Parallel Evolution Controlled by Adaptation and Covariation in Ammonoid Cephalopods Claude Monnet, Kenneth De Baets, Christian Klug

Total Page:16

File Type:pdf, Size:1020Kb

Parallel Evolution Controlled by Adaptation and Covariation in Ammonoid Cephalopods Claude Monnet, Kenneth De Baets, Christian Klug Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods Claude Monnet, Kenneth de Baets, Christian Klug To cite this version: Claude Monnet, Kenneth de Baets, Christian Klug. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evolutionary Biology, BioMed Central, 2011, 11 (115), 10.1186/1471-2148-11-115. hal-03034590 HAL Id: hal-03034590 https://hal.archives-ouvertes.fr/hal-03034590 Submitted on 22 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Monnet et al. BMC Evolutionary Biology 2011, 11:115 http://www.biomedcentral.com/1471-2148/11/115 RESEARCHARTICLE Open Access Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods Claude Monnet*, Kenneth De Baets and Christian Klug Abstract Background: A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research. Results: Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae) of Early-Middle Devonian age (405-395 Ma), which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls), larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers), and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus) in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture. Conclusions: The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several million years and through their phylogeny. Evolution of some traits (involution, umbilical lid) appears to be mainly driven by adaptation to improve the hydrodynamic properties of the shell, whereas other characters (sutural complexity) evolved due to covariation with features that play a central role in the morphogenesis of mollusc shells. This example provides evidence that parallel evolution can be driven simultaneously by different factors such as covariation (constructional constraints) and adaptation (natural selection). Background [20-22], therefore illustrating natural selection’s major role Independent evolution of similar biological traits in two in shaping morphological evolution and the repeatability different lineages branching off from the same ancestor of evolutionary processes. Several additional processes defines parallel evolution [1-3]. It is a common phenom- have been proposed that could contribute to the fabric of enon described for many animal clades (see e.g., [4-13]), parallel evolution. However, the contribution and condi- including molluscs [1,14-19]. Repeated patterns of parallel tions in which these various processes trigger parallel mor- evolutionary change of phenotypic traits are commonly phological evolution are still insufficiently investigated. regarded as evidence of adaptation under common selec- Furthermore, understanding the processes involved in tion pressures such as common environmental factors parallel evolution is also important for solving systematic problems and thus to estimate evolutionary rates and * Correspondence: [email protected] diversity [14]. Paläontologisches Institut und Museum, Universität Zürich, Karl Schmid Strasse 4, 8006 Zürich, Switzerland © 2011 Monnet et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited Monnet et al. BMC Evolutionary Biology 2011, 11:115 Page 2 of 21 http://www.biomedcentral.com/1471-2148/11/115 Evolutionary steps in two independent lineages will very early in the history and rapid diversification of the never be absolutely identical [1,15,16,23,24]. Neverthe- Ammonoidea during the Early and Middle Devonian in less, morphological (phenotypic) evolutionary trends do the time interval between about 405 and 395 Ma [64]. occur in independent lineages and can display striking The ammonoid shell, which grew by accretion, consists parallel changes (for a Recent mollusc example, see of a roughly conic, chambered, calcified, often ornamen- [17]). Here, the term parallel evolution is used in a ted and (more or less regularly) coiled conch. Yet, during broad sense, implying that not all parts of the organism this early diversification phase, the history of ammonoids undergo parallel evolutionary transformations and that is characterized by a morphological macroevolutionary the trends are nearly parallel, resulting in very similar trend from straight-shelled ancestors (bactritoids; for a organs/structures in a phylogenetic series of more than review of cephalopod phylogeny, see [65]) via loosely one species in at least two lineages. coiled earliest ammonoids toward completely tightly Parallel evolution is often difficult to differentiate from coiled forms with closed umbilicus (Figure 1; [58,66-70]). convergence (evolution from two different stages of This major evolutionary trend is thought to have separate lineages toward an evolutionary stage that has occurred in a time interval of only about 2 My (see evolved striking similarities among some phenetic, [58,69]). This rather fast evolution is evidenced by the genetic or other traits; [25]) and some authors have co-occurrence of loosely coiled primitive forms, which even suggested a continuum between convergent and are associated with contemporaneous, more derived, parallel evolution [2,26]. The distinction between con- coiled forms in several localities that yielded the earliest vergent, parallel, and divergent evolution indeed requires ammonoids [71-78]. Furthermore, this morphological the historical evolutionary aspect of studied lineages. evolutionary trend occurred during the most intense Because it is the only direct evidence of evolution in the phase of the “Devonian nekton revolution” [79]. This past over long time spans, palaeontological data can macroecological event corresponds to an explosive trend provide important insights into patterns and processes from planktonic and demersal marine animals toward of parallel evolution. true nekton as represented by the great diversification of In the fossil record, the Ammonoidea (Cephalopoda, jawed fish and ammonoids, reflecting a selection for Mollusca) are well-known to display large-scale morpholo- swimming capabilities. It coincided with macroevolution- gical macroevolutionary trends [27-39]. These marine ary transformations among various mollusc groups: an extinct cephalopods with an external, chambered shell increasing proportion of gastropods formed tightly coiled have repeatedly been proven to be valuable study objects protoconchs [80]; some dacryoconarids [81,82], ammo- todeveloportestevolutionary hypotheses [27,29, noids [58] and some nautiloids [83,84] more or less 34-36,40-50]. Besides, ammonoids “are for palaeontologists simultaneously evolved coiled shells, mainly during what Drosophila is in genetics” [51]. Their usefulness in the Early Devonian. Among ammonoids, these post- evolutionary biology originates in their high evolutionary embryonic morphological transformations enhanced rates, high taxonomic diversity and morphological dispar- buoyancy and swimming capabilities [58,85]. ity, and usually well-known stratigraphic (i.e. temporal) The case of parallel evolution studied here includes two framework (see [52-54]). However, such morphological families of ammonoids, namely the Auguritidae and Pina- evolutionary trends among ammonoids have been rarely citidae (Figure 2A). These two ammonoid lineages are of discussed and quantified in detail [38,39,47,55-58]. Knowl- Emsian and Eifelian age (~ 405-395 Ma; [86]) and have a edge of details in such lineages with seemingly
Recommended publications
  • Or Early Callovian) Ammonites from Alaska and Montana
    Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Descr$tions and illustrations of ctphalopods of possible late Middle Jurasric (Bathonian) age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page C- 1 Age of the faunas-Continued C- 1 Callovian versus Bathonian in Greenland- - - - _ - - _ - - C-2 Callovian versus Bathonian in Alaska and Montana- -- - Stratigraphic summary- __ --______ _ - - - -- - ---.- -- -.- - - C-2 Paleogeographic considerations- - -_-- -- ---- ---- Cook Inlet region, Alaska -______--------.-.--..--c-2 Summation of the evidence- - - _._ _ - _ _ - - - - - - - - - - - - Iniskin Peninsula-_-_______----.--------~.--C-2 Comparisons with other faunas---------___----------- Peninsula north of Chinitna Bay----- __._ _ _._ - C-3 \Vestern interior of Canada- - - -- -- -____------- --- Talkeetna Mountains ----___-_ - - -- ---- - - -- - -- C-3 Arctic region-_-_---___-_----------------------- Western Montana- - -----__-----------------.---C-5 other regions--__-__-____----------------------- Rocky Mountain front north of the Sun River- (2-5 Geographic distribution ___-___ --- - ---------- ------ -- - Drummond area--- ---_____ _--- -- -.-- ---- -- - C-10 Summary of results- --_-____-_----_---_-_----------- Age ofthe faunas-----------_----------------------- GI0 Systematic descriptions--_ _ _ - _ - - - - - - - - - - - - - - - - - - - - - - - Evidence from Alaska---____________--------------C-10 Literature cited _-_-_---______----------------------- Evidence from Montana --_-_____ --- - - -- .--- --- - - C-12 Index---__--___-_-_------------------------------- ILLUSTRATIONS [Plates 1-3 follow index] PLATE 1. Holcophylloceras, Oecotraustes (Paroecotraustes) ?, and Arctocephalites (Cranocephalites). 2.
    [Show full text]
  • Marine Sediments from the Southern Sierra Madre Oriental
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Blau, Joachim; Meister, Christian; Schmidt-Effing, Reinhard; Villaseñor, Ana B. A new fossiliferous site of Lower Liassic (Upper Sinemurian) marine sediments from the southern Sierra Madre Oriental (Puebla, Mexico): ammonite fauna, biostratigraphy, and description of Ectocentrites hillebrandti new species Revista Mexicana de Ciencias Geológicas, vol. 25, núm. 3, 2008, pp. 402-407 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57225303 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 402 RevistaBlau etMexicana al. de Ciencias Geológicas, v. 25, núm. 3, 2008, p. 402-407 A new fossiliferous site of Lower Liassic (Upper Sinemurian) marine sediments from the southern Sierra Madre Oriental (Puebla, Mexico): ammonite fauna, biostratigraphy, and description of Ectocentrites hillebrandti new species Joachim Blau1,*, Christian Meister2, Reinhard Schmidt-Effi ng3, and Ana B. Villaseñor4 1 Feldbergstrasse 5, D-61191 Rosbach-Rodheim, Germany. 2 Muséum d’Histoire Naturelle, Département de Géologie et Paléontologie, 1 Rte de Malagnou, CP. 6434, CH-1211 Genève 6, Switzerland. 3 Institut für Geologie und Paläontologie, Hans-Meerwein-Strasse 11a, D-35032 Marburg, Germany. 4 Instituto de Geología, Departamento de Paleontología, Ciudad Universitaria, 04510, México, D.F., Mexico. * [email protected] ABSTRACT We describe ammonites from a newly discovered, fossil-bearing, marine Liassic locality (Lower Jurassic, Huayacocotla Fm.) in the vicinity of the Zongozotla Municipality (southern Sierra Madre Oriental) in the northern part of Puebla State (Mexico).
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Ammonites from Bathonian and Callovian (Middle Jurassic)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 253 Zitteliana 89 Ammonites from Bathonian and Callovian (Middle Jurassic) North of Damghan, Paläontologie Bayerische EasternGeoBio- Alborz, North Iran & Geobiologie Staatssammlung Center LMU München LMU München für Paläontologie und Geologie Kazem Seyed-Emami1* & Ahmad Raoufian2 München, 01.07.2017 1School of Mining Engineering, University College of Engineering, University of Tehran, Manuscript received P.O. Box 11365-4563, Tehran, Iran 2 26.09.2016; revision Daneshvar Center, Farhangian University, Neyshapour, Iran accepted 30.10.2016 *Corresponding author; E-mail: [email protected] ISSN 0373-9627 ISBN 978-3-946705-00-0 Zitteliana 89, 253–270. Abstract The following Middle Jurassic ammonite families (subfamilies) are described from the Dalichai Formation north of Damghan (eastern Alborz), some of them for the first time: Phylloceratidae, Lytoceratidae, Oppeliidae (Hecticoceratinae), Stephanoceratidae (Cadomitinae), Tulitidae and Reineckeiidae. The fauna is typically Northwest-Tethyan and closely related to Central Europe (Subboreal – Submediterra- nean Provinces). Key words: Ammonites, Dalichai Formation, Middle Jurassic, Alborz, Iran Zusammenfassung Aus der Dalichai Formation nördlich von Damghan (Ostalborz) werden einige mitteljurassische Ammoniten, teils zum ersten Mal, beschrieben. Folgende Familien und Unterfamilien sind vertreten: Phylloceratidae, Lytoceratidae, Oppeliidae (Hecticoceratinae), Steph- anoceratidae (Cadomitinae), Tulitidae und Reineckeiidae. Die Fauna ist typisch für die Nordwest-Tethys und zeigt enge Beziehungen zu Zentraleuropa (Subboreale und Submediterrane Faunenprovinz). Schlüsselwörter: Ammoniten, Dalichai Formation, Mittlerer Jura, Alborz, Iran Introduction the frame of a MSc. thesis. For the present study, a new section nearby was chosen and collections The present study is a continuation of a larger re- were made by A.
    [Show full text]
  • Stuttgarter Beiträge Zur Naturkunde
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at "737 Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Schloss Rosenstein, 70CXD Stuttgart 1 Stuttgarter Beitr. Naturk. © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 2 STUTTGARTER BEITRÄGE ZUR NATURKUNDE Ser. B, Nr. 65 The more important species to which a lectotype has herein been designated and figured are Acanthopleuroceras maugenesti (d'Orb.) and Coeloceras grenouillouxi (d'Orb.). The holotype oi Platypleu- roceras brevispina, a fragment of three successive whorls, is described in detail for the first time. The ranges of described ammonites are presented in Table 2. The early appearance of Zetoceras and Lytoceras, and the occurence of Crucilobiceras, Microderoceras, and Jamesonites are notable. The first evidence of the Liparoceratid family occurs in the upper part of the taylori Subzone. Resume La subdivision biostratigraphique du Pliensbachien inferieur a ete etudiee dans son stratotype a Pliensbach (arrondissement de Göppingen, Wurtemberg). Deux coupes supplementaires de la region- type, Celles de Nürtingen et de Holzmaden, ont ete prises egalement en consideration. Le Schema de subdivision en zones et sous-zones elabore par Dean et al. (1961) pour la province liasique de l'Europe du NW peut etre applique ä la serie marnocalcaire, epaisse de 9 a 12,5 m, de la region-type. La seule restriction importante est la position de la sous-zone a Masseanum, si on se refere ä la definition de la zone ä Jamesoni par Oppel (1856). Les premiers representants du genre Tropidoceras se trouvent ensemble avec des Uptonia. II faut en conclure que la sous-zone ä Masseanum est la sous-zone superieure de la zone ä Jamesoni.
    [Show full text]
  • G Abhandlungen Der Geologischen Bundesanstalt
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT ,G Abh. Geol. B.-A. ISSN 0378-08641 ISBN 3-85316-007-7 Band 56/2 I S. 319-328 Wien, Dezember 1999 Geologie ohne Grenzen Redaktion: Festschrift 150 Jahre Geologische Bundesanstalt Harald Lobitzer & Pavol Grecula Some hitherto Undescribed Liassic Ammonites from the Adnet Formation in Austria MILOÖ RAKÜS)* 12 Text-Figures, 3 Plates Northern Calcareous Alps Adnet Formation Liassic Ammonites Österreichische Karte 1:50.000 New Species Blatt 94 Systematics Contents Abstract 319 Zusammenfassung 319 1. Introduction 319 2. Systematic part 320 Acknowledgements 328 References 328 Abstract In this article STÜR'S collection of ammonites from the Adnet locality is revised. The revision showed that the collection comprises interes­ ting ammonites from the Lotharingian and Carixian in which four previously undescribed species of ammonites occur. Although STUR had al­ ready designated three of them as new species, they were never published. There is also a lectotype of the species originally described as Ammonites alius (HAUER), which enabled its new and more precise definition. A lectotype of Paroxynoticeras salisburgense (HAUER) is also newly depicted here. Einige bislang unbeschriebene Ammoniten des Lias von Adnet, Österreich Zusammenfassung Im Laufe der Revision der Ammonitenfauna des Lias von Adnet stellte sich heraus, daß die Sammlung STUR im Depot der Geologischen Bundesanstalt auch vier bislang unbeschriebene Arten des Lotharingiums bzw. Carixiums umfaßt. Obwohl STUR drei von diesen Exemplaren bereits als neue Arten designiert hatte, wurde ihre Beschreibung nie veröffentlicht. Die Sammlung umfaßt auch einen Lektotypus jener Art, die ursprünglich als Ammonites altus (HAUER) beschrieben wurde, der nun eine wesentlich präzisere Arten-Diagnose erlaubt.
    [Show full text]
  • Austroalpine Liassic Ammonites from the Adnet Formation (Northern Calcareous Alps) 163-211 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Jahrbuch der Geologischen Bundesanstalt Jahr/Year: 1993 Band/Volume: 136 Autor(en)/Author(s): Meister Christian, Böhm Florian Artikel/Article: Austroalpine Liassic Ammonites from the Adnet Formation (Northern Calcareous Alps) 163-211 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Jb. Geol. B.-A. ISSN 0016-7800 Band 136 S.163-211 Wien, Juli 1993 Austroalpine Liassic Ammonites from the Adnet Formation (Northern Calcareous Alps) By CHRISTIAN MEISTER & FLORIAN BÖHM *) With 14 Text-Figures and 9 Plates Oslerreich Salzburg Oberöslerreich Nördliche Kalkalpen Lias Ammoniten Oslerreichische Karle 1. 50.000 Biostratigraphie BI/1l1er94, 95, 96,126 Palaeogeographie Contents Zusammenfassung 163 Abstract. .. 164 Resume 164 1. Introduction 164 2. Geographical and Geological Framework 164 3. Lithological Description and Qualitative/Quantitative Ammonite Distributions 165 3.1. Schmiedwirt Quarry 165 3.2. Breitenberg Quarry 166 3.3. Rotkogel Outcrop 166 3.4. Rötelstein Outcrop 168 4. Systematic Palaeontology 169 PhylioceratinaARKELL 1950 171 LytoceratinaHYATT1889 174 Ammonitina HYATT 1889 175 5. Biostratigraphical Framework 184 5.1. Sinemurian 184 5.1.1. Early Sinemurian 184 5.1.2. Late Sinemurian 184 5.2. Pliensbachian 184 5.2.1. Early Pliensbachian (Carixian) 184 5.2.2. Late Pliensbachian (Domerian) 186 5.3. Toarcian 186 6. Faunal Composition and Palaeogeographical Remarks 189 7. Conclusion 190 Acknowledgements 190 References 208 Oberostalpine Liasammoniten aus der Adnetformation (Nördlichen Kalkalpen) Zusammenfassung Das Oberostalpin spielt eine Schlüsselrolle für das Verständnis der Verteilungsmuster der jurassischen Ammonitenfaunen und für die Fixierung genauer biostratigraphischer Korrelationen zwischen Tethyaler und Euroborealer Faunenprovinz.
    [Show full text]
  • Upper Jurassic Mollusks from Eastern Oregon and Western Idaho
    Upper Jurassic Mollusks from Eastern Oregon and Western Idaho GEOLOGICAL SURVEY PROFESSIONAL PAPER 483-D Upper Jurassic Mollusks from Eastern Oregon and Western Idaho By RALPH W. IMLAY CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 483-D Faunal evidence for the presence of Upper Jurassic sedimentary rocks in eastern Oregon and westernmost Idaho UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract.__________________________________________ Dl Ages and correlations Continued Introduction.______________________________________ 1 Trowbridge Formation of Lupher, 1941, in east- Biologic analysis..._________________________________ 2 central Oregon.__________---_-_-__-_-____---_ D9 Stratigraphic summary._____________________________ 2 Lonesome Formation of Lupher, 1941, in east-central Northeastern Oregon and adjoining Idaho. ________ 2 Oregon..________________-_--_____--_--_---__ 9 Mineral area, western Idaho.____________________ 2 Comparisons with other faunas.______________________ 10 East-central Oregon_____________________________ 4 Alaska and western British Columbia-____________ 10 Conditions of deposition.____________________________ 6 Calif ornia. ... _ __-_________--____-___-__---___-_ 10 Ages and correlations______________________________ 6 Unnamed beds in northeastern Oregon and adjoining Western interior of North America._______________ 10 Idaho_______________________________________ Geographic distribution________-_-_____---_---_-.__ 11 Unnamed beds near Mineral, Idaho.______________ Systematic descriptions..._--_--__-__________________ 13 Snowshoe Formation of Lupher, 1941, in east-central Literature cited_____-__-_____---------_-_--_--__-___ 17 Oregon._____________________________________ Index_.______________--____---------_-__---_-_-___ 21 ILLUSTRATIONS [Plates 1-4 follow index] PLATE 1.
    [Show full text]
  • Sinemurian Biostratigraphy of the Tannscharten Section
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Austrian Journal of Earth Sciences Jahr/Year: 2018 Band/Volume: 111 Autor(en)/Author(s): Lukeneder Petra, Lukeneder Alexander Artikel/Article: Sinemurian biostratigraphy of the Tannscharten section near Reichraming (Lower Jurassic, Schneeberg Syncline, Northern Calcareous Alps) 92- 110 download https://content.sciendo.com/view/journals/ajes/ajes-overview.xml Austrian Journal of Earth Sciences Vienna 2018 Volume 111/1 092 - 110 DOI: 10.17738/ajes.2018.0007 Sinemurian biostratigraphy of the Tannscharten section near Reichraming (Lower Jurassic, Schneeberg Syncline, Northern Calcareous Alps) Petra LUKENEDER1)*) & Alexander LUKENEDER1) 1) Museum of Natural History Vienna, Burgring 7, 1010 Vienna, Austria; *) Corresponding author: [email protected] KEYWORDS Ammonites; Allgäu Formation; Lower Jurassic; Reichraming Nappe; Northern Calcareous Alps Abstract Lower Jurassic ammonites were collected from deep-water limestones of the Tannscharten section, southwest of Reich- raming (Northern Calcareous Alps, Upper Austria). The outcrop provides a rich Upper Sinemurian (Lower Jurassic) ammo- nite fauna of the Allgäu Formation. The area is situated in the westernmost part of the Schneeberg Syncline in the north of the Reichraming Nappe (High Bajuvaric Unit). The ammonite fauna consists of seven different genera, each apparently represented by 1–2 species. Echioceratids are the most frequent components (Echioceras, Leptechioceras, Paltechioceras), followed by the phylloceratids (Juraphyllites, Partschiceras) and oxynoticeratids (Gleviceras, Paroxynoticeras). Juraphyllites libertus, Partschiceras striatocostatum, Gleviceras paniceum, Echioceras quenstedti, Echioceras raricostatoides, Paltechioceras boehmi, Leptechioceras meigeni, Leptechioceras macdonnelli and Paltechioceras oosteri are new for the Schneeberg Syn- cline and allow for the first time a detailed biostratigraphy of the Echioceras raricostatum zone.
    [Show full text]
  • 01 Venturi.Pmd
    Bollettino della Società Paleontologica Italiana, 44 (2), 2005, 81-115. Modena, 30 settembre 200581 Early Pliensbachian ammonites from the Furlo Pass (Marche, Italy): two new faunas for the middle-western Tethys Federico VENTURI, Carlo NANNARONE & Massimiliano BILOTTA F. Venturi, Dipartimento di Scienze della Terra, Università degli Studi di Perugia, Piazza Università 1, I-06123 Perugia, Italy; [email protected] C. Nannarone, Dipartimento di Scienze della Terra, Università degli Studi di Perugia, Piazza Università 1, I-06123 Perugia, Italy. M. Bilotta, Dipartimento di Scienze della Terra, Università degli Studi di Perugia, Piazza Università 1, I-06123 Perugia, Italy; [email protected] KEY WORDS - Ammonites, Taxonomy, Biostratigraphy, Tethys, Early Jurassic. ABSTRACT - Fu1 and Fu2 faunas, represented by the spathic lumachella horizons of the Grilli Quarry (Furlo Pass, Umbria- Marche Apennines), contain two highly biodiversified assemblages. They follow chronologically the “Venturi ’78” bed from the Pallareto Quarry (Catriceras catriense bioevent), which is considered the first post-Sinemurian record to be found in the Apennines: as a whole, these three faunas characterize the lower part of the Early Pliensbachian (Carixian) in our area. The material collected at the Furlo Pass enabled us to recognize an unexpected wealth of forms, including some completely new taxa. Within the Psiloceratida (order comprising the taxa traditionally placed in the Lytoceratina and Ammonitina), the new family Holcolytoceratidae is proposed here for Audaxlytoceras together with Holcolytoceras. Among the Eoderoceratoidea, we describe the new species Omoderoceras latispira (a Paramicroderoceratinae with monospinate inner stage, formerly found in the “Venturi ’78” bed), and we note the discovery of the first Apennine ammonoid ascribable to Apoderoceras.
    [Show full text]
  • Paleontological Contributions
    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 15, 1970 Paper 47 SIGNIFICANCE OF SUTURES IN PHYLOGENY OF AMMONOIDEA JURGEN KULLMANN AND JOST WIEDMANN Universinit Tubingen, Germany ABSTRACT Because of their complex structure ammonoid sutures offer best possibilities for the recognition of homologies. Sutures comprise a set of individual elements, which may be changed during the course of ontogeny and phylogeny as a result of heterotopy, hetero- morphy, and heterochrony. By means of a morphogenetic symbol terminology, sutural formulas may be established which show the composition of adult sutures as well as their ontogenetic development. WEDEKIND ' S terminology system is preferred because it is the oldest and morphogenetically the most consequent, whereas RUZHENTSEV ' S system seems to be inadequate because of its usage of different symbols for homologous elements. WEDEKIND ' S system includes only five symbols: E (for external lobe), L (for lateral lobe), I (for internal lobe), A (for adventitious lobe), U (for umbilical lobe). Investigations on ontogenetic development show that all taxonomic groups of the entire superorder Ammonoidea can be compared one with another by means of their sutural development, expressed by their sutural formulas. Most of the higher and many of the lower taxa can be solely characterized and arranged in phylogenetic relationship by use of their sutural formulas. INTRODUCTION Today very few ammonoid workers doubt the (e.g., conch shape, sculpture, growth lines) rep- importance of sutures as indication of ammonoid resent less complicated structures; therefore, phylogeny. The considerable advances in our numerous homeomorphs restrict the usefulness of knowledge of ammonoid evolution during recent these features for phylogenetic investigations.
    [Show full text]
  • Paleontological Journal
    ISSN 0031-0301 PALEONTOLOGICAL JOURNAL A TRANSLATION OF UDC 564.53 Paleontological Journal, 25(4), 1991 HIGHER TAXA OF JURASSIC AND CRETACEOUS AMMONITIDA N. V. Besnosov and I. A. Michailova All-Union Petroleum Geological Exploration Institute; Moscow University Abstract: The division of the order Ammonitida into the four suborders Ammonitina Hyatt, 1889, Haploceratina Besnosov et Michailova, 1983, Perisphinctina Besnosov et Michailova, 1983 and Ancyloceratina Wiedmann, 1966 is substantiated, and the phylogenetic relationships among the suborders and superfamilies are considered. • • • This article completes the systematics of taxa of ordinal, subordinal and superfamilial ranks of the Jurassic and Cretaceous ammonoids that we began in previous publications [3-5). These set forth the history of the problem and the current ideas on the system of the Jurassic and Cretaceous ammonoids, and consider the orders Phylloceratida and Lytoceratida, within the latter of which the independence of the suborder Turrilitina is documented. We believe that the Jurassic and Cretaceous ammonoids should be regarded as belonging to three orders: the Phylloceratida, Lytoceratida and Ammonitida. The first of these orders is small in volume and includes only one superfamily; the second is divided into two suborders and four superfamilies; and the third and largest order, the Ammonitida, combines four suborders and 15 superfamilies (fig. 1 ). The present system of the higher taxa of the Jurassic and Cretaceous ammonoids was described in the Treatiseon InvertebratePaleontology [25] and the SovietPrinciples of Paleontology [12, 13]. Substantial changes were later subsequently introduced into it by Schindewolf [23] and Wiedmann [26, 27], and also by Donovan, Callomon and Howarth [15]. The revision of the taxa of ordinal and familial rank proposed here is based primarily on phylogenetic research both in and outside the Soviet Union during the last three decades [4].
    [Show full text]