper we describe the way to 1 Introduction design and layout a Schottky diode in a low cost com2 mercial standard CMOS process without any process Schottky diodes have advantages such as fast modification. The measured results and SPICE simu2 switching speed and low forward voltage drop. Due to lation model are offered. these excellent high frequency performance ,they have been widely used in power detection and microwave 2 Design and layout of Schottky diode network circuit [1 ] . Schottky diodes are often fabricat2 ed by depositing metals on n2type or p2type semicon2 This design was performed through MPW(multi ductor materials such as GaAs and SiC[2~4 ] .
    [Show full text]
  • Si7748dp N-Channel 30 V (D-S) MOSFET with Schottky Diode
    Si7748DP www.vishay.com Vishay Siliconix N-Channel 30 V (D-S) MOSFET with Schottky Diode FEATURES PRODUCT SUMMARY •SkyFETTM monolithic TrenchFET® power V (V) R (Ω)I (A) a Q (TYP.) DS DS(on) D g MOSFET and Schottky diode 0.0048 at VGS = 10 V 50 30 27.8 nC • 100 % R and UIS tested 0.0066 at VGS = 4.5 V 50 g • Material categorization: For definitions of compliance please see ® PowerPAK SO-8 Single www.vishay.com/doc?99912 D D 8 D APPLICATIONS 7 D D 6 5 • Notebook - Vcore low-side 6.15 mm 1 2 S Schottky Diode 3 S G 1 5.15 mm 4 S G Top View Bottom View N-Channel MOSFET Ordering Information: Si7748DP-T1-GE3 (lead (Pb)-free and halogen-free) S ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise noted) PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V 30 DS V Gate-Source Voltage VGS ± 20 a TC = 25 °C 50 a TC = 70 °C 50 Continuous Drain Current (TJ = 150 °C) ID b, c TA = 25 °C 23.5 T = 70 °C 18.6 b, c A A Pulsed Drain Current (t = 100 μs) IDM 150 a TC = 25 °C 50 Continuous Source-Drain Diode Current IS b, c TA = 25 °C 4.3 Single Pulse Avalanche Current I 30 L = 0.1 mH AS Single Pulse Avalanche Energy EAS 45 mJ TC = 25 °C 56 TC = 70 °C 31 Maximum Power Dissipation PD b, c W TA = 25 °C 4.8 b, c TA = 70 °C 3 Operating Junction and Storage Temperature Range T , T -55 to 150 J stg °C Soldering Recommendations (Peak Temperature) d, e 260 THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYPICAL MAXIMUM UNIT Maximum Junction-to-Ambient b, f t ≤ 10 s R 21 26 thJA °C/W Maximum Junction-to-Case (Drain) Steady State RthJC 1.7 2.2 Notes a.
    [Show full text]
  • LM2596 SIMPLE SWITCHER Power Converter 150 Khz 3A Step-Down V
    LM2596 SIMPLE SWITCHER Power Converter 150 kHz 3A Step-Down Voltage Regulator May 2002 LM2596 SIMPLE SWITCHER® Power Converter 150 kHz 3A Step-Down Voltage Regulator General Description Features The LM2596 series of regulators are monolithic integrated n 3.3V, 5V, 12V, and adjustable output versions circuits that provide all the active functions for a step-down n Adjustable version output voltage range, 1.2V to 37V (buck) switching regulator, capable of driving a 3A load with ±4% max over line and load conditions excellent line and load regulation. These devices are avail- n Available in TO-220 and TO-263 packages able in fixed output voltages of 3.3V, 5V, 12V, and an adjust- n Guaranteed 3A output load current able output version. n Input voltage range up to 40V Requiring a minimum number of external components, these n Requires only 4 external components regulators are simple to use and include internal frequency n Excellent line and load regulation specifications compensation†, and a fixed-frequency oscillator. n 150 kHz fixed frequency internal oscillator The LM2596 series operates at a switching frequency of n TTL shutdown capability 150 kHz thus allowing smaller sized filter components than n Low power standby mode, I typically 80 µA what would be needed with lower frequency switching regu- Q n lators. Available in a standard 5-lead TO-220 package with High efficiency several different lead bend options, and a 5-lead TO-263 n Uses readily available standard inductors surface mount package. n Thermal shutdown and current limit protection A standard series of inductors are available from several different manufacturers optimized for use with the LM2596 Applications series.
    [Show full text]
  • Schottky Diode RF Detectors and RF Pulse Effects on CMOS Logic
    Schottky Diode RF Detectors and RF Pulse Effects on CMOS Logic Boise State University and University of Maryland Presented by R. Jacob (Jake) Baker Boise State Participants: U. Maryland: Woochul Jeon, John Melngailis (with help from Andrei Stanishevsky, Nolan Ballew, and John Barry, and Michael Gaitan, NIST) Boise State: Jake Baker, Bill Knowlton Students supported over the last year at Boise State: Curtis Cahoon, Kelly DeGregrio (both now with Micron), and Ben Rivera (now with Freedom IC) Outline: (Schottky diodes) -- diodes fabricated and tested (DC and RF) -- diodes for high freq. operation, preliminary fab and test at DC, RF structures designed -- integrated circuits designed with diodes connected to in-situ amplifiers Operation of Power detector (Simulated) + DC - RF RF input DC output Chip Sumitted to MOSIS 2.2 x 2.2 mm AMI 1.5µ process, SCNA λ= 0.8 Diodes did not work! Cross section view 3.2 - 100 µm Ohmic contact SiO2 Al n+ n-well Guard ring Schottky contact(Al-Si) Cross section of Schottky diodes, fabricated with existing, crude mask and wafer Ohmic Contact Schottky Contact Al Al SiO2 n+ 20um - 100um n - Substrate Measured I-V Characteristics 20x20um Schottky diodes. 70 45 43 40 60 60 35 50 30 40 25 22 20 30 30 Current(uA) Current(mA) 17 15 15 20 20 20 13 15 10 10 10 5 5 5 3 45 0.551 1 0 0001 0 0.07 0.3 0.4 0.5 0.6 0.7 1234 Voltage Voltage Capacitance and Series resistance π • fc = 1/(2 RC) Î Make R and C as small as possible to increase cutoff frequency (fc) εqNs • Cj = A Î A: contact area, Ns: doping concentration 2 ( V + Vd ) V: applied voltage, Vd: built-in voltage • Series resistance = Rj + Rn + Rn+ Î Rn >> Rn+ >> Rj Î Series resistance mainly determined by Rn(n layer resistance).
    [Show full text]
  • Finalrell-PWR-Power-And-Energy
    Rich, unique history of engineering, manufacturing and distributing 4 United Silicon Carbide, inc. is a semiconductor company specializing in the development of high efficiency Silicon Carbide (SiC) devices & foundry services with process expertise in Schottky Barrier Diodes, JFETs, MOSFETs, Solid State Circuit Breakers and Custom SiC integrated circuits. USCi technology and products enable affordable power efficiency in key markets that will drive • Leading technologythe new in High and Powered greener IGBT (Modules economy. 650-3300V & Discrete), MOSFETs, Bipolar & SiC Modules • Research & Development in Nuremburg Germany with manufacturing located in Jiaxing China. 3 operational fabs and New facility opened in Shanghai for focus on the EV market. • Heavy investments in R&D and development of new technologies—including “Sintering” and new die bonding. • Becoming 100% independent supplier. Star Power has control of own IGBT Chip Technology • Reliability, cost and lead time surpasses the competition with new chip technology. • http://www.starpowereurope.com/en Fuji Electric is a global manufacturer of Power Semiconductor products offering Industrial IGBT Power modules, High Power IGBT modules, Intelligent Power Modules, SiC devices (Hybrid & Full SiC), Discrete Rectifier Diodes, Discrete MOSFET & IGBT devices. • IGBT Modules- 10A-3600A 600V-3300V several topologies and packages • Gen 6 and Gen 7 X series now available • GEN 7 Reduces power dissipation, Achieves equipment size reduction, Contributes to improving equipment reliability •
    [Show full text]
  • Sic Lateral Schottky Diode Technology for Integrated Smart Power Converter Jean-François Mogniotte, Christophe Raynaud, Mihai Lazar, Bruno Allard, Dominique Planson
    SiC lateral Schottky diode technology for integrated smart power converter Jean-François Mogniotte, Christophe Raynaud, Mihai Lazar, Bruno Allard, Dominique Planson To cite this version: Jean-François Mogniotte, Christophe Raynaud, Mihai Lazar, Bruno Allard, Dominique Planson. SiC lateral Schottky diode technology for integrated smart power converter. 2018 IEEE ICIT, Feb 2018, Lyon, France. 10.1109/ICIT.2018.8352287. hal-01864545 HAL Id: hal-01864545 https://hal.archives-ouvertes.fr/hal-01864545 Submitted on 9 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SiC lateral Schottky diode technology for integrated smart power converter J. F. MOGNIOTTE C. RAYNAUD, M. LAZAR, B. ALLARD, D. Université de Lyon INSA-Lyon, ESTA School of business PLANSON and Technology, CNRS, AMPERE, UMR 5005 Université de Lyon INSA-Lyon, CNRS, AMPERE, F-69621, Villeurbanne, France UMR 5005 [email protected] F-69621, Villeurbanne, France Abstract— Ampere laboratory develops a technology of been characterized with a breakdown voltage of 1200 V and a lateral power integrated circuit in Silicon Carbide (SiC). The Ron of 4 mΩ/cm2. The ref [3] presents a PN diode with a purpose is to establish integrated power converter with its driver, breakdown voltage of 400 V.
    [Show full text]
  • W2018 Digit2 Lecture08.Pdf
    2018.04.22. DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 8. LECTURE: LOGIC CIRCUITS III: ECL, SCHOTTKY TTL, CMOS AND BiCMOS 2nd (Spring) term 2017/2018 1 8. LECTURE 1. Digital IC technology picture gallery 2. Emitter coupled logic (ECL) 3. ”Classical” and high performance („advanced”) logic families, performance comparisons 4. Advanced Schottky TTL logic families 5. Advanced CMOS circuits and logic families 6. BiCMOS logic families 1 2018.04.22. INTEGRATED CIRCUIT ETCHNOLOGY Manufacturing technology of microelectronic (and MEMS) devices and chips. Basic material: semiconductor single crystal (silicon,Si) Processing : Additive steps: thin layer deposition – PVD, CVD, oxidation, patterning Modification steps: fotoexposition, ion implantation doping, thermal processing steps Subtractive steps: Chemical and physical etching steps, laser-assisted and mechanical layer removal Wafer technology: Sequential application of the above steps and their combinations on the surface of the wafer 3 IC TECHNOLOGY FLOW DIAGRAM Schematic flow diagram of IC fabrication 4 2 2018.04.22. SILICON INGOT AND WAFERS 300 mm (12 in.) dia ingot and polished silicon wafers5 TECHNOLOGY BASICS Batch processing 10 to 50 thousands chips in one step. Clean room in an IC fab 6 3 2018.04.22. HIGH CLEANNESS CONDITIONS IC processing, especially lithography: only under very high cleanness conditions, clean room. US Federal Standard: level100: less than 100 particle larger than 0.5 m. Submicron lithography: level10 and level 1 clean rooms. Extremely expensive! 7 IC FAB COSTS Cost of IC manufacturing clean rooms in function of time (calendar year) 8 4 2018.04.22. TECHNOLOGY BASICS Wafer and chip: ca.
    [Show full text]