Population Trends of Native Hawaiian Forest Birds, 1976-2008

Total Page:16

File Type:pdf, Size:1020Kb

Population Trends of Native Hawaiian Forest Birds, 1976-2008 Technical Report HCSU-012 POPULATION TRENDS OF NATIVE HAWAIIAN FOREST BIRDS, 1976-2008 Richard J. Camp1, P. Marcos Gorresen1, Thane K. Pratt2, and Bethany L. Woodworth2,3 1Hawai`i Cooperative Studies Unit, University of Hawai`i at Hilo, Pacifi c Aquaculture and Coastal Resources Center, P.O. Box 44, Hawai`i National Park, HI 96718 2U.S. Geological Survey, Pacifi c Island Ecosystems Research Center, P. O. Box 44, Hawai`i National Park, HI 96718 3Current address: Department of Environmental Studies, University of New England, 11 Hills Beach Road, Biddeford, ME 04005 Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo Pacifi c Aquaculture and Coastal Resources Center (PACRC) 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2009 The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. Technical Report HCSU-012 POPULATION TRENDS OF NATIVE HAWAIIAN FOREST BIRDS, 1976-2008: the data and statistical analyses Richard J. Camp1, P. Marcos Gorresen1, Thane K. Pratt2, and Bethany L. Woodworth2,3 1 Hawai`i Cooperative Studies Unit, University of Hawai`i at Hilo, Pacific Aquaculture and Coastal Resources Center, P. O. Box 52, Hawai`i National Park, HI 96718 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, P. O. Box 44, Hawai`i National Park, HI 96718 3 Current address: Department of Environmental Studies, University of New England, 11 Hills Beach Road, Biddeford, ME 04005 CITATION Camp, R.J., P.M Gorresen, T.K. Pratt, and B.L. Woodworth. (2009). Population trends of native Hawaiian forest birds, 1976-2008: the data and statistical analyses. Hawai`i Cooperative Studies Unit Technical Report HCSU-012. University of Hawai`i at Hilo. 110 pp., incl. 23 figures, 23 tables & 4 appendices. Keywords: bird counts; density estimation; Hawai`i; native forest birds; point-transect sampling; species’ ranges; surveying effort; trends Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo Pacific Aquaculture and Coastal Resources Center (PACRC) 200 W. Kawili St. Hilo, HI 96720 (808)933-0706 This product was prepared under Cooperative Agreement CA03WRAG0036 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey SUMMARY The Hawaii Forest Bird Interagency Database Project has produced a centralized database of forest bird survey data collected in Hawai`i since the mid-1970s. The database contains over 1.1 million bird observation records of 90 species from almost 600 surveys on the main Hawaiian Islands—a dataset including nearly all surveys from that period. The primary objective has been to determine the status and trends of native Hawaiian forest birds derived from this comprehensive dataset. We generated species-specific density estimates from each survey and tested for changes in population densities over the longest possible temporal period. Although this cumulative data set seems enormous and represents the best available information on status of Hawaiian forest birds, detecting meaningful population distribution, density, and trends for forest birds in Hawai`i has been difficult. These population parameters are best derived from long-term, large-scale, standardized monitoring programs. The basis for long-term population monitoring in Hawai`i was established by the Hawaii Forest Bird Survey of 1976-1983 (Scott et al. 1986). Since then, however, only key areas have been resurveyed, primarily to monitor rare species. The majority of surveys since the early 1980s have been conducted by numerous, independent programs, resulting in some inconsistencies in methodology and sampling that in some cases has been intermittent and usually at limited scale (temporally or spatially). Thus, despite the consolidation of data into a centralized database, our understanding of population patterns is rather limited, especially at the regional and landscape scales. To rectify their deficiency, we present a framework to improve the understanding of forest bird trends in Hawai`i through an overarching monitoring design that allocates sampling at appropriate regional and temporal scales. Despite the limitations of the current monitoring effort, important generalities stand out vividly from the multiplicity of species-specific trends. Overall, in marginal habitats the Hawaiian passerine fauna continues to decline, with populations of most species shrinking in size and distribution. Since the early 1980s, 10 species that were rare at the time may now be extinct, although one, the `Alalā (Corvus hawaiiensis), survives in captivity. Dedicated search effort for the remaining nine species has been inadequate. Of the 22 species remaining, eight have declined, five appear to be stable, two are increasing, and the trend for seven species is unclear. On the bright side, native passerines, including endangered species, appear to be stable or increasing in areas with large tracts of native forest above 1,500 m elevation, even while decreasing in more fragmented or disturbed habitats, particularly at lower elevation. For example, all eight native species resident at Hakalau Forest National Wildlife Refuge have shown stable trends or significant increases in density over the long-term. Thus, native birds are ever more restricted to high-elevation forest and woodland refugia. It is these upland habitats that require sustained and all-out restoration to prevent further extinctions of Hawaiian forest birds. iii iv Table of Contents SUMMARY ............................................................................................................................... iii Table of Contents ........................................................................................................................ v List of Tables ............................................................................................................................. vii List of Figures........................................................................................................................... viii INTRODUCTION ....................................................................................................................... 1 METHODS .................................................................................................................................. 6 Surveys ............................................................................................................................ 6 Bird Sampling ............................................................................................................... 11 Study Areas for Evaluating Bird Trends ....................................................................... 11 Description of Trend Study Areas ................................................................................ 12 Determining Proportion Forested and Area Surveyed .................................................. 12 Delineating Species’ Ranges ......................................................................................... 13 Estimating and Comparing Population Density ............................................................ 13 RESULTS .................................................................................................................................. 15 Survey Coverage ........................................................................................................... 15 Species Accounts .......................................................................................................... 19 Kaua`i `Ō`ō ............................................................................................................... 19 Bishop’s `Ō`ō ............................................................................................................ 19 `Alalā......................................................................................................................... 19 `Elepaio ..................................................................................................................... 19 Kāma`o ...................................................................................................................... 27 Oloma`o .................................................................................................................... 28 `Ōma`o ...................................................................................................................... 28 `Ō`ū ........................................................................................................................... 32 Palila ......................................................................................................................... 33 Hawai`i `Amakihi ..................................................................................................... 37 O`ahu `Amakihi ........................................................................................................ 40 Kaua`i `Amakihi ....................................................................................................... 45 `Anianiau................................................................................................................... 48 Kaua`i Greater `Akialoa ............................................................................................ 48 Nukupu`u .................................................................................................................
Recommended publications
  • Synonymies for Indigenous Hawaiian Bird Taxa
    Part 2 - Drepaninines Click here for Part 1 - Non-Drepaninines The Birds of the Hawaiian Islands: Occurrence, History, Distribution, and Status Version 2 - 1 January 2017 Robert L. Pyle and Peter Pyle Synonymies for Indigenous Hawaiian Bird Taxa Intensive ornithological surveying by active collectors during the latter 1890s led to several classic publications at the turn of the century, each covering nearly all species and island forms of native Hawaiian birds (Wilson and Evans 1899, Rothschild (1900),schild 1900, Bryan 1901a, Henshaw (1902a), 1902a, Perkins (1903),1903). The related but diverse scientific names appearing in these publications comprised the basis for scientific nomenclature for the next half century, but in many cases were modified by later authors using modern techniques to reach a current nomenclature provided in the American Ornithologists’ Union (AOU) Check-List, and followed (for the most part) at this site. A few current AOU names are still controversial, and more changes will come in the future. Synonymies reflecting the history of taxonomic nomenclature are listed below for all endemic birds in the Hawaiian Islands. The heading for each taxon represents that used in this book, reflecting the name used by the AOU (1998), as changed in subsequent AOU Supplements, or, in a few cases, as modified here based on more recent work or on differing opinions on taxonomic ranking. Previously recognized names are listed and citations included for classic publications on taxonomy of Hawaiian birds, as well as significant papers that influenced the species nomenclature. We thank Storrs Olson for sharing with us his summarization on the taxonomy and naming of indigenous Hawaiian birds.
    [Show full text]
  • 2019 Kiwikiu Conservation Translocation Report
    2019 Kiwikiu Conservation Translocation Report Christopher C. Warren1, Laura K. Berthold1, Hanna L. Mounce1, Peter Luscomb2, Bryce Masuda3, Lainie Berry4 2020 Maui Forest Bird Recovery Project1 Pacific Bird Conservation2 San Diego Zoo Global3 State of Hawaiʻi, Department of Land and Natural Resources, Division of Forestry and Wildlife4 Suggested citation – Warren, C.C., L.K. Berthold, H.L. Mounce, P. Luscomb, B. Masuda. L. Berry. 2020. Kiwikiu Translocation Report 2019. Internal Report. Pages 1–101. Cover photo by Bret Mossman. Translocated female, WILD11, in Kahikinui Hawaiian Homelands. Photo credits – Photographs were supplied by Maui Forest Bird Recovery Project (MFBRP) staff, members of the press, and volunteers. Photographer credit is given for those not taken by MFBRP staff. The 2019 kiwikiu translocation was a joint operation conducted by member organizations of the Maui Forest Bird Working Group. Organizations that conducted the translocation included American Bird Conservancy, Maui Forest Bird Recovery Project, National Park Service, Pacific Bird Conservation, San Diego Zoo Global, State of Hawaiʻi Department of Land and Natural Resources – Division of Forestry and Wildlife, The Nature Conservancy of Hawai‘i, U.S. Fish & Wildlife Service, and U.S. Geological Survey. In addition to representatives of these organizations, six community volunteers aided in these efforts. This does not include the dozens of volunteers and other organizations involved in planning for the translocation and preparing the release site through restoration and other activities. These efforts were greatly supported by the skilled pilots at Windward Aviation. i Table of Contents 1. Summary of 2019 Reintroduction ......................................................................................................... 1 2. Background of the Reintroduction ....................................................................................................... 1 2.1.
    [Show full text]
  • Adaptive Radiation
    ADAPTIVE RADIATION Rosemary G. Gillespie,* Francis G. Howarth,† and George K. Roderick* *University of California, Berkeley and †Bishop Museum I. History of the Concept ecological release Expansion of habitat, or ecological II. Nonadaptive Radiations environment, often resulting from release of species III. Factors Underlying Adaptive Radiation from competition. IV. Are Certain Taxa More Likely to Undergo Adap- founder effect Random genetic sampling in which tive Radiation Than Others? only a few ‘‘founders’’ derived from a large popula- V. How Does Adaptive Radiation Get Started? tion initiate a new population. Since these founders VI. The Processes of Adaptive Radiation: Case carry only a small fraction of the parental popula- Studies tion’s genetic variability, radically different gene VII. The Future frequencies can become established in the new colony. key innovation A trait that increases the efficiency with GLOSSARY which a resource is used and can thus allow entry into a new ecological zone. adaptive shift A change in the nature of a trait (mor- natural selection The differential survival and/or re- phology, ecology, or behavior) that enhances sur- production of classes of entities that differ in one or vival and/or reproduction in an ecological environ- more hereditary characteristics. ment different from that originally occupied. sexual selection Selection that acts directly on mating allopatric speciation The process of genetic divergence success through direct competition between mem- between geographically separated populations lead- bers of one sex for mates or through choices made ing to distinct species. between the two sexes or through a combination of character displacement Divergence in a morphological both modes.
    [Show full text]
  • Apapane (Himatione Sanguinea)
    The Birds of North America, No. 296, 1997 STEVEN G. FANCY AND C. JOHN RALPH 'Apapane Himatione sanguinea he 'Apapane is the most abundant species of Hawaiian honeycreeper and is perhaps best known for its wide- ranging flights in search of localized blooms of ō'hi'a (Metrosideros polymorpha) flowers, its primary food source. 'Apapane are common in mesic and wet forests above 1,000 m elevation on the islands of Hawai'i, Maui, and Kaua'i; locally common at higher elevations on O'ahu; and rare or absent on Lāna'i and Moloka'i. density may exceed 3,000 birds/km2 The 'Apapane and the 'I'iwi (Vestiaria at times of 'ōhi'a flowering, among coccinea) are the only two species of Hawaiian the highest for a noncolonial honeycreeper in which the same subspecies species. Birds in breeding condition occurs on more than one island, although may be found in any month of the historically this is also true of the now very rare year, but peak breeding occurs 'Ō'ū (Psittirostra psittacea). The highest densities February through June. Pairs of 'Apapane are found in forests dominated by remain together during the breeding 'ōhi'a and above the distribution of mosquitoes, season and defend a small area which transmit avian malaria and avian pox to around the nest, but most 'Apapane native birds. The widespread movements of the 'Apapane in response to the seasonal and patchy distribution of ' ōhi'a The flowering have important implications for disease Birds of transmission, since the North 'Apapane is a primary carrier of avian malaria and America avian pox in Hawai'i.
    [Show full text]
  • Federal Register/Vol. 85, No. 74/Thursday, April 16, 2020/Rules
    21282 Federal Register / Vol. 85, No. 74 / Thursday, April 16, 2020 / Rules and Regulations DEPARTMENT OF THE INTERIOR United States and the Government of United States or U.S. territories as a Canada Amending the 1916 Convention result of recent taxonomic changes; Fish and Wildlife Service between the United Kingdom and the (8) Change the common (English) United States of America for the names of 43 species to conform to 50 CFR Part 10 Protection of Migratory Birds, Sen. accepted use; and (9) Change the scientific names of 135 [Docket No. FWS–HQ–MB–2018–0047; Treaty Doc. 104–28 (December 14, FXMB 12320900000//201//FF09M29000] 1995); species to conform to accepted use. (2) Mexico: Convention between the The List of Migratory Birds (50 CFR RIN 1018–BC67 United States and Mexico for the 10.13) was last revised on November 1, Protection of Migratory Birds and Game 2013 (78 FR 65844). The amendments in General Provisions; Revised List of this rule were necessitated by nine Migratory Birds Mammals, February 7, 1936, 50 Stat. 1311 (T.S. No. 912), as amended by published supplements to the 7th (1998) AGENCY: Fish and Wildlife Service, Protocol with Mexico amending edition of the American Ornithologists’ Interior. Convention for Protection of Migratory Union (AOU, now recognized as the American Ornithological Society (AOS)) ACTION: Final rule. Birds and Game Mammals, Sen. Treaty Doc. 105–26 (May 5, 1997); Check-list of North American Birds (AOU 2011, AOU 2012, AOU 2013, SUMMARY: We, the U.S. Fish and (3) Japan: Convention between the AOU 2014, AOU 2015, AOU 2016, AOS Wildlife Service (Service), revise the Government of the United States of 2017, AOS 2018, and AOS 2019) and List of Migratory Birds protected by the America and the Government of Japan the 2017 publication of the Clements Migratory Bird Treaty Act (MBTA) by for the Protection of Migratory Birds and Checklist of Birds of the World both adding and removing species.
    [Show full text]
  • Dynamics of Life
    Chapter 1: Biology: The Study of Life 1. An experiment is _____. a. a problem that may be solved b. an observation about nature c. a way to prove a fact d. a test of a hypothesis 2. What might be involved in a lab that contained the warnings in Figure 1-7? a. dangerous chemicals b. sharp objects c. dangerous plants d. small animals 3. Technology has allowed humans to produce more food and reduce the chance of starvation by individuals in some countries. How has this advance created additional technological needs? a. All of these. b. The technology has allowed populations to continue to grow, creating the need for additional food. c. The technology caused the false belief that the problem was solved forever. d. The technology caused salts to be deposited in soils. 4. Which of the examples shows a response to a stimulus? a. c. b. d. 5. Living things change during their lives through _____. a. reproduction b. growth and development c. adaptation and organization d. making responses 6. The information gathered from experiments is called _____. a. the data b. the conclusion c. the research d. the hypothesis 7. Which of the adaptations on a dolphin, shown in Figure 1-8 is used for breathing underwater? a. B b. C c. A d. D 8. Which of the pictures in Figure 1-10 shows the most diversity? a. b. c. d. 9. Which of the following results from quantitative analysis of Figure 1-6? a. there are 8 babies b. the babies are cold c.
    [Show full text]
  • The Phylogenetic Relationships and Generic Limits of Finches
    Molecular Phylogenetics and Evolution 62 (2012) 581–596 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The phylogenetic relationships and generic limits of finches (Fringillidae) ⇑ Dario Zuccon a, , Robert Pryˆs-Jones b, Pamela C. Rasmussen c, Per G.P. Ericson d a Molecular Systematics Laboratory, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Bird Group, Department of Zoology, Natural History Museum, Akeman St., Tring, Herts HP23 6AP, UK c Department of Zoology and MSU Museum, Michigan State University, East Lansing, MI 48824, USA d Department of Vertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden article info abstract Article history: Phylogenetic relationships among the true finches (Fringillidae) have been confounded by the recurrence Received 30 June 2011 of similar plumage patterns and use of similar feeding niches. Using a dense taxon sampling and a com- Revised 27 September 2011 bination of nuclear and mitochondrial sequences we reconstructed a well resolved and strongly sup- Accepted 3 October 2011 ported phylogenetic hypothesis for this family. We identified three well supported, subfamily level Available online 17 October 2011 clades: the Holoarctic genus Fringilla (subfamly Fringillinae), the Neotropical Euphonia and Chlorophonia (subfamily Euphoniinae), and the more widespread subfamily Carduelinae for the remaining taxa. Keywords: Although usually separated in a different
    [Show full text]
  • Billing Code 4333–15 DEPARTMENT of THE
    This document is scheduled to be published in the Federal Register on 11/28/2018 and available online at https://federalregister.gov/d/2018-25634, and on govinfo.gov Billing Code 4333–15 DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 10 [Docket No. FWS–HQ–MB–2018–0047; FXMB 12320900000//189//FF09M29000] RIN 1018–BC67 General Provisions; Revised List of Migratory Birds AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), propose to revise the List of Migratory Birds protected by the Migratory Bird Treaty Act (MBTA) by both adding and removing species. Reasons for the changes to the list include adding species based on new taxonomy and new evidence of natural occurrence in the United States or U.S. territories, removing species no longer known to occur within the United States or U.S. territories, and changing names to conform to accepted use. The net increase of 59 species (66 added and 7 removed) would bring the total number of species protected by the MBTA to 1,085. We regulate the taking, possession, transportation, sale, purchase, barter, exportation, and importation of migratory birds. An accurate and up-to-date list of species protected by the MBTA is essential for public notification and regulatory purposes. DATES: We will accept comments received or postmarked on or before [INSERT DATE 60 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. Comments submitted electronically using the Federal eRulemaking Portal (see ADDRESSES, below) must be received by 11:59 p.m.
    [Show full text]
  • Hawaiian Birds 1972*
    HAWAIIAN BIRDS 1972* ANDREW J. BERGER More kinds (species and subspecies) of birds have become extinct in Hawaii than on all continents’ of the world combined. These endemic Hawaiian birds have become ex- tinct since 1844l, and most of them have succumbed since the 1890s. Table 1 lists the endemic Hawaiian birds which are presumed to be extinct. Moreover, Hawaiian birds account for nearly one-half of the birds in the U. S. Bureau of Sport Fisheries and Wildlifes’ Red Book of rare and endangered species. The follow- ing list contains 16 of the rare and endangered Hawaiian birds: Newells’ Manx Shear- water (Puffinus puffinus newel&), Hawaiian Dark-rumped Petrel (Pterodroma phaeo- pygia sandwichensis), Harcourt s’ Storm Petrel (Oceanodroma Castro cryptoleucura), Nene or Hawaiian Goose (Branta sandvicensis), Koloa or Hawaiian Duck (Anas wyvilliana) , Laysan Duck (Anus laysanensis) , Hawaiian Hawk (Buteo solitarius) , Hawaiian Gallinule (Gallinula chloropus sandvicensis) , Hawaiian Coot (Fulica ameri- cana alai), Hawaiian Black-necked Stilt (Himantopus himantopus knudseni), Hawaiian Crow (Corvus tropicus), Large Kauai Thrush (Phaeornis obscurus myadestina), Molo- kai Thrush (Phaeornis o. rutha), Small Kauai Thrush (Phaeornis palmeri), Nihoa Millerbird (Acrocephalus familiaris kingi), and the Kauai 00 (Moho braccetus). TO this list may be added the non-migratory Hawaiian population of the Black-crowned Night Heron (Nycticorax n. hoactli). But, there are even more endangered Hawaiian birds! Because of their special interest to ornithologists,
    [Show full text]
  • Birds of Conservation Concern 2021 Migratory Bird Program Table of Contents
    U.S. Fish & Wildlife Service Birds of Conservation Concern 2021 Migratory Bird Program Table Of Contents Executive Summary 4 Acknowledgments 5 Introduction 6 Methods 7 Geographic Scope 7 Birds Considered 7 Assessing Conservation Status 7 Identifying Birds of Conservation Concern 10 Results and Discussion 11 Literature Cited 13 Figures 15 Figure 1. Map of terrestrial Bird Conservation Regions (BCRs) Marine Bird Conservation Regions (MBCRs) of North America (Bird Studies Canada and NABCI 2014). See Table 2 for BCR and MBCR names. 15 Tables 16 Table 1. Island states, commonwealths, territories and other affiliations of the United States (USA), including the USA territorial sea, contiguous zone and exclusive economic zone considered in the development of the Birds of Conservation Concern 2021. 16 Table 2. Terrestrial Bird Conservation Regions (BCR) and Marine Bird Conservation Regions (MBCR) either wholly or partially within the jurisdiction of the Continental USA, including Alaska, used in the Birds of Conservation Concern 2021. 17 Table 3. Birds of Conservation Concern 2021 in the Continental USA (CON), continental Bird Conservation Regions (BCR), Puerto Rico and Virgin Islands (PRVI), and Hawaii and Pacific Islands (HAPI). Refer to Appendix 1 for scientific names of species, subspecies and populations Breeding (X) and nonbreeding (nb) status are indicated for each geography. Parenthesized names indicate conservation concern only exists for a specific subspecies or population. 18 Table 4. Numbers of taxa of Birds of Conservation Concern 2021 represented on the Continental USA (CON), continental Bird Conservation Region (BCR), Puerto Rico and VirginIslands (PRVI), Hawaii and Pacific Islands (HAPI) lists by general taxonomic groups. Also presented are the unique taxa represented on all lists.
    [Show full text]
  • A Systematic Analysis of the Endemic Avifauna of the Hawaiian Islands. Harold Douglas Pratt Rj Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1979 A Systematic Analysis of the Endemic Avifauna of the Hawaiian Islands. Harold Douglas Pratt rJ Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Pratt, Harold Douglas Jr, "A Systematic Analysis of the Endemic Avifauna of the Hawaiian Islands." (1979). LSU Historical Dissertations and Theses. 3347. https://digitalcommons.lsu.edu/gradschool_disstheses/3347 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the Him inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • SERDP Project ER18-1653
    FINAL REPORT Approach for Assessing PFAS Risk to Threatened and Endangered Species SERDP Project ER18-1653 MARCH 2020 Craig Divine, Ph.D. Jean Zodrow, Ph.D. Meredith Frenchmeyer Katie Dally Erin Osborn, Ph.D. Paul Anderson, Ph.D. Arcadis US Inc. Distribution Statement A Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
    [Show full text]