Texto Completo

Total Page:16

File Type:pdf, Size:1020Kb

Texto Completo UNIVERSIDAD NACIONAL AGRARIA LA MOLINA ESCUELA DE POSGRADO MAESTRÍA EN ACUICULTURA “INFLUENCIA DE LA DENSIDAD DE CULTIVO SOBRE EL ESTRÉS EN JUVENILES DE Oreochromis niloticus CULTIVADOS EN SISTEMAS CON TECNOLOGÍA Biofloc” Presentada por: RONALD ALBERTO AQUINO ORTEGA TESIS PARA OPTAR EL GRADO DE MAGÍSTER SCIENTIAE EN ACUICULTURA Lima - Perú 2019 DEDICATORIA Este trabajo de tesis está dedicado en su totalidad a mi familia. Siempre están preocupados de mis avances desde que llegué a este mundo y estoy seguro que el grado alcanzado les hará sentir muy felices y orgullosos. Esta dedicatoria es una oportunidad genial para decirles que los amo muchísimo. AGRADECIMIENTOS Al Dr. Marcos Tavares-Dias, investigador en la Empresa Brasileña de Investigación Agropecuaria (Embrapa) y docente en la Universidad Federal de Amapá (UNIFAP) por el enorme gesto de enviarme desde Brasil, dos libros de su autoría, fundamentales para el desarrollo del presente trabajo. A mi asesor, Dr. Julio Gonzales Fernandez por su apoyo constante materializado en consejos y recomendaciones en el desarrollo de éste trabajo. A Marco de la Cruz, por haberme apoyado con la enseñanza, en teoría y práctica, de muchas temáticas referidas a la Acuicultura. Asimismo, a Wilfer Quispe por su pronta ayuda en momentos de apuro. A ellos mi más grande agradecimiento. A los profesores de la Maestría, por compartir conocimientos, enseñanzas, experiencias y amistad, en especial a la profesora Beatriz Ángeles, por tener, además, una inmensa paciencia en su condición de coordinadora del programa de maestría. Finalmente, al Consejo Nacional de Ciencia y Tecnología (Concytec) por el apoyo económico recibido como participante del Proyecto de la Maestría en Acuicultura (Convenio de Gestión Nº017-2013-FONDECYT). ÍNDICE GENERAL ÍNDICE GENERAL .......................................................................................................... i ÍNDICE DE FIGURAS ................................................................................................... iii ÍNDICE DE TABLAS ....................................................................................................... v ÍNDICE DE ANEXOS .................................................................................................... vi RESUMEN ..................................................................................................................... vii ABSTRACT .................................................................................................................. viii I. INTRODUCCIÓN ...................................................................................................... 1 II. REVISIÓN DE LITERATURA ................................................................................. 3 2.1. La tilapia del Nilo ................................................................................................ 3 2.1.1. Ubicación taxonómica y distribución geográfica ......................................... 3 2.1.2. Características biológicas de la especie........................................................ 3 2.1.3. Cultivo .......................................................................................................... 5 a. Requerimientos de calidad de agua ..................................................... 5 b. Requerimientos nutricionales .............................................................. 8 2.2. Los sistemas con tecnología biofloc .................................................................. 10 2.2.1. Generalidades del sistema biofloc (SBF) ................................................... 10 2.2.2. Relación carbono – nitrógeno..................................................................... 11 2.2.3. Estructura y dinámica del biofloc ............................................................... 11 2.3. Crecimiento, densidad de cultivo y estrés ......................................................... 13 2.4. El estrés en peces ............................................................................................... 16 2.4.1. Eje hipotálamo – simpático – células cromafines ...................................... 19 2.4.2. Eje hipotálamo – hipófisis – células interrenales (HHI) ............................ 21 2.5. Parámetros bioquímicos .................................................................................... 23 2.6. Parámetros hematológicos ................................................................................. 24 III. MATERIALES Y MÉTODOS................................................................................. 28 3.1. Etapa pre-experimental ...................................................................................... 28 3.1.1. Acondicionamiento de los tanques con sistemas biofloc (SBF) ................ 28 3.1.2. Aclimatación de peces al SBF .................................................................... 29 3.2. Etapa experimental ............................................................................................ 30 3.2.1. Lugar de ejecución y animales de experimentación ................................... 30 3.2.2. Diseño experimental ................................................................................... 30 3.2.3. Manejo de la alimentación ......................................................................... 31 3.2.4. Calidad y monitoreo de la calidad del agua en los SBF ............................. 31 3.2.5. Evaluación del estrés en los juveniles de Oreochromis niloticus .............. 33 a. Obtención de muestras sanguíneas ............................................................. 33 b. Determinación de parámetros bioquímicos ................................................ 35 b.1. Determinación de cortisol ................................................................. 35 b.2. Determinación de glucosa ................................................................. 36 c. Determinación de los parámetros hematológicos ....................................... 36 d. Evaluación de los parámetros productivos ................................................. 39 3.2.6. Procesamiento y análisis de datos .............................................................. 40 IV. RESULTADOS Y DISCUSIÓN .............................................................................. 41 4.1. Determinación de parámetros de calidad de agua en el sistema biofloc (SBF) 41 4.2. Determinación de parámetros bioquímicos ....................................................... 50 4.2.1. Determinación de cortisol .......................................................................... 50 4.2.2. Determinación de glucosa .......................................................................... 53 4.3. Determinación de parámetros hematológicos ................................................... 55 4.4. Evaluación de los parámetros productivos ........................................................ 61 V. CONCLUSIONES .................................................................................................... 65 VI. RECOMENDACIONES .......................................................................................... 66 VII. BIBLIOGRAFÍA ...................................................................................................... 67 VIII. ANEXOS................................................................................................................ 82 ÍNDICE DE FIGURAS Figura 1: Producción de tilapia en el Perú (en TM), desde el año 2003 hasta el 2016. ... 5 Figura 2: Respuestas asociadas a un cuadro de estrés en peces. .................................... 19 Figura 3: Diagrama general de los principales elementos neuroendocrinos en la respuesta al estrés en peces. ( ): Efecto estimulante. ( ): Efecto inhibidor. ............................ 20 Figura 4: Extracción de sangre de la vena caudal .......................................................... 34 Figura 5: Tubo capilar centrifugado, mostrando la separación de plasma, leucocitos y eritrocitos ........................................................................................................................ 38 Figura 6: Variación de temperatura (°C) en el cultivo de tilapia en tres densidades. .... 42 Figura 7: Variación de oxígeno disuelto (mg O2/L) en el cultivo de tilapia en tres densidades. ...................................................................................................................... 43 Figura 8: Variación de conductividad (mS/cm) en el cultivo de tilapia en tres densidades. ........................................................................................................................................ 44 Figura 9: Variación de sólidos sedimentables (mL/L) en el cultivo de Oreochromis niloticus en SBF en tres densidades diferentes. .............................................................. 45 Figura 10: Fluctuación de nitrógeno amoniacal total (NAT) durante el periodo experimental para Oreochromis niloticus en tres densidades de cultivo........................ 46 + Figura 11: Fluctuación de Amonio ionizado (NH4 ) y amonio no ionizado (NH3) por tratamiento, durante el periodo experimental para Oreochromis niloticus. ................... 47 Figura 12: Fluctuación de nitrato durante el periodo experimental para Oreochromis niloticus en tres densidades de cultivo. .......................................................................... 48 Figura 13: Fluctuación de pH durante el periodo experimental para Oreochromis niloticus en tres densidades de cultivo. ........................................................................................
Recommended publications
  • TRACE METALS in WATER and FISH (Unga Species, Pungu Maclareni, Catfish Clarias Maclareni) from LAKE BAROMBI MBO, CAMEROON. SONE
    TRACE METALS IN WATER AND FISH (Unga species, Pungu maclareni, Catfish Clarias maclareni) FROM LAKE BAROMBI MBO, CAMEROON. A THESIS Presented In Partial Fulfilment of the Requirements for the Degree Master of Science By Sone Brice Nkwelle Ås, Norway July, 2012. ACKNOWLEDGEMENTS This thesis represents an output of a two years master study in the Department of Ecology and Natural Resource Management (INA) at the Norwegian University of Life Sciences (UMB). My most profound gratitude goes to my supervisors, Hans-Christian Teien and Bjørn Olav Rosseland, who supported me throughout my thesis by being patient, giving me all the resources needed, letting me learn all that there was to learn, allowing me to explore my own ideas, scrutinizing my write-up and always pushing me forward with a pat on the back. My uttermost thanks to the staff of the Environmental Chemistry Section of the Department of Plant and Environmental Sciences (IPM), who allowed me use the laboratory for handling and preparation of field samples. A grand "Tusen takk" to Tove Loftass for assisting me during those laboratory sessions. For stable isotope and mercury analyses much thanks to, Solfrid Lohne and Karl Andreas Jensen, respectively. I also wish to thank Masresha Alemayehu for supporting and encouraging me with advice and valuable literature. I deeply appreciate the following persons: Dr. Vincent Tania and Dr. Etame Lucien Sone of the Ministry of Scientific Research and Innovation, Cameroon, for facilitating the ministerial authorization of my field work at Lake Barombi Mbo, Cameroon. Dr. Richard Akoachere, Hydro geologist at the University of Buea, Cameroon for giving me all the field advice and supplementary sampling instruments.
    [Show full text]
  • Download From
    Information Sheet on Ramsar Wetlands (RIS) – 2006-2008 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 7, 2nd edition, as amended by COP9 Resolution IX.1 Annex B). A 3rd edition of the Handbook, incorporating these amendments, is in preparation and will be available in 2006. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY 1. Dr. Ulrich SCHLIEWEN, Department of Ichthyology, Zoologische Staatssammlung München, Münchhausenstrasse 21, D - 81247 Designation date Site Reference Number München, Germany. Email: schliewen@mpi- seewiesen.mpg.de, phone: ++49-8107-111, fax: ++49-8107-300. 2. Tabe Ebanga-Orock TANJONG, WWF-Cameroon Programme Office, BP 6776, Yaounde Cameroon.
    [Show full text]
  • CARES Exchange April 2017 2 GS CD 4-16-17 1
    The CARES Exchange Volume I Number 2 CARESCARES AreaArea ofof ConcernConcern LakeLake MalawiMalawi April 2017 CARESCARES ClubClub DataData SubmissionSubmission isis AprilApril 30th!30th! TheThe DirectoryDirectory ofof AvailableAvailable CARESCARES SpeciesSpecies NewestNewest AdditionsAdditions toto thethe CARESCARES TeamTeam NewNew EnglandEngland CichlidCichlid AssociationAssociation CARESCARES 2 Welcome to the The CARES Exchange. The pri- CARES, review the ‘CARES Startup’ tab on the web- mary intent of this publication is to make available a site CARESforfish.org, then contact Klaus Steinhaus listing of CARES fish from the CARES membership at [email protected]. to those that may be searching for CARES species. ___________________________________________ This issue of The Exchange was release to coincide It is important to understand that all transactions are with the due date for CARES Member Clubs to make between the buyer and seller and CARES in no way your data submissions. All submissions must be sub- moderates any exchanges including shipping prob- mitted by April 30th in the new file format. Learn lems, refunds, or bad blood between the two parties. more on page 7. This directory merely provides an avenue to which CARES fish may be located. As with all sales, be cer- Pam Chin explains the stressors affecting Lake Ma- tain that all the elements of the exchange are worked lawi. Pay close attention to what is going on there! out before purchasing or shipping. Take your CARES role seriously. Without your ef- forts, the fish we enjoy today might not be around to- No hybrids will knowingly be listed. morrow, There is no cost to place a for sale ad.
    [Show full text]
  • T Throw out the Sympatric Speciation with the Crater Lake
    LETTER doi:10.1002/evl3.78 Don’t throw out the sympatric speciation with the crater lake water: fine-scale investigation of introgression provides equivocal support for causal role of secondary gene flow in one of the clearest examples of sympatric speciation Emilie J. Richards,1,2 Jelmer W. Poelstra,1,3 and Christopher H. Martin1 1Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 2E-mail: [email protected] 3Biology Department, Duke University, Durham, North Carolina 27710 Received November 12, 2017 Accepted July 18, 2018 Genomic data has revealed complex histories of colonization and repeated gene flow previously unrecognized in some of the most celebrated examples of sympatric speciation and radiation. However, much of the evidence for secondary gene flow into these radiations comes from summary statistics calculated from sparse genomic sampling without knowledge of which specific genomic regions introgressed. This tells us little about how gene flow potentially influenced sympatric diversification. Here, we investigated whole genomes of Barombi Mbo crater lake cichlids for fine-scale patterns of introgression with neighboring riverine cichlid populations. We found evidence of secondary gene flow into the radiation scattered across <0.24% of the genome; however, from our analyses, it is not clear if the functional diversity in these regions contributed to the ecological, sexual, and morphological diversity found in the lake. Unlike similar studies, we found no obvious candidate genes for adaptive introgression and we cannot rule out that secondary gene flow was predominantly neutral with respect to the diversification process. We also found evidence for differential assortment of ancestral polymorphisms found in riverine populations between sympatric sister species, suggesting the presence of an ancestral hybrid swarm.
    [Show full text]
  • Persistence of Stomatepia Mongo, an Endemic Cichlid Fish of The
    Persistence of Stomatepia mongo, an Endemic Cichlid Fish of the Barombi Mbo Crater Lake, Southwestern Cameroon, with Notes on Its Life History and Behavior Author(s): Zuzana Musilová, Adrian Indermaur, Arnold Roger Bitja Nyom, Robert Tropek, Christopher Martin, and Ulrich K. Schliewen Source: Copeia, 14(3):556-560. 2014. Published By: The American Society of Ichthyologists and Herpetologists DOI: http://dx.doi.org/10.1643/CI-14-021 URL: http://www.bioone.org/doi/full/10.1643/CI-14-021 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Copeia 2014, No. 3, 556–560 Persistence of Stomatepia mongo, an Endemic Cichlid Fish of the Barombi Mbo Crater Lake, Southwestern Cameroon, with Notes on Its Life History and Behavior Zuzana Musilova´ 1, Adrian Indermaur1, Arnold Roger Bitja Nyom2, Robert Tropek3,4, Christopher Martin5, and Ulrich K.
    [Show full text]
  • Species Index
    Species index Aeromonas hydrophila, 241 Chanos chanos, 154,155,463 Alcolapia, 5,7,28,62 Chironomidae, 147 Alestes, 135,150 Chydoras, 143 Alestes longipinnis, 47 Cichla,3 Amblypharyngodon melettinus, 156 C. ocellaris, 200,243 Anabaena, 62,72,149 Cichlasoma managuense, 243 A. cylindrica, 74,75,78 Cichlid,1,2,3,4,15,46,50,65,67,79, A. falcatus, 75 90,134,149,150,151,153,156 A. £os-aquae, 72,75 Cichlidae,2,3,90 Anhinga, 149 Citharinus, 129,132,134,136,140 Ankistrdesmus, 62,72 Cladocera, 73 Clarias, 135,136,138,147,149,243 Bagrus,135,138 Clarias gariepinus, 135,142,146,153, B. docmac, 136,142 382 B. bayad, 136 C. macrocephlus, 382 B. meridionalis, 149 Clupea harengus, 209 Barbus, 135,147 Coptodon, 6,14 Botryococcus brauni, 72 Ctenopoma, 153 Cyprinus carpio, 107,335 Caridina, 143,144 C. niloticus, 153 Dagetia,6 Cepaea nemoralis, 340 Danakilia, 1,5,6,8,9,49,62,228 Ceratophyllum, 149 D. franchetti,6 C. demersum, 72,113 Daphnia magna, 72,7 3 Channa obscura, 135 Dimidiochromis kiwinge, 35 C. striata,270 Distichodus, 129,136,150 C. guntheri, 14 Chilochromis duponti, 14 Eichhornia, 135 Chlamydomonas sp., 72,75 E. crassipes, 143 Chlorella, 72 Embiotocidae,2 Chromidotilapia, 3 Enantiopus melanogenys, 41 Chrysichthys nigrdigitatus, 134 Ephemeroptera,147 489 490 Species index Etroplus, 3,92 Mugil sp.,152 E. maculatus, 4 Mugil cephalus, 155 Myaka, 1,7,26 Gadus morhua, 209 M. myaka, 7 Gastropoda, 147 Mycobacterium, 438 Glossogobius, 153 Gobiocichla, 1,5,7 Najas, 144 G. ethelwynne,7 N. guadalupensis, 72 Grammatotria lemairei, 63 Navicula, 149 Gymnarchus niloticus, 132 Neotilapia, 5,7 Nilotilapia, 5 Haplochromis, 11,147 Nitzschia, 72 Haplochromine,4,15,34,35,42,44,46, Nyasalapia, 5,7,12,16,27,33,41,43 53,61,129,140,142,151,191 Haplochromini,1,3,14 Odonata, 147 Haplochromis nigripinnis, 138 Onchorhynchus mykiss, 335 H.
    [Show full text]
  • Endangered Fish Species of the World–A Review
    AACL BIOFLUX Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society Endangered fish species of the world – a review 1,2Radu Hărșan, 1,3,4I. Valentin Petrescu-Mag 1 Department of Aquaculture, Faculty of Animal Husbandry, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania, EU; 2 Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania, EU; 3 SC Bioflux SRL, Cluj-Napoca, Romania, EU; 4 SC 3M AGC SRL, Cluj- Napoca, Romania, EU. Corresponding author: R. Hărșan, [email protected] Abstract. The present paper summarizes a large part of the endangered and critically endangered fish species of the world. The list was constructed using the comprehensive IUCN Red List of Threatened Species (available in December 2008) and the well elaborated FISHBASE (available on the official website, in 2008) for taxonomy and accepted scientific names of the species. To these two important sources, many scientific papers and communications were added when recent and useful reports were found. However, there is a long way from the fish species list of this review to the world’s complete list of endangered and critically endangered fish species. In our list were not included subspecies, populations, varieties, or species having a debatable taxonomic status. The scope of this review was not to inventorize all the fishes included in these two categories, but to make possible drawing some general conclusions regarding most important possible causes of fish species extinction and to make suggestions concerning fish species conservation possibilities through aquaculture. Key Words: endangered fish species, critically endangered, causes, population trend.
    [Show full text]
  • Convergence of Gut Microbiotas in the Adaptive Radiations of African Cichlid Fishes
    OPEN The ISME Journal (2017) 11, 1975–1987 www.nature.com/ismej ORIGINAL ARTICLE Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes Laura Baldo1, Joan Lluís Pretus1, Joan Lluís Riera1, Zuzana Musilova2,3, Arnold Roger Bitja Nyom4 and Walter Salzburger2 1Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; 2Zoological Institute, University of Basel, Basel, Switzerland; 3Department of Zoology, Charles University in Prague, Prague, Czech Republic and 4Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds.
    [Show full text]
  • Adaptive Radiation from a Chromosomal Perspective: Evidence of Chromosome Set Stability in Cichlid Fishes (Cichlidae: Teleostei) from the Barombi Mbo Lake, Cameroon
    International Journal of Molecular Sciences Article Adaptive Radiation from a Chromosomal Perspective: Evidence of Chromosome Set Stability in Cichlid Fishes (Cichlidae: Teleostei) from the Barombi Mbo Lake, Cameroon Zuzana Majtánová 1,* , Adrian Indermaur 2, Arnold Roger Bitja Nyom 3,4 , Petr Ráb 1 and Zuzana Musilova 5,* 1 Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libˇechov, Czech Republic; [email protected] 2 Zoological Institute, University of Basel, 4051 Basel, Switzerland; [email protected] 3 Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon; [email protected] 4 Department of Management of Fisheries and Aquatic Ecosystems, University of Douala, Douala P.O. Box 2701, Cameroon 5 Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic * Correspondence: [email protected] (Z.Ma.); [email protected] (Z.Mu.) Received: 30 August 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Cichlid fishes are the subject of scientific interest because of their rapid adaptive radiation, resulting in extensive ecological and taxonomic diversity. In this study, we examined 11 morphologically distinct cichlid species endemic to Barombi Mbo, the largest crater lake in western Cameroon, namely Konia eisentrauti, Konia dikume, Myaka myaka, Pungu maclareni, Sarotherodon steinbachi, Sarotherodon lohbergeri, Sarotherodon linnellii, Sarotherodon caroli, Stomatepia mariae, Stomatepia pindu, and Stomatepia mongo. These species supposedly evolved via sympatric ecological speciation from a common ancestor, which colonized the lake no earlier than one million years ago. Here we present the first comparative cytogenetic analysis of cichlid species from Barombi Mbo Lake using both conventional (Giemsa staining, C-banding, and CMA3/DAPI staining) and molecular (fluorescence in situ hybridization with telomeric, 5S, and 28S rDNA probes) methods.
    [Show full text]
  • Bayesian Node Dating Based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes
    Supporting Information Bayesian Node Dating based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes Michael Matschiner,1,2y Zuzana Musilov´a,2,3 Julia M. I. Barth,1 Zuzana Starostov´a,3 Walter Salzburger,1,2 Mike Steel,4 and Remco Bouckaert5,6y Addresses: 1Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway 2Zoological Institute, University of Basel, Basel, Switzerland 3Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic 4Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand 5Department of Computer Science, University of Auckland, Auckland, New Zealand 6Computational Evolution Group, University of Auckland, Auckland, New Zealand yCorresponding author: E-mail: [email protected], [email protected] 1 Supplementary Text 1 1 Supplementary Text Supplementary Text S1: Sequencing protocols. Mitochondrial genomes of 26 cichlid species were amplified by long-range PCR followed by the 454 pyrosequencing on a GS Roche Junior platform. The primers for long-range PCR were designed specifically in the mitogenomic regions with low interspecific variability. The whole mitogenome of most species was amplified as three fragments using the following primer sets: for the region between position 2 500 bp and 7 300 bp (of mitogenome starting with tRNA-Phe), we used forward primers ZM2500F (5'-ACG ACC TCG ATG TTG GAT CAG GAC ATC C-3'), L2508KAW (Kawaguchi et al. 2001) or S-LA-16SF (Miya & Nishida 2000) and reverse primer ZM7350R (5'-TTA AGG CGT GGT CGT GGA AGT GAA GAA G-3'). The region between 7 300 bp and 12 300 bp was amplified using primers ZM7300F (5'-GCA CAT CCC TCC CAA CTA GGW TTT CAA GAT GC-3') and ZM12300R (5'-TTG CAC CAA GAG TTT TTG GTT CCT AAG ACC-3').
    [Show full text]
  • Trophic Specialization on Unique Resources in One of the Most Celebrated Examples of Sympatric Speciation, Barombi Mbo Crater La
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.04.455125; this version posted August 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Trophic specialization on unique resources in one of the most celebrated 2 examples of sympatric speciation, Barombi Mbo crater lake cichlids 3 4 Jacquelyn R. Galvez1,2, Keara McLean3, Cyrille Dening Touokong4, Legrand Nono Gonwouo5, 5 Christopher H. Martin1,2 6 7 1Department of Integrative Biology, University of California, Berkeley, CA, USA 8 2Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA 9 3Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 10 4Gulf Aquatics, Inc., P.O. Box: 8647, Douala-Cameroon 11 5Laboratory of Zoology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, 12 Cameroon 13 14 Key words: dietary niche partitioning, dietary specialization, sympatric speciation, ecological 15 divergence, competition, adaptive radiation 16 Correspondence: [email protected] 17 18 19 20 21 22 23 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.04.455125; this version posted August 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 ABSTRACT 25 Divergent ecological selection often results in trophic niche partitioning and is one of the central 26 processes underlying sympatric speciation.
    [Show full text]
  • Age of Cichlids: New Dates for Ancient Lake Fish Radiations
    0%($GYDQFH$FFHVVSXEOLVKHG0DUFK $JHRIFLFKOLGV1HZGDWHVIRUDQFLHQWODNHILVKUDGLDWLRQV 5HVHDUFK$UWLFOH 0DUWLQ-*HQQHU2OH6HHKDXVHQ'DYLG+/XQW'RPLQR$-R\FH3DXO:6KDZ *DU\5&DUYDOKRDQG*HRUJH)7XUQHU 'HSDUWPHQWRI%LRORJLFDO6FLHQFHV8QLYHUVLW\RI+XOO&RWWLQJKDP5RDG+XOO+85;8QLWHG .LQJGRP ,QVWLWXWHRI=RRORJ\$TXDWLF(FRORJ\DQG0DFURHYROXWLRQ8QLYHUVLW\RI%HUQ%DOW]HUVWU&+ %HUQ6ZLW]HUODQG ($:$*(FRORJ\&HQWHU)LVK(FRORJ\DQG(YROXWLRQ&+.DVWDQLHQEDXP6ZLW]HUODQG 6FKRRORI%LRORJLFDO6FLHQFHV5R\DO+ROORZD\8QLYHUVLW\RI/RQGRQ(JKDP6XUUH\7:(;8QLWHG .LQJGRP 6FKRRORI%LRORJLFDO6FLHQFHV8QLYHUVLW\RI:DOHV%DQJRU%DQJRU*Z\QHGG//8:8QLWHG .LQJGRP &RUUHVSRQGLQJDXWKRU0DUWLQ-*HQQHU6FKRRORI%LRORJLFDO6FLHQFHV8QLYHUVLW\RI+XOO&RWWLQJKDP 5RDG+XOO+85;8.7HO )D[ 5XQQLQJKHDGOLQH0ROHFXODUGDWLQJRIFLFKOLGILVKUDGLDWLRQV .H\ZRUGVPROHFXODUFORFN*RQGZDQDQIUDJPHQWDWLRQIRVVLOUHFRUGDGDSWLYHUDGLDWLRQVSHFLDWLRQ 7KH$XWKRU3XEOLVKHGE\2[IRUG8QLYHUVLW\3UHVVRQEHKDOIRIWKH6RFLHW\IRU0ROHFXODU%LRORJ\ DQG(YROXWLRQ$OOULJKWVUHVHUYHG)RUSHUPLVVLRQVSOHDVHHPDLOMRXUQDOVSHUPLVVLRQV#R[IRUGMRXUQDOVRUJ Abstract Timing divergence events allows us to infer the conditions under which biodiversity has evolved and gain important insights into the mechanisms driving evolution. Cichlid fishes are a model system for studying s.eciation and adaptive radiation, yet we have lacked reliable timescales for their evolution. Phylogenetic reconstructions are consistent with cichlid origins prior to Gondwanan landmass fragmentation 165-121 million years ago, considerably earlier than the first known fossil cichlids (Eocene). (e eCamined the timing
    [Show full text]