Species Index

Total Page:16

File Type:pdf, Size:1020Kb

Species Index Species index Aeromonas hydrophila, 241 Chanos chanos, 154,155,463 Alcolapia, 5,7,28,62 Chironomidae, 147 Alestes, 135,150 Chydoras, 143 Alestes longipinnis, 47 Cichla,3 Amblypharyngodon melettinus, 156 C. ocellaris, 200,243 Anabaena, 62,72,149 Cichlasoma managuense, 243 A. cylindrica, 74,75,78 Cichlid,1,2,3,4,15,46,50,65,67,79, A. falcatus, 75 90,134,149,150,151,153,156 A. £os-aquae, 72,75 Cichlidae,2,3,90 Anhinga, 149 Citharinus, 129,132,134,136,140 Ankistrdesmus, 62,72 Cladocera, 73 Clarias, 135,136,138,147,149,243 Bagrus,135,138 Clarias gariepinus, 135,142,146,153, B. docmac, 136,142 382 B. bayad, 136 C. macrocephlus, 382 B. meridionalis, 149 Clupea harengus, 209 Barbus, 135,147 Coptodon, 6,14 Botryococcus brauni, 72 Ctenopoma, 153 Cyprinus carpio, 107,335 Caridina, 143,144 C. niloticus, 153 Dagetia,6 Cepaea nemoralis, 340 Danakilia, 1,5,6,8,9,49,62,228 Ceratophyllum, 149 D. franchetti,6 C. demersum, 72,113 Daphnia magna, 72,7 3 Channa obscura, 135 Dimidiochromis kiwinge, 35 C. striata,270 Distichodus, 129,136,150 C. guntheri, 14 Chilochromis duponti, 14 Eichhornia, 135 Chlamydomonas sp., 72,75 E. crassipes, 143 Chlorella, 72 Embiotocidae,2 Chromidotilapia, 3 Enantiopus melanogenys, 41 Chrysichthys nigrdigitatus, 134 Ephemeroptera,147 489 490 Species index Etroplus, 3,92 Mugil sp.,152 E. maculatus, 4 Mugil cephalus, 155 Myaka, 1,7,26 Gadus morhua, 209 M. myaka, 7 Gastropoda, 147 Mycobacterium, 438 Glossogobius, 153 Gobiocichla, 1,5,7 Najas, 144 G. ethelwynne,7 N. guadalupensis, 72 Grammatotria lemairei, 63 Navicula, 149 Gymnarchus niloticus, 132 Neotilapia, 5,7 Nilotilapia, 5 Haplochromis, 11,147 Nitzschia, 72 Haplochromine,4,15,34,35,42,44,46, Nyasalapia, 5,7,12,16,27,33,41,43 53,61,129,140,142,151,191 Haplochromini,1,3,14 Odonata, 147 Haplochromis nigripinnis, 138 Onchorhynchus mykiss, 335 H. squamipinnis, 138 O. nerka, 105^107 Hemichromis, 3 O. tshawytscha, 250,363 H. fasciatus, 14,47 Ophiocephalus sp.,155,243 Hemiptera, 147 Oreochromis, 1,5,7^12,14^16,27,28, Heterobranchus, 135 33^36,39^42,44^46,50,52,54,60^ Heterochromis, 3 62,66,70,79,130,146,148,164, Heterotilapia, 6,14 180,191^193,228,229,240,247, Hoplias malabaricus, 157 280,288,302,407,440,462 Hydrocynus sp. 132,135,137,140 O. Alcolapia alcalicus alcalicus,7 H. forskalii, 136 O. (A). a. latilabris, 27 O. (A). a. ndalalani, 27 Ictalurus punctatus, 335 O. (A). alcalicus grahami, 7,35,37,46, Ichthyophthirius, 424 114,117,122,131,151,152 Iranocichla, 1,5,6,8,9 O. Neotilapia tanganicae, 7, 12,13,150 I. hormuzensis, 6,49 O. Oreochromis andersonii, 7,12,13,105, 169,170 Konia, 1,7,26 O. (O). aureus, (O. monodi) 7,12,13,16, K. dikume, 7 25,59,60,69,72,73,75,113,114, K. eisentrauti, 7 117,118,122,132,167,169,183, 198,203,229^234,236,237,240, Labeo, 129,132,135,136,147 241,245,247,249,250,252,279, Labridae,2 289,290,292,294,305,310,313, Labroidei,2 315,331,336,338^340,342,343, Lamprologus, 3 346,349,350,352^354,356^358, L. elongatus, 63 360,361,365,412,438,448,449, Lates, 137,140,144,150,190,470 476 Lates niloticus, 132,135^137,140,142, O. (O). esculentus, 96,139,140^144, 243 146,147,170,178,194,203,232 L. longispinis, 136 O. (O). hunteri, 5,7 Loruwiala, 5,7 O. (O). jipe, 7,11^13,144,146,147 O. (O). leucostictus, 16,130,136,139, Macrozoarces americanus, 253 140,142,143,156,190,192,193 Melosira, 143,149 O. (O). malagarasi,150 Microcystis sp., 72,137,143 O. (O). mortimeri,7,12,13,156,174 Microcystis aeruginosa, 72,74^76 O. (O). mossambicus, 7,12,13,33,34, Micropterus salmoides, 243 37^43,50,60,68,69,71,72,75,77, Moina, 143 92,97,105,114,116,117,119,120, Species index 491 122,130,131,132,148,153,154^ O. (O). variabilis, 34,37,41,43,46,53, 157,169,172,174,176,179,180, 139,140,141^144,157,203,232 181,182,183,187,189,190,194, O. Nyasalapia karomo, 37,39,41^43,50, 195,200^203,207^209,211,212, 150 227,230,231,233,234,236,238, O. (Ny). karongae, (O. saka), 7,12,13,35, 240,241,243^245,247,249,250, 37,43,46,50,51,62,148,149,170, 270,274,297,298,300,304^306, 269,270,288^290 329,330,334,335,339,343,344, O. (Ny). lidole, 7,12,13,42,43,46,51, 346,350,352,353,356,357,359, 60,62,75,148,149,170,269,289, 360,362,365,379,380,384,386, 290 387,406,427,438,448,449,463, O. (Ny). macrochir,7,12,13,35,39,42, 476 43,67,96,116,132,139,156,157, O. (O). niloticus baringoensis,17,19,20, 170,227,232,245 24 O. (Ny). malagarasi, 18 O. (O). n. cancellatus, 17,19,20,22^24 O. (Ny). mweruensis, 42 O. (O). n. eduardianus, 17^19,24 O. (Ny). squamipinnis, 7,12,13,43,44, O. (O). n. ¢loa, 17,19,20,22,23 46,50,51,148,149,269 O. (O). n. niloticus, 7,12,13,16^26,39, O. Vallicola amphimelas, 7,62 41,43,46,49,60,64,66^68,74^78, Oscillatoria sp.,77 93,96,97^107,109^118,120^122, Oryzias latipes, 254 130, 132,134,135, 136^145,154, 155^157,167^169,171,174,175, Panicum repens, 76 179,180,182,183,185,187,191, Paratilapia, 2 192,194,197,198,200^203,209, Paretroplus, 3 227,229,230^236,238^242,245, Pasteurella, 438 247^251,253,267,281,287,289^ Pelecanus onacrotalus roseum, 152 294,297,298,300,304^306,308, Pelmatochromis, 1,3,5,6 ,8,9 309,312,313,330^332,334^336, P. buettikoferi,6,14 338^340,342^346,350^353,356^ P. nigrofasciatus, 5,6,12,13 358,360,362,365,379,380,382, P. ocellifer, 6 384,386,387,406,412,435,438, P. pulcher, 13 448,449,463,464,476 Pelmatolapia,6 O. (O). n. sugatae, 17,19,20,24 Phalacrocorax africanus, 149 O. (O). n. vulcani, 17,19,20,24,117, P. carbo, 149 136,151,230 Phoenicopterus minor,152 O. (O). pangani pangani, 144,146,147 Polypterus, 138 O. (O). p. girigan,144 Pomacentridae,2 O. (O). placidus,7,12,13 Pomamogeton, 49 O. (O). tana, 20 Protomelus similis,15 O. (O). umembae, 18 Protopterus, 138 O. (O). urolepis hornorum, 7,12,13,117, Pseudocrenilabrus philander, 153 155,227,229,231,234,244,245, Pterochromis, 1,5 253,298,300,305,306,344,356 Ptychochromis, 3 O. (O). rukwaensis, 146,156 Punga, 1,7,26 O. O). spilurus niger, 139,156,168,172, P. maclareni, 7 173,231,244 O. (O). s. spilurus, 7,12,13,118,175, Raiamas (Barilius),136 203,231,297,299^301,305,352, Rhabdalestes, 147 357,448,449,465 O. (O). shiranus shiranus, 7,12,13,49, Salvelinus namaycush, 209 148,149,171,194,211,270,276, Sarotherodon, 1,5,8^16,25,26,33,34, 288,290,293,294,310,313,381 41,45,46,48,52,54,79,130,150, O. (O). s. chilwae, 117 180,228,407 492 Species index S. caroli, 25,150,151 169,171,203,227,288^290,299, S. linnellii, 6,25,150,151 305,381 S. lohbergeri, 25,150 T. (C). rendalli swierstrae, 153 S. steinbachi, 25,150 T. (C). tholloni, 6,12,13,26 S. galilaeus boulengeri, 25 T. (C). zillii, 6,12,13,16,18,20,24^26, S. g. borkuanus, 25 40,44,45,47,50,69,72,130,132, S. g. galilaeus, 6,12^14,16,18,24^26, 134^136,140^144,155,167,169, 34,36,41,45,48,51,64,68,132, 183,190,192,203,331,333,340, 134^136,150,156 345,346,349 S. g. multifasciatus, (T. multifasiata) 25,49 T. Dagetia rheophila, 6,105 S. g. sanagaensis, 25 T. Heterotilapia buttikoferi, 6,12,13 S. melanotheron heudelotii, 27,48,152 T. (H). cessiana, 6 S. m. melanotheron, (T. macrocephala; T. T. Tilapia sparrmanii, 6,105,116,117, huedelotii; T. huedelotii, macrocephala) 153 5,6,12^14,25^27,34,36,40,45, T. (T). busumana, 6,105 46,48,72,152,171,183,189,211, T. (T). ruweti, 6 346 T. Pelmatolapia brevimanus, 6 S. m. paludinosus, 27,152 T.(P).cabrae,6,68 S. m. nigripinnis, 152 T. (P). mariae, 6,12,13,35,40,44,45, Schilbe uranoscopus, 136 47,48,51,60,95 Serrasalmus, 157 T. Trewavas guinasana, 6,35 Steatocranus, 1,5,7 T. bemini, 36 S. casuarius,7 T. gutturosa, 36 Stephanodiscus, 143 T. imbriferna, 151 Streptoccus, 424 T. kottae,6 Stizostedion vitreum, 209 T. snyderae, 36,151 Stomotepia, 1,26 T. spongotroktis,151 S. mariae, 7 Tilapiini,1 S. mongo, 7 Tilapiines,1^4,8,9,11,15,33^36,151, S. pindu, 7 209,230 Sparidentex hasta, 465 Trewavas,6 Spirogyra maxima, 72 Trichoptera,143,144,147 Spirulina platensis, 152 Tristramella, 1,5,6,8,9,11,49 Synodontis, 134,135,147 Tr. magdalenae, 6 Tr. sacra, 6,49 Thermocyclops hyalinus, 138 Tr. simonis intermedia, 49 Tilapia, 1,5,6,8^12,14^16,25,33^35, Tr. s. simonis, 6,49 40,41,44,45,47,49,54,60,66,67, Tylochromis, 3 70,79,130,151,180,228 Ty.
Recommended publications
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • A BIBLIOGRAPHY of IMPORTANT TILAPIAS (PISCES: CICHLIDAE) for AQUACULTURE Oreochromisvariabilis, 0 Andersoni, 0
    AMV'__ BIBLIOGRAPHIES 6 A BIBLIOGRAPHY OF IMPORTANT TILAPIAS (PISCES: CICHLIDAE) FOR AQUACULTURE Oreochromisvariabilis, 0 andersoni, 0. esculentus, 0. leucostictus, 0. rortimer, 0. spilurus niger,Sarotherodon melanotheron and Tilapia sparnmani PETER SCHOENEN INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT A BIBLIOGRAPHY OF IMPORTANT TILAPIAS (PISCES: CICHLIDAE) FOR AQUACULTURE Oreochromls variabilis, 0. andersoni, 0. esculentus, 0. leucostictus, 0. mortimeri, 0. spilurus niger, Saro therodon melano theron and Tilapia sparrmanii Peter Schoenen International Collection "Cichlid Papers" The Referencc Service Parkstr. 15 D-5176 Inden 4 Federal Republic of Germany 1985 INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES A bibliography of important tilapias (Pisces: Cichlidae) for aquaculture Oreochromis variabilis, 0. andersonii, 0. esculentus, 0. leucostictus, 0. mort/tmer, 0. spilunis niger, Sarotherodon melanothero,, ard -/ilapiasparrmanii PETER SCHOENEN Published by the International Center for Living Aquatic Resources Management, MCC P.O. Box 1501, Makati, Metro Manila, Philippines with financial assistance from the International Development Research Centre of Canada through ICLARM's Selective Information Service project. 1985 Printed in Manila, Philippins This bibliography is produced directly from the author's manuscript in oider to provide tilapia workers with a useful document in the shortest time. The author should be consulted in the event of difficulty ir verifying details of particular references or in locating sources. ISSN 0115-5997 ISBN 971-1022-19-2 Schoenen, P. 1985, A bibliography of important tilapias (Pisces: Cichlidae) for aquaculture Oreochromis variabilis, 0. andersonii, 0. esculentus, 0. leucostictus, 0. mortimeri, 0. spilurut niger, Sarotherodon mela. notheron and Tilapia sparrrnanii. ICLAHM Biblio­ graphies 6,99 p. International Center for Living Aquatic Resources Management, Manila, Philippines.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what
    [Show full text]
  • Mitochondrial ND2 Phylogeny of Tilapiines and the Evolution of Parental Care Systems in the African Cichlid Fishes
    What, if Anything, is a Tilapia?ÐMitochondrial ND2 Phylogeny of Tilapiines and the Evolution of Parental Care Systems in the African Cichlid Fishes Vera Klett and Axel Meyer Department of Biology, University of Konstanz, Germany We estimated a novel phylogeny of tilapiine cichlid ®sh (an assemblage endemic to Africa and the Near East) within the African cichlid ®shes on the basis of complete mitochondrial NADH dehydrogenase subunit 2 (ND2) gene sequences. The ND2 (1,047 bp) gene was sequenced in 39 tilapiine cichlids (38 species and 1 subspecies) and in an additional 14 nontilapiine cichlid species in order to evaluate the traditional morphologically based hypothesis of the respective monophyly of the tilapiine and haplochromine cichlid ®sh assemblages. The analyses included many additional cichlid lineages, not only the so-called tilapiines, but also lineages from Lake Tanganyika, east Africa, the Neotropics and an out-group from Madagascar with a wide range of parental care and mating systems. Our results suggest, in contrast to the historical morphology-based hypotheses from Regan (1920, 1922), Trewavas (1983), and Stiassny (1991), that the tilapiines do not form a monophyletic group because there is strong evidence that the genus Tilapia is not monophyletic but divided into at least ®ve distinct groups. In contrast to this ®nding, an allozyme analysis of Pouyaud and AgneÁse (1995), largely based on the same samples as used here, found a clustering of the Tilapia species into only two groups. This discrepancy is likely caused by the difference in resolution power of the two marker systems used. Our data suggest that only type species Tilapia sparrmanii Smith (1840) should retain the genus name Tilapia.
    [Show full text]
  • Indian and Madagascan Cichlids
    FAMILY Cichlidae Bonaparte, 1835 - cichlids SUBFAMILY Etroplinae Kullander, 1998 - Indian and Madagascan cichlids [=Etroplinae H] GENUS Etroplus Cuvier, in Cuvier & Valenciennes, 1830 - cichlids [=Chaetolabrus, Microgaster] Species Etroplus canarensis Day, 1877 - Canara pearlspot Species Etroplus suratensis (Bloch, 1790) - green chromide [=caris, meleagris] GENUS Paretroplus Bleeker, 1868 - cichlids [=Lamena] Species Paretroplus dambabe Sparks, 2002 - dambabe cichlid Species Paretroplus damii Bleeker, 1868 - damba Species Paretroplus gymnopreopercularis Sparks, 2008 - Sparks' cichlid Species Paretroplus kieneri Arnoult, 1960 - kotsovato Species Paretroplus lamenabe Sparks, 2008 - big red cichlid Species Paretroplus loisellei Sparks & Schelly, 2011 - Loiselle's cichlid Species Paretroplus maculatus Kiener & Mauge, 1966 - damba mipentina Species Paretroplus maromandia Sparks & Reinthal, 1999 - maromandia cichlid Species Paretroplus menarambo Allgayer, 1996 - pinstripe damba Species Paretroplus nourissati (Allgayer, 1998) - lamena Species Paretroplus petiti Pellegrin, 1929 - kotso Species Paretroplus polyactis Bleeker, 1878 - Bleeker's paretroplus Species Paretroplus tsimoly Stiassny et al., 2001 - tsimoly cichlid GENUS Pseudetroplus Bleeker, in G, 1862 - cichlids Species Pseudetroplus maculatus (Bloch, 1795) - orange chromide [=coruchi] SUBFAMILY Ptychochrominae Sparks, 2004 - Malagasy cichlids [=Ptychochrominae S2002] GENUS Katria Stiassny & Sparks, 2006 - cichlids Species Katria katria (Reinthal & Stiassny, 1997) - Katria cichlid GENUS
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • “Jumbo”: Representa Um Potencial Para Introdução De Espécies No Brasil?
    Oecologia Australis 23(3):519-535, 2019 https://doi.org/10.4257/oeco.2019.2303.11 AQUARISMO “JUMBO”: REPRESENTA UM POTENCIAL PARA INTRODUÇÃO DE ESPÉCIES NO BRASIL? João Daniel Ferraz1,2*, Armando César Rodrigues Casimiro1,2, Alan Deivid Pereira1,2, Diego Azevedo Zoccal Garcia2, Lucas Ribeiro Jarduli2,3, André Lincoln Barroso Magalhães4 & Mário Luís Orsi2 1 Universidade Estadual de Londrina, Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, CP 10.011, CEP 86057-970, Londrina, PR, Brasil. 2 Universidade Estadual de Londrina, Laboratório de Ecologia de Peixes e Invasões Biológicas, Rodovia Celso Garcia Cid, PR 445, Km 380, Campus Universitário, CP 10.011, CEP 86057-970, Londrina, PR, Brasil. 3 Centro Universitário das Faculdades Integradas de Ourinhos, Rodovia BR 153, Km 338, CEP 19909-100, Bairro Água do Cateto, Ourinhos, SP, Brasil. 4 Universidade Federal de São João Del Rei, Programa de Pós-Graduação em Tecnologias para o Desenvolvimento Sustentável, Rod. MG 443, KM 7,CEP 36420-000, Fazenda do Cadete, Ouro Branco, MG, Brasil. E-mails: [email protected] (*autor correspondente); [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] RESUMO: O aquarismo é um hobby difundido mundialmente, com registros desde as civilizações antigas. No Brasil, a prática tem aumentado seu prestígio e representatividade. Dentre as modalidades do aquarismo de água doce, o “jumbo” tem se tornado popular, e sua prática tem gerado ampla divulgação via Internet. A modalidade se caracteriza pela escolha de espécies de peixes de médio a grande porte com comportamento agressivo e predatório, o que representa ameaça aos ambientes naturais principalmente como consequência do descarte inadequado das espécies.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 30 April 2021 Order CICHLIFORMES (part 2 of 8) Family CICHLIDAE Cichlids (part 2 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Abactochromis through Greenwoodochromis) Abactochromis Oliver & Arnegard 2010 abactus, driven away, banished or expelled, referring to both the solitary, wandering and apparently non-territorial habits of living individuals, and to the authors’ removal of its one species from Melanochromis, the genus in which it was originally described, where it mistakenly remained for 75 years; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Abactochromis labrosus (Trewavas 1935) thick-lipped, referring to lips produced into pointed lobes Allochromis Greenwood 1980 allos, different or strange, referring to unusual tooth shape and dental pattern, and to its lepidophagous habits; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Allochromis welcommei (Greenwood 1966) in honor of Robin Welcomme, fisheries biologist, East African Freshwater Fisheries Research Organization (Jinja, Uganda), who collected type and supplied ecological and other data Alticorpus Stauffer & McKaye 1988 altus, deep; corpus, body, referring to relatively deep body of all species Alticorpus geoffreyi Snoeks & Walapa 2004 in honor of British carcinologist, ecologist and ichthyologist Geoffrey Fryer (b.
    [Show full text]
  • Project Update: January 2018 Activities After the Authorisation Has
    Project Update: January 2018 Activities After the authorisation has been approved by the mayor and village’s leader in September 2017, data collections were carried out in October and November 2017 during the rainy season and in December 2017 and January 2018 during the dry season. During the first field trip in October 2017, the study area was subdivided into 13 different parts. Six of these parts represented the shores surrounding the lake and were typically characterised by trees creating shade in these area and the other six are in the middle of each shore. The 13th transect is representing the catchment. These different transects were named from Zone 1 to Zone 13 and their GPS coordinates, physico-chemical parameters (turbidity, total of dissolved solids, conductivity, salinity, temperature, pH), habitats (specifically shoreline vegetation) were recorded. On the first fishing day, fish were caught using an echo sounder and small mesh gillnets as for research purpose; weighed, measured, marked and then immediately released in the transect. On the second fishing day of the same month the same action has been repeated and data were recorded in a printed excel data base. The following results have been founded: - GPS coordinate for each transect was: zone 1 (N:4˚.66.160'; E: 09˚41.234'); zone 2 (); zone 3 (N:4˚34.101'; E:09˚24.019'); zone 4 (N:04˚39.260'; E: 09˚24.627'); zone 5 (N:4˚39.709'; E: 9˚24.737') ; zone 6 (N:04˚40.171'; E:9˚23.686'); zone 7 (N:4˚65.298'; E:09˚40.288'); zone 8 (N:4˚65.275'; E:09˚40.701'); zone 9 (4˚65.282'; E:09˚40.845'); zone 10 (N:4˚66.836'; E:09˚39.750'); zone 11 (N:4˚66.238'; E:09˚41.845039'); zone 12 (N:4˚65.517'; E:09˚41.016'); zone 13 (N:4˚40.168'; E:09˚23.684').
    [Show full text]
  • New Fossils of Cichlids from the Miocene of Kenya and Clupeids from the Miocene of Greece (Teleostei)
    The importance of articulated skeletons in the identification of extinct taxa: new fossils of cichlids from the Miocene of Kenya and clupeids from the Miocene of Greece (Teleostei) Dissertation zur Erlangung des Doktorgrades an der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München Vorgelegt von Charalampos Kevrekidis München, 28. September 2020 Erstgutacher: Prof. Dr. Bettina Reichenbacher Zweitgutacher: PD Dr. Gertrud Rößner Tag der mündlichen Prüfung: 08.02.2021 2 Statutory declaration and statement I hereby confirm that my Thesis entitled “Fossil fishes from terrestrial sediments of the Miocene of Africa and Europe”, is the result of my own original work. Furthermore, I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the Ludwig-Maximilians-Universität München. München, 21.09.2020 Charalampos Kevrekidis 3 Abstract Fishes are important components of aquatic faunas, but our knowledge on the fossil record of some taxa, relative to their present diversity, remains poor. This can be due to a rarity of such fossils, as is the case for the family Cichlidae (cichlids). Another impediment is the rarity of well-preserved skeletons of fossil fishes.
    [Show full text]
  • TRACE METALS in WATER and FISH (Unga Species, Pungu Maclareni, Catfish Clarias Maclareni) from LAKE BAROMBI MBO, CAMEROON. SONE
    TRACE METALS IN WATER AND FISH (Unga species, Pungu maclareni, Catfish Clarias maclareni) FROM LAKE BAROMBI MBO, CAMEROON. A THESIS Presented In Partial Fulfilment of the Requirements for the Degree Master of Science By Sone Brice Nkwelle Ås, Norway July, 2012. ACKNOWLEDGEMENTS This thesis represents an output of a two years master study in the Department of Ecology and Natural Resource Management (INA) at the Norwegian University of Life Sciences (UMB). My most profound gratitude goes to my supervisors, Hans-Christian Teien and Bjørn Olav Rosseland, who supported me throughout my thesis by being patient, giving me all the resources needed, letting me learn all that there was to learn, allowing me to explore my own ideas, scrutinizing my write-up and always pushing me forward with a pat on the back. My uttermost thanks to the staff of the Environmental Chemistry Section of the Department of Plant and Environmental Sciences (IPM), who allowed me use the laboratory for handling and preparation of field samples. A grand "Tusen takk" to Tove Loftass for assisting me during those laboratory sessions. For stable isotope and mercury analyses much thanks to, Solfrid Lohne and Karl Andreas Jensen, respectively. I also wish to thank Masresha Alemayehu for supporting and encouraging me with advice and valuable literature. I deeply appreciate the following persons: Dr. Vincent Tania and Dr. Etame Lucien Sone of the Ministry of Scientific Research and Innovation, Cameroon, for facilitating the ministerial authorization of my field work at Lake Barombi Mbo, Cameroon. Dr. Richard Akoachere, Hydro geologist at the University of Buea, Cameroon for giving me all the field advice and supplementary sampling instruments.
    [Show full text]
  • Texto Completo
    UNIVERSIDAD NACIONAL AGRARIA LA MOLINA ESCUELA DE POSGRADO MAESTRÍA EN ACUICULTURA “INFLUENCIA DE LA DENSIDAD DE CULTIVO SOBRE EL ESTRÉS EN JUVENILES DE Oreochromis niloticus CULTIVADOS EN SISTEMAS CON TECNOLOGÍA Biofloc” Presentada por: RONALD ALBERTO AQUINO ORTEGA TESIS PARA OPTAR EL GRADO DE MAGÍSTER SCIENTIAE EN ACUICULTURA Lima - Perú 2019 DEDICATORIA Este trabajo de tesis está dedicado en su totalidad a mi familia. Siempre están preocupados de mis avances desde que llegué a este mundo y estoy seguro que el grado alcanzado les hará sentir muy felices y orgullosos. Esta dedicatoria es una oportunidad genial para decirles que los amo muchísimo. AGRADECIMIENTOS Al Dr. Marcos Tavares-Dias, investigador en la Empresa Brasileña de Investigación Agropecuaria (Embrapa) y docente en la Universidad Federal de Amapá (UNIFAP) por el enorme gesto de enviarme desde Brasil, dos libros de su autoría, fundamentales para el desarrollo del presente trabajo. A mi asesor, Dr. Julio Gonzales Fernandez por su apoyo constante materializado en consejos y recomendaciones en el desarrollo de éste trabajo. A Marco de la Cruz, por haberme apoyado con la enseñanza, en teoría y práctica, de muchas temáticas referidas a la Acuicultura. Asimismo, a Wilfer Quispe por su pronta ayuda en momentos de apuro. A ellos mi más grande agradecimiento. A los profesores de la Maestría, por compartir conocimientos, enseñanzas, experiencias y amistad, en especial a la profesora Beatriz Ángeles, por tener, además, una inmensa paciencia en su condición de coordinadora del programa de maestría. Finalmente, al Consejo Nacional de Ciencia y Tecnología (Concytec) por el apoyo económico recibido como participante del Proyecto de la Maestría en Acuicultura (Convenio de Gestión Nº017-2013-FONDECYT).
    [Show full text]