Papers of Myron S. Simon 025 Finding Aid Created by Andrew Mangravite and Encoded Into EAD by Kenton G

Total Page:16

File Type:pdf, Size:1020Kb

Papers of Myron S. Simon 025 Finding Aid Created by Andrew Mangravite and Encoded Into EAD by Kenton G Papers of Myron S. Simon 025 Finding aid created by Andrew Mangravite and encoded into EAD by Kenton G. Jaehnig.. Last updated on April 26, 2021. Science History Institute Archives Papers of Myron S. Simon Table of Contents Summary Information....................................................................................................................................3 Biography/History..........................................................................................................................................4 Scope and Contents....................................................................................................................................... 5 Administrative Information........................................................................................................................... 5 Related Materials........................................................................................................................................... 6 Controlled Access Headings..........................................................................................................................7 Collection Inventory...................................................................................................................................... 8 Series I. Technical Notes.........................................................................................................................8 Series II. Research Notes........................................................................................................................ 9 Series III. Notebooks............................................................................................................................. 11 Series IV. Files/Memos......................................................................................................................... 13 Series V. Meetings with Sir Derek Barton........................................................................................... 13 Series VI. Patents & Reprints............................................................................................................... 16 Series VII. Polaroid Company Reports.................................................................................................18 Series VIII. Company Seminars and Meetings.....................................................................................21 Series IX. Conference Notes................................................................................................................. 22 Series X. Correspondence & Files on Colleagues................................................................................ 25 - Page 2 - Papers of Myron S. Simon Summary Information Repository Science History Institute Archives Creator Simon, Myron S. (Sydney) Title Papers of Myron S. Simon Call number 025 Date [inclusive] 1941-1990 Date [bulk] Bulk 1958-1988 Extent 18 linear feet ((28 boxes)) Language English . Abstract Notebooks, reports, company memoranda, correspondence, and other technical materials created and maintained by American chemist Myron S. Simon during his career with Polaroid Corporation. Cite as: Item Description, Box Number, Folder Number, Papers of Myron S. Simon, 1941-1990, Science History Institute Archives, Philadelphia, Pennsylvania. - Page 3 - Papers of Myron S. Simon Biography/History Myron S. Simon Myron S. Simon (1926-) was an American chemist and a specialist in instant color photography processes. Born in Burlington, Vermont in 1926, Simon was educated at Harvard University, where he earned his bachelor's degree (1946), master's degree (1948), and Ph.D. in Chemistry (1949). At Harvard, he studied with many notable chemists, including Paul D. Bartlett and Gilbert Stork. He completed his Ph.D. research under Robert Burns Woodward. Upon completing his studies at Harvard, Simon went to work as a research scientist at Polaroid Corporation in 1949, where he went on to enjoy a distinguished thirty-nine year career. At Polaroid, he became a noted specialist in instant color photography. Simon produced the first effective cyan dye developer. Under the direction of Stanley Bloom, he worked on the opacification process, which was an essential step in the development of Polaroid's SX-70 instant color photography system. He also developed the "Chemical Curtain", which protects SX-70 photographs while they are developing in light. Simon rose through the ranks of Polaroid's research hierarchy, eventually becoming Research Fellow and Associate Director of Organic Chemistry. Over the course of his career with Polaroid, he was awarded over seventy patents in the field of instant color photography. Simon retired from Polaroid Corporation in 1988. In addition to his work at Polaroid, Simon was the founder of Image-Imation Associates and served as a consultant through 1996. He was also an active member of the American Chemical Society (ACS), becoming chairman of ACS' Northeastern Section in 1985. In this capacity, he sponsored Glenn Seaborg's proposal to end nuclear testing. Simon also served on numerous ACS committees and was co-editor of NUCLEUS. Polaroid Corporation Polaroid Corporation was an American photography firm. Founded in 1937 by Edwin H. Land, it was long synonymous with instant photography. Polaroid introduced its first instant camera, the Model 95 Land Camera, in 1948. The success of this camera prompted the company to further develop instant photography technology over the next several decades. Initially confined to black and white images only, the corporation worked long years to perfect instant color photography. It succeeded with its SX-70 System, which debuted in 1972. Polaroid successfully defended itself against arch-rival Eastman Kodak's attempts to market their own instant color photography system in a 1986 court case. Unfortunately, the corporation's hierarchy remained indifferent to the growing popularity of digital photography. The failure to move aggressively into this growing new field led to a steady erosion of profits, causing Polaroid to declare bankruptcy in 2001. After Polaroid declared bankruptcy, most of the firm's assets were acquired by Polaroid Holding Company (PHC). PHC licensed the use of the Polaroid name to other companies for use on a number of products. Flextronic Limited, the purchaser of Polaroid's former manufacturing facilities, ceased - Page 4 - Papers of Myron S. Simon production of Polaroid instant cameras in 2007 and discontinued sales of Polaroid film in 2009. Polaroid Holding Company declared bankruptcy in 2008. It subsequently ended up under the control of PLR IP Holdings, LLC, a private equity firm. In 2017, the brand and intellectual property of Polaroid Corporation were acquired by Polish investor Wiacezlaw Smolokowski. Smolokowski was the largest shareholder of the Impossible Project, a manufacturer of Polaroid compatible film. The Impossible Project was renamed Polaroid Originals in 2017. This firm currently markets instant cameras, instant film, and other products under the Polaroid name. Sources Papers of Myron S. Simon, Science History Institute Archives, Philadelphia, Pennsylvania. Polaroid Corporation Records, Baker Library Special Collections, Harvard University, Cambridge, Massachusetts - https://hollisarchives.lib.harvard.edu/repositories/11/resources/619. Polaroid Originals Website - https://us.polaroid.com/. Scope and Contents The Papers of Myron S. Simon contain the personal and professional papers of American chemist and instant color photography specialist Myron S. Simon. The materials in this collection document his career with Polaroid Corporation. The collection is arranged into the following ten series: I. Technical Notes II. Research Notes III.Notebooks IV.Files/Memos V. Meetings with Sir Derek Barton VI.Patents & Reprints VII.Polaroid Company Reports VIII.Company Seminars and Meetings IX.Conference Notes X. Correspondence & Files on Colleagues Administrative Information Science History Institute Archives - Page 5 - Papers of Myron S. Simon Finding aid created by Andrew Mangravite and encoded into EAD by Kenton G. Jaehnig.. Access Restrictions There are no access restrictions on the materials for research purposes and the collection is open to the public. Use Restrictions The Science History Institute holds copyright to the Papers of Myron S. Simon. The researcher assumes full responsibility for all copyright, property, and libel laws as they apply. Acquisition Information The Papers of Myron S. Simon were donated to the Science History Institute (formerly the Chemical Heritage Foundation) by Myron S. Simon in 2007. Processing Information The Papers of Myron S. Simon were processed by Andrew Mangravite in April 2008. Related Materials Related Materials There are three other known collections created by Myron S. Simon preserved at the Science History Institute in Philadelphia, Pennsylvania: 1. Myron S. Simon Notebooks. 2. Photographs from the Papers of Myron S. Simon. 3. Streetlights Named Distinctive Scrapbook. The Polaroid Corporation Records are preserved at Harvard University's Baker Library Special Collections in Cambridge, Massachusetts. - Page 6 - Papers of Myron S. Simon Controlled Access Headings Corporate Name(s) • Polaroid Corporation Form/Genre(s) • Archival materials Personal Name(s) • Barton, Derek H. R., 1918-1998 • Land, Edwin H., 1909-1991 • Woodward, R.B. (Robert Burns), 1917-1979 Subject(s) • Color photography • Heterocyclic compounds • Instant photography • Opacity (Optics)
Recommended publications
  • Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights
    Taylor University Pillars at Taylor University Student Scholarship: Chemistry Chemistry and Biochemistry Fall 2019 Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights David Joshua Ferguson Follow this and additional works at: https://pillars.taylor.edu/chemistry-student Part of the Analytical Chemistry Commons, Inorganic Chemistry Commons, Organic Chemistry Commons, Other Chemistry Commons, and the Physical Chemistry Commons CHEMISTRY THESIS SIGNIFICANCE AND IMPLICATIONS OF VITAMIN B-12 REACTION SCHEMA- ETH ZURICH VARIANT: MECHANISMS AND INSIGHTS DAVID JOSHUA FERGUSON 2019 2 Table of Contents: Chapter 1 6 Chapter 2 17 Chapter 3 40 Chapter 4 59 Chapter 5 82 Chapter 6 118 Chapter 7 122 Appendix References 3 Chapter 1 A. INTRODUCTION. Vitamin B-12 otherwise known as cyanocobalamin is a compound with synthetic elegance. Considering how it is composed of an aromatic macrocyclic corrin there are key features of this molecule that are observed either in its synthesis of in the biochemical reactions it plays a role in whether they be isomerization reactions or transfer reactions. In this paper the focus for the discussion will be on the history, chemical significance and total synthesis of vitamin B12. Even more so the paper will be concentrated one of the two variants of the vitamin B-12 synthesis, namely the ETH Zurich variant spearheaded by Albert Eschenmoser.Examining the structure as a whole it is observed that a large portion of the vitamin B12 is a corrin structure with a cobalt ion in the center of the macrocyclic part, and that same cobalt ion has cyanide ligands.
    [Show full text]
  • 3.1.4 Droplet-Based Microfluidics
    Rodriguez Garcia, Marc (2016) Engineering the transition from non-living to living matter. PhD thesis. https://theses.gla.ac.uk/7605/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Engineering the transition from non-living to living matter Marc Rodríguez Garcia A thesis submitted to the University of Glasgow for the degree of Doctor of Philosophy School of Chemistry College of Science and Engineering August 2016 A tota la meva família, per haver-me ajudat a arribar fins aquí. Però sobretot als meus pares, per estar tant a prop malgrat la distància. I en especial a la Nuria, per ser el motiu que em fa tirar endavant. “The good thing about science is that it's true whether or not you believe in it.” -Neil deGrasse Tyson Acknowledgements 1 Acknowledgements This project was carried out between September 2012 and June 2016 in the group of Prof Leroy Cronin in the School of Chemistry at the University of Glasgow. I have received much help and support from many colleagues and friends.
    [Show full text]
  • Searching for Nucleic Acid Alternatives
    MODIFIED OLIGONUCLEOTIDES 836 CHIMIA 2005, 59, No. 11 Chimia 59 (2005) 836–850 © Schweizerische Chemische Gesellschaft ISSN 0009–4293 Searching for Nucleic Acid Alternatives Albert Eschenmoser* Abstract: “Back of the envelope” methods have their place in experimental chemical research; they are effective mediators in the generation of research ideas, for instance, the design of molecular structures. Their qualitative character is part of their strength, rather than a drawback for the role they have to play. Qualitative conformational analysis of oligonucleotide and other oligomer systems on the level of idealized conformations is one such method; it has played a helpful role in our work on the chemical etiology of nucleic acid structure. This article, while giving a short overview of that work, shows how. Keywords: Conformational analysis of oligonucleotides · Nucleic acid analogs · Oligonucleodipeptides · p-RNA · TNA · Watson-Crick base-pairing Chemists understand by comparing, not ‘ab structural or transformational complexity, we know today as the molecular basis of initio’. To perceive and to create opportuni- serve the purpose of creating opportunities genetic function. The specific property to ties for drawing conclusions on the basis of to compare the behavior of complex sys- be compared in this work is a given nucleic comparisons is the organic chemist’s way tems with that of simpler ones. Enzymic re- acid alternative’s capacity for informational of interpreting and exploring the world at actions and enzyme models are examples.
    [Show full text]
  • Historical Group
    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 64 Summer 2013 Registered Charity No. 207890 COMMITTEE Chairman: Prof A T Dronsfield | Prof J Betteridge (Twickenham, 4, Harpole Close, Swanwick, Derbyshire, | Middlesex) DE55 1EW | Dr N G Coley (Open University) [e-mail [email protected]] | Dr C J Cooksey (Watford, Secretary: Prof. J. W. Nicholson | Hertfordshire) School of Sport, Health and Applied Science, | Prof E Homburg (University of St Mary's University College, Waldegrave | Maastricht) Road, Twickenham, Middlesex, TW1 4SX | Prof F James (Royal Institution) [e-mail: [email protected]] | Dr D Leaback (Biolink Technology) Membership Prof W P Griffith | Dr P J T Morris (Science Museum) Secretary: Department of Chemistry, Imperial College, | Mr P N Reed (Steensbridge, South Kensington, London, SW7 2AZ | Herefordshire) [e-mail [email protected]] | Dr V Quirke (Oxford Brookes Treasurer: Dr J A Hudson | University) Graythwaite, Loweswater, Cockermouth, | Prof. H. Rzepa (Imperial College) Cumbria, CA13 0SU | Dr. A Sella (University College) [e-mail [email protected]] Newsletter Dr A Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail [email protected]] Newsletter Dr G P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp 1 RSC Historical Group Newsletter No. 64 Summer 2013 Contents From the Editor 2 Obituaries 3 Professor Colin Russell (1928-2013) Peter J.T.
    [Show full text]
  • Robert Burns Woodward
    The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C.
    [Show full text]
  • Acta 20, 2009
    07_Eschenmoser(OK) Gabri_dis:Layout 1 25/09/09 11:07 Pagina 181 Scientific Insights into the Evolution of the Universe and of Life Pontifical Academy of Sciences, Acta 20, 2009 www.pas.va/content/dam/accademia/pdf/acta20/acta20-eschenmoser.pdf THE SEARCH FOR THE CHEMISTRY OF LIFE’S ORIGIN ALBERT ESCHENMOSER A central postulate of contemporary natural science states that life emerged on Earth (or elsewhere) through a transition of chemical matter from non-living to living. The transition is seen as a contingent consequence of the second law of thermodynamics and the chemical properties of matter by one group of scientists, and as an imperative of that law and those prop- erties according to the belief of others. Chemical matter is postulated to have been capable of organizing itself out of disorder by channeling exergonic geochemical reactions into reaction networks that had a dynamic structure with kinetic (as opposed to thermodynamic) stability and were driven by autocatalytic molecular replication cycles. The postulate implicates that such chemical systems eventually became self-sustaining (capable of exploit- ing environmental sources for reconstituting itself), adaptive (capable of reacting to physical or chemical changes in the environment such that sur- vival as a system is maintained) and – by operating in compartments – capa- ble of evolving. From this perspective, life’s origin is seen as a seamless tran- sition from self-ordering chemical reactions to self-sustaining chemical sys- tems that are capable of Darwinian evolution [1]. Figure 1 delineates – in terms of a ‘conceptual cartoon’ – such a programmatic view in more detail. Evidence from paleontology, biology, geology and planetary science posits the appearance of life on Earth into a period of 3 to 4 billion years ago.
    [Show full text]
  • REVIEW RNA: Prebiotic Product, Or Biotic Invention?
    CHEMISTRY & BIODIVERSITY – Vol. 4 (2007) 721 REVIEW RNA: Prebiotic Product, or Biotic Invention? by Carole Anastasi, Fabien F. Buchet, Michael A. Crowe, Alastair L. Parkes, MatthewW. Powner , James M. Smith, and John D. Sutherland* School of Chemistry, University of Manchester, Oxford Road, Manchester M139PL, UK (phone: ( þ44)1612754614; fax: (þ44)1612754939; e-mail: [email protected]) Spectacular advances in structural and molecular biology have added support to the RNA world hypothesis, and provide a mandate for chemistry to explain how RNA might have been generated prebiotically on the early earth. Difficulties in achieving a prebiotically plausible synthesis of RNA, however, have led many to ponder the question posed in the title of this paper. Herein, we review recent experimental work on the assembly of potential RNA precursors, focusing on methods for stereoselective CÀC bond construction by aldolisation and related processes. This chemistry is presented in the context of a broader picture of the potential constitutional self-assembly of RNA. Finally, the relative accessibility of RNA and alternative nucleic acids is considered. Introduction. – A robust, prebiotically plausible synthesis of RNA, if achieved, will dramatically strengthen the case for the RNA world hypothesis [1][2]. Despite nearly half a century of effort, however, the prospects for such a synthesis have appeared somewhat remote. Difficulties in the generation and oligomerisation of activated nucleotides have led to suggestions that RNA might have been preceded by a simpler informational macromolecule [1–3]. It has been suggested that a biology based on this simpler nucleic acid might have then invented RNA. According to this scheme, functional superiority of RNA would have subsequently driven the transition to a biology based on RNA, and the RNA world would have been born (Fig.
    [Show full text]
  • Robert Burns Woodward 1917–1979
    NATIONAL ACADEMY OF SCIENCES ROBERT BURNS WOODWARD 1917–1979 A Biographical Memoir by ELKAN BLOUT Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 80 PUBLISHED 2001 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. ROBERT BURNS WOODWARD April 10, 1917–July 8, 1979 BY ELKAN BLOUT OBERT BURNS WOODWARD was the preeminent organic chemist Rof the twentieth century. This opinion is shared by his colleagues, students, and by other distinguished chemists. Bob Woodward was born in Boston, Massachusetts, and was an only child. His father died when Bob was less than two years old, and his mother had to work hard to support her son. His early education was in the Quincy, Massachusetts, public schools. During this period he was allowed to skip three years, thus enabling him to finish grammar and high schools in nine years. In 1933 at the age of 16, Bob Woodward enrolled in the Massachusetts Institute of Technology to study chemistry, although he also had interests at that time in mathematics, literature, and architecture. His unusual talents were soon apparent to the MIT faculty, and his needs for individual study and intensive effort were met and encouraged. Bob did not disappoint his MIT teachers. He received his B.S. degree in 1936 and completed his doctorate in the spring of 1937, at which time he was only 20 years of age. Immediately following his graduation Bob taught summer school at the University of Illinois, but then returned to Harvard’s Department of Chemistry to start a productive period with an assistantship under Professor E.
    [Show full text]
  • The Signer DNA-Symposium in Bern
    CONFERENCE REPORTS 51 CHIMIA 2004, 58, No. 1/2 CONFERENCE REPORTS Chimia 58 (2004) 51–53 © Schweizerische Chemische Gesellschaft ISSN 0009–4293 The Signer DNA-Symposium in Bern M. Lienhard Schmitz* Abstract: As the year 2003 was not only the 50th anniversary of the discovery of the DNA structure but also the 100th birthday of Rudolf Signer, the Department of Chemistry and Biochemistry at the University of Bern organized a Symposium on November 28th, in order to honour the pioneering work of its former faculty col- league Rudolf Signer. The invited symposium speakers covered a number of aspects related to the person and work of Rudolf Signer as well as ongoing research on the structure, function and use of DNA and nucleic acids. Keywords: DNA · Double helix · Nucleic acids · RNA · Rudolf Signer The famous Nature paper by James from ongoing research revealing the poten- these nucleic acids within intact cells is still Watson and Francis Crick describing the tial of nucleic acids for a variety of applica- hampered by the limited stability of RNA. DNA structure marks the birth year of mod- tions including molecular diagnostics, bio- Michael Famulok presented various exper- ern molecular biology, but their work chemical catalysis, drug discovery and imental strategies to couple aptamers with would not have been possible without the therapy. reporter groups, thus allowing to monitor good X-ray diffraction data collected by The symposium was officially opened competitive binding of small molecules to Rosalind Franklin. As acknowledged by by Gerhard Jäger, the Dean of the science the RNA binding site by changes in fluo- Maurice Wilkins in his Nobel-lecture, the faculty at Bern University.
    [Show full text]
  • De Novo Nucleic Acids: a Review of Synthetic Alternatives to DNA and RNA That Could Act As † Bio-Information Storage Molecules
    life Review De Novo Nucleic Acids: A Review of Synthetic Alternatives to DNA and RNA That Could Act as y Bio-Information Storage Molecules Kevin G Devine 1 and Sohan Jheeta 2,* 1 School of Human Sciences, London Metropolitan University, 166-220 Holloway Rd, London N7 8BD, UK; [email protected] 2 Network of Researchers on the Chemical Evolution of Life (NoR CEL), Leeds LS7 3RB, UK * Correspondence: [email protected] This paper is dedicated to Professor Colin B Reese, Daniell Professor of Chemistry, Kings College London, y on the occasion of his 90th Birthday. Received: 17 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: Modern terran life uses several essential biopolymers like nucleic acids, proteins and polysaccharides. The nucleic acids, DNA and RNA are arguably life’s most important, acting as the stores and translators of genetic information contained in their base sequences, which ultimately manifest themselves in the amino acid sequences of proteins. But just what is it about their structures; an aromatic heterocyclic base appended to a (five-atom ring) sugar-phosphate backbone that enables them to carry out these functions with such high fidelity? In the past three decades, leading chemists have created in their laboratories synthetic analogues of nucleic acids which differ from their natural counterparts in three key areas as follows: (a) replacement of the phosphate moiety with an uncharged analogue, (b) replacement of the pentose sugars ribose and deoxyribose with alternative acyclic, pentose and hexose derivatives and, finally, (c) replacement of the two heterocyclic base pairs adenine/thymine and guanine/cytosine with non-standard analogues that obey the Watson–Crick pairing rules.
    [Show full text]
  • Derek HR Barton
    news and views Obituary reactions on hydrocarbons. Derek H. R. Barton (1918–98) Once again in 1985 the black hole of retirement loomed, and once again Barton Polymath of organic was not prepared to retire. This brought him to Texas A&M. Why? Quite simply, chemistry because we offered him what he wanted: TEXAS A&M With the death of Sir Derek Barton, on 16 not a name chair, not a big office, not the March, we will miss not only a great role of being a brilliant but non-functional chemical intellect but a fascinating and adornment. We offered a regular full 8 delightful human being. He was always professorship, a decent office and all the full of plans and receptive to ideas, and he lab space he needed — which turned out to took pleasure in the company of his be a lot. Barton was thus able to continue colleagues. Like his long-time colleague his unflagging study of Gif chemistry and Geoffrey Wilkinson, he passed away the invention of new reactions. suddenly and unexpectedly of a heart His time in College Station was both attack. In both cases this was the best way, sad and happy. Not long after his arrival as neither would have tolerated a state of Christiane developed cancer, and after forced inactivity. several very painful years for both, she Derek Barton was born in Gravesend, died. Barton threw himself more than ever England, on 8 September 1918. His family into his work, but he soon had the great were in what he referred to as “the wood good fortune to remarry (to Judith Cobb, a business”.
    [Show full text]
  • Biographical Memoirs
    National Academy of Sciences - Biographical Memoirs http://www.nasonline.org/publications/biographical-memoirs/online-collection.html By Michael P. Filosa Flack Norris (1871-1940) for the November Nucleus, I came across his biographical memoir on the website of the National Academy of Sciences (NAS). This memoir was written by John D. Roberts and was presented to the Academy in 1974, a scant(!) 34 years after his death. The NAS was founded in 1863 by 50 of the most prominent scientists in the United States, and its initial charter was signed by Abraham Lincoln. It is a tradition that each of its members be memorialized in a memoir to the Academy written by a peer (or two). These memoirs are a treasure trove of the history of science. The sole weakness is that they are posthumous and not necessarily, very timely. However, they are quite thorough and a good overview of the scientists, complete with a detailed listing of their major works. During my school years, I was always intrigued with stories about great scientists. Dan Kemp would talk extensively about his thesis advisor, R. B. Woodward, and his works. Those stories about Woodward (1917-1979) and also Gilbert Stork were very influential in my decision to pursue synthetic organic chemistry as a career. Woodward’s memoir was written by Elkan Blout (with assistance from Frank Westheimer) and was published in 2001, a “scant” 22 years after his death. The memoirs are often glowing: “Robert Burns Woodward was the preeminent organic chemist of the twentieth century. This opinion is shared by his colleagues, students and by other distinguished chemists.” Blout includes lengthy commentaries from Sir Derek Barton, Roald Hoffman and Albert Eschenmoser in the memoir.
    [Show full text]