Transforming Bacillus Sp. Strain IIIJ3–1 Isolated from As-Contaminate

Total Page:16

File Type:pdf, Size:1020Kb

Transforming Bacillus Sp. Strain IIIJ3–1 Isolated from As-Contaminate Ghosh et al. BMC Microbiology (2020) 20:256 https://doi.org/10.1186/s12866-020-01893-6 RESEARCH ARTICLE Open Access Molecular and taxonomic characterization of arsenic (As) transforming Bacillus sp. strain IIIJ3–1 isolated from As-contaminated groundwater of Brahmaputra river basin, India Soma Ghosh1,2, Balaram Mohapatra1,3, Tulasi Satyanarayana4,5 and Pinaki Sar1* Abstract Background: Microbe-mediated redox transformation of arsenic (As) leading to its mobilization has become a serious environmental concern in various subsurface ecosystems especially within the alluvial aquifers. However, detailed taxonomic and eco-physiological attributes of indigenous bacteria from As impacted aquifer of Brahmaputra river basin has remained under-studied. Results: A newly isolated As-resistant and -transforming facultative anaerobic bacterium IIIJ3–1 from As- contaminated groundwater of Jorhat, Assam was characterized. Near complete 16S rRNA gene sequence affiliated the strain IIIJ3–1 to the genus Bacillus and phylogenetically placed within members of B. cereus sensu lato group with B. cereus ATCC 14579(T) as its closest relative with a low DNA-DNA relatedness (49.9%). Presence of iC17:0, iC15:0 fatty acids and menaquinone 7 corroborated its affiliation with B. cereus group, but differential hydroxy-fatty acids, C18:2 and menaquinones 5 & 6 marked its distinctiveness. High As resistance [Maximum Tolerable Concentration = 10 mM As3+, 350 mM As5+], aerobic As3+ (5 mM) oxidation, and near complete dissimilatory 5+ reduction of As (1 mM) within 15 h of growth designated its physiological novelty. Besides O2, cells were found 5+ 3+ 2− − 6+ to reduce As ,Fe ,SO4 ,NO3 , and Se as alternate terminal electron acceptors (TEAs), sustaining its anaerobic growth. Lactate was the preferred carbon source for anaerobic growth of the bacterium with As5+ as TEA. Genes encoding As5+ respiratory reductase (arr A), As3+ oxidase (aioB), and As3+ efflux systems (ars B, acr3) were detected. All these As homeostasis genes showed their close phylogenetic lineages to Bacillus spp. Reduction in cell size following As exposure exhibited the strain’s morphological response to toxic As, while the formation of As-rich electron opaque dots as evident from SEM-EDX possibly indicated a sequestration based As resistance strategy of strain IIIJ3–1. (Continued on next page) * Correspondence: [email protected]; [email protected] 1Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Ghosh et al. BMC Microbiology (2020) 20:256 Page 2 of 20 (Continued from previous page) Conclusion: This is the first report on molecular, taxonomic, and ecophysiological characterization of a highly As resistant, As3+ oxidizing, and dissimilatory As5+ reducing Bacillus sp. IIIJ3–1 from As contaminated sites of Brahmaputra river basin. The strain’s ability to resist and transform As along with its capability to sequester As within the cells demonstrate its potential in designing bioremediation strategies for As contaminated groundwater and other ecosystems. Keywords: Arsenic, Bacillus cereus group, Brahmaputra river basin, Ecophysiology, Dissimilatory reduction, Groundwater, Taxonomy Background aquifers [8, 16, 30–32]. With respect to the taxonomic and Arsenic (As) contamination in groundwater of Bengal physiological characterization of DARB from diverse habi- Delta Plain (BDP) (covering large parts of Bangladesh tats, till date 32 cultivable representatives have been studied and India) has become an emergent health concern for [29, 32, 33]. Interestingly, only few members of Proteobac- millions of people over the decades [1, 2]. Consumption teria i.e. Desulfuromonas/ Pelobacter sp. WB-3 [32], Rhizo- of As contaminated drinking water and food grains has bium arsenicireducens KAs 5-22T [16], Pseudoxanthomonas been implicated with severe health crisis including arseniciresistens KAs 5-3T [34]; Achromobacter sp. KAs 3-5 arsenicosis and cancer affecting more than 100 million [35]andFirmicutes viz. B. arsenicus [36], B. indicus [37] people in BDP [3, 4]. The predominant inorganic species have been isolated from BDP (West Bengal) and character- of As in naturally (geogenic) contaminated alluvial aqui- ized thoroughly. Recently, an As tolerant siderophore pro- fers are As3+ and As5+.As3+ is more mobile in aqueous, ducing Staphylococcus sp. strain TA6 has been isolated oxic environments while As5+ tends to remain adsorbed from upper Brahmaputra River Basin (BRB) aquifer and re- to the sediments in anoxic state [5]. Relative abundance ported to have possible role in biogeochemical cycling of of these two species which eventually affects As -mobil- As therein [38]. However, except few recent documenta- ity and –toxicity in aquifers depends mainly on the pre- tions, the geomicrobiology of the vast As rich alluvial aqui- vailing redox conditions and inhabitant microbial fers of BRB remain largely unexplored [38–40]. activity [6–9]. The resident microorganisms in contami- Using anaerobic microcosms of subsurface As bearing nated aquifer involved in redox transformation of As are sediment of BRB we have recently demonstrated the considered to be the most precarious factors for As-release prominent role of Bacillus and other members of Firmi- into the groundwater [1, 10–13]. Eco-physiological, taxo- cutes in As/ Fe reduction and As mobilization [40]. Par- nomic, and molecular characterization of As transforming ticularly, strain IIIJ3-1 has been recently shown to play bacteria from As contaminated groundwater constitute an prominent role in As mobilization from sediments of - important component of subsurface geomicrobiology, par- BRB aquifer under NO3 amended anaerobic microcosm ticularly to better understand the potential of these organ- by the process of oxalate mediated mineral weathering isms in geo-cycling of As and their natural attenuation [41]. However, detailed molecular and taxonomic [13–16]. characterization of any of the As reducing taxa remained In recent years, several geomicrobiological studies have still elusive. In general, presence of Bacillus spp. in As- unanimously agreed upon the wide physiological role of contaminated groundwater of Bengal basin and other al- taxonomically diverse bacterial populations viz. Alpha-, luvial aquifers as well in various polluted environment Beta-, Gamma-proteobacteria, Firmicutes (Bacillus and rel- and their As transformation abilities have been well doc- atives), Actinobacteria, etc. influencing As bio-geochemistry umented [17, 42–45]. Dissimilatory reduction of As5+ by in alluvial groundwater [13, 17–23]. Arsenic transforming Bacillus spp. from soda lake, mono lake, mine environ- bacteria have been known to deploy an array of metabolic ment, and effluent plants (B. arsenicoselenatis, B. seleni- routes including lithotrophic to heterotrophic mechanisms tireducens, B. macyae and B. selenatarsenatis) and As3+ of As-oxidation [24], -reduction [25], -respiration [26], and oxidation (B. firmus L-148, Bacillus sp. PNKP-S2) have -methylation [27], affecting As -solubility, -speciation, and been described [36, 37, 46–49]. Metabolic versatility in- -mobilization. Heterotrophic As3+ oxidizing (HAO) and cluding the ability of dissimilatory reduction of Fe and 3+ chemoautotrophic As oxidizing (CAO) members have As or even SO4 by the members of this taxon could have been described to use As3+ as their electron source [28] strong influence of subsurface As mobility. Bacillus and dissimilatory As5+ respiring members (DARB) to use strains isolated from As contaminated sites of West Ben- As5+ as electron acceptor [29]. Among these organisms, gal (India) [36, 37], or Datong basin (China) [43] and DARB have been identified to play the crucial role in As Hetao basins (Mongolia) [50] were characterized. How- mobilization from As bearing host minerals in alluvial ever, till date, no pure culture Bacillus strain capable of Ghosh et al. BMC Microbiology (2020) 20:256 Page 3 of 20 dissimilatory As reduction has been isolated from the vast at optimal renaturation temperature (TOR) 69.95°C, and As contaminated area of North East India (covering the homoduplex of B. cereus ATCC 14579(T) was found to BRB) and studied for its taxonomic characterization, over- be 8°C (Supplementary Fig S1). Relative binding ratio in- all physiology and As biotransformation
Recommended publications
  • Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor.
    [Show full text]
  • <I>Euprymna Scolopes</I>
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-10-2009 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes Brian Shawn Wong Won University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cell Biology Commons, Molecular Biology Commons, and the Other Animal Sciences Commons Recommended Citation Wong Won, Brian Shawn, "Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes" (2009). Honors Scholar Theses. 67. https://opencommons.uconn.edu/srhonors_theses/67 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes . Author: Brian Shawn Wong Won Advisor: Spencer V. Nyholm Ph.D. University of Connecticut Honors Program Date submitted: 05/11/09 1 Abstract The subject of our study is the Hawaiian bobtail squid, Euprymna scolopes , which is known for its model symbiotic relationship with the bioluminescent bacterium, Vibrio fischeri . The interactions between E. scolopes and V. fischeri provide an exemplary model of the biochemical and molecular dynamics of symbiosis since both members can be cultivated separately and V. fischeri can be genetically modified 1. However, in a laboratory setting, the mortality of embryonic E. scolopes can be a recurrent problem. In many of these fatalities, the egg cases display a pink-hued biofilm, and rosy pigmentation has also been noted in the deaths of several adult squid. To identify the microbial components of this biofilm, we cloned and sequenced the 16s ribosomal DNA gene from pink, culture-grown isolates from infected egg cases and adult tissues.
    [Show full text]
  • Supplementary Figure Legends for Rands Et Al. 2019
    Supplementary Figure legends for Rands et al. 2019 Figure S1: Display of all 485 prophage genome maps predicted from Gram-Negative Firmicutes. Each horizontal line corresponds to an individual prophage shown to scale and color-coded for annotated phage genes according to the key displayed in the right- side Box. The left vertical Bar indicates the Bacterial host in a colour code. Figure S2: Projection of virome sequences from 183 human stool samples on A. Acidaminococcus intestini RYC-MR95, and B. Veillonella parvula UTDB1-3. The first panel shows the read coverage (Y-axis) across the complete Bacterial genome sequence (X-axis; with bp coordinates). Predicted prophage regions are marked with red triangles and magnified in the suBsequent panels. Virome reads projected outside of prophage prediction are listed in Table S4. Figure S3: The same display of virome sequences projected onto Bacterial genomes as in Figure S2, But for two different Negativicute species: A. Dialister Marseille, and B. Negativicoccus massiliensis. For non-phage peak annotations, see Table S4. Figure S4: Gene flanking analysis for the lysis module from all prophages predicted in all the different Bacterial clades (Table S2), a total of 3,462 prophages. The lysis module is generally located next to the tail module in Firmicute prophages, But adjacent to the packaging (terminase) module in Escherichia phages. 1 Figure S5: Candidate Mu-like prophage in the Negativicute Propionispora vibrioides. Phage-related genes (arrows indicate transcription direction) are coloured and show characteristics of Mu-like genome organization. Figure S6: The genome maps of Negativicute prophages harbouring candidate antiBiotic resistance genes MBL (top three Veillonella prophages) and tet(32) (bottom Selenomonas prophage remnant); excludes the ACI-1 prophage harbouring example characterised previously (Rands et al., 2018).
    [Show full text]
  • BEATRIZ JORRIN RUBIO.Pdf
    Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Ph.D Thesis Beatriz Jorrín Rubio Licenciada en Biología 2016 Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Departamento de Biotecnología Ph.D Thesis: Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Author: Beatriz Jorrín Rubio Licenciada en Biología Director: Juan Imperial Ródenas Licenciado en Biología Doctor en Biología Madrid, 2016 A mis padres A Sofía A mis hermanos “There’s the story, then there’s the real story, then there’s the story of how the story came to be told. Then there’s what you leave out of the story. Which is part of the story too.” Maddaddam Margaret Atwood RECONOCIMIENTOS Esta Tesis se ha desarrollado en el laboratorio de Genómica y Biotecnología de Bacterias Diazotróficas Asociadas con Plantas del Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Para el desarrollo de esta Tesis he contado con una beca UPM homologada financiada por el proyecto MICROGEN: Genómica Comparada Microbiana (Programa Consolider), que ha sido también el proyecto financiador del trabajo experimental. Quisiera reconocer la labor de aquellas personas que han contribuido al desarrollo y consecución de esta Tesis. Dr. Juan Imperial, por la dirección y supervisión de esta Tesis. Por ser un gran mentor y por enseñarme todo lo que sé. Dr. Manuel González Guerrero, por enseñarme los entresijos de la Ciencia y del trabajo en el laboratorio. Dra. Gisèle Laguerre, por su participación en el inicio de este proyecto y por facilitarnos el suelo P1 de Dijon.
    [Show full text]
  • UNIVERSITY of CALIFORNIA SANTA CRUZ Ecology and Molecular Genetics of Anoxygenic Photosynthetic Arsenite Oxidation by Arxa A
    UNIVERSITY OF CALIFORNIA SANTA CRUZ Ecology and molecular genetics of anoxygenic photosynthetic arsenite oxidation by arxA A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in MICROBIOLOGY AND ENVIRONMENTAL TOXICOLOGY by Jaime Hernandez-Maldonado June 2017 Dissertation of Jaime Hernandez-Maldonado is approved: ____________________________________ Professor Chad W. Saltikov ____________________________________ Professor. Ronald S. Oremland ____________________________________ Professor Jonathan P. Zehr ____________________________________ Professor Karen M. Ottemann ____________________________________ Tyrus Miller Vie Provost and Dean of Graduate Studies Copyright @ by Jaime Hernandez-Maldonado 2017 Table of contents List of figures .……………………..….………………….…...……..…………...… iv Abstract .……...…….……...……….….………………….……...……..………...... vi Dedication …...…....………………….….………………………...………...…..… viii Acknowledgements ...……………….….………………………..….…..………...... ix Chapter 1: Thesis overview ………...……….……….…………..……..…………... 1 Chapter 1: References ...…..…...…….….………………………..…….......……….. 7 Chapter 2: Microbial arsenic review ………………………………………………... 9 Chapter 2: References …………………….……………………….……..………... 30 Chapter 3: Microbial mediated light dependent arsenic cycle .…………….…….... 40 Chapter 3: References …………………….……………………….……..………... 77 Chapter 4: The genetic basis of anoxygenic photosynthetic arsenite oxidation …... 82 Chapter 4: References …………………….……………………….……..………... 91 Chapter 5: Comparative genomics
    [Show full text]
  • Genomes of Three Arsenic Metabolizing Bacteria Xue Chen
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations 2015 Genomes of Three Arsenic Metabolizing Bacteria Xue Chen Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Chen, X. (2015). Genomes of Three Arsenic Metabolizing Bacteria (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/398 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. GENOMES OF THREE ARSENIC METABOLIZING BACTERIA A Thesis Submitted to the Bayer School of Natural and Environmental Sciences Duquesne University In partial fulfillment of the requirements for the degree of Master of Science By Xue Chen August 2015 Copyright by Xue Chen 2015 ii GENOMES OF THREE ARSENIC METABOLIZING BACTERIA By Xue Chen Approved July 15, 2015 ________________________________ ________________________________ Dr. John F. Stolz Dr. Nancy Trun Professor of Biology Associate Professor of Biology (Committee Chair) (Committee Member) ________________________________ Dr. Partha Basu Professor of Chemistry & Biochemistry (Committee Member) ________________________________ ________________________________ Dr. Philip Reeder Dr. John F. Stolz Dean, Bayer School Director, CERE iii ABSTRACT GENOMES OF THREE ARSENIC METABOLIZING BACTERIA By Xue Chen August 2015 Dissertation
    [Show full text]
  • Abundant Taxa and Favorable Pathways in the Microbiome of Soda-Saline Lakes in Inner Mongolia
    Abundant Taxa and Favorable Pathways in the Microbiome of Soda-Saline Lakes in Inner Mongolia Dahe Zhao Institute of Microbiology Chinese Academy of Sciences Shengjie Zhang Institute of Microbiology Chinese Academy of Sciences Qiong Xue Institute of Microbiology Chinese Academy of Sciences Junyu Chen Institute of Microbiology Chinese Academy of Sciences Jian Zhou Institute of Microbiology Chinese Academy of Sciences Feiyue Cheng Institute of Microbiology Chinese Academy of Sciences Ming Li Institute of Microbiology Chinese Academy of Sciences Yaxin Zhu Institute of Microbiology Chinese Academy of Sciences Haiying Yu Beijing Institute of Genomics Chinese Academy of Sciences Songnian Hu Institute of Microbiology Chinese Academy of Sciences Yanning Zheng Institute of Microbiology Chinese Academy of Sciences Shuangjiang Liu Institute of Microbiology Chinese Academy of Sciences Hua Xiang ( [email protected] ) Institute of Microbiology Chinese Academy of Sciences https://orcid.org/0000-0003-0369-1225 Research Keywords: Soda-Saline lakes, Deep metagenomic sequencing, Microbiome, Abundant taxa, Sulfur cycling, Glucan metabolism Posted Date: December 18th, 2019 Page 1/30 DOI: https://doi.org/10.21203/rs.2.19124/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/30 Abstract Background: The chloride-carbonate-sulfate lakes (also called Soda-Saline lakes) are double-extreme ecological environments with high pH and high salinity values but can also exhibit high biodiversity and high productivity. The diversity of metabolic process that functioned well in such environments remains to be systematically investigated. Deep sequencing and species-level characterization of the microbiome in elemental cycling of carbon and sulfur will provide novel insights into the microbial adaptation in such saline-alkaline lakes.
    [Show full text]
  • Characterization of the Arsenite Oxidizer Aliihoeflea Sp. Strain 2WW
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279967867 Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin Article in Antonie van Leeuwenhoek · July 2015 DOI: 10.1007/s10482-015-0523-2 · Source: PubMed CITATIONS READS 7 125 4 authors: Anna Corsini Milena Colombo University of Milan University of Milan 29 PUBLICATIONS 372 CITATIONS 22 PUBLICATIONS 710 CITATIONS SEE PROFILE SEE PROFILE Gerard Muyzer Lucia Cavalca University of Amsterdam University of Milan 622 PUBLICATIONS 38,289 CITATIONS 141 PUBLICATIONS 1,859 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Vestfold Hills View project Microbial transformations of arsenic: Perspectives for biological removal of arsenic from water View project All content following this page was uploaded by Lucia Cavalca on 23 October 2015. The user has requested enhancement of the downloaded file. Antonie van Leeuwenhoek DOI 10.1007/s10482-015-0523-2 ORIGINAL PAPER Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin Anna Corsini . Milena Colombo . Gerard Muyzer . Lucia Cavalca Received: 15 May 2015 / Accepted: 29 June 2015 Ó Springer International Publishing Switzerland 2015 Abstract A heterotrophic arsenite-oxidizing bac- from natural groundwater, the removal efficiency was terium, strain 2WW, was isolated from a biofilter significantly higher (73 %) than for Pf-ferritin alone treating arsenic-rich groundwater. Comparative anal- (64 %). These results showed that arsenite oxidation ysis of 16S rRNA gene sequences showed that it was by strain 2WW combined with Pf-ferritin-based closely related (98.7 %) to the alphaproteobacterium material has a potential in arsenic removal from Aliihoeflea aesturari strain N8T.
    [Show full text]
  • Thesis, Dissertation
    THE MICROBIAL COMMUNITY ECOLOGY OF VARIOUS SYSTEMS FOR THE CULTIVATION OF ALGAL BIODIESEL by Tisza Ann Szeremy Bell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana January 2017 ©COPYRIGHT by Tisza Ann Szeremy Bell 2017 All Rights Reserved ii DEDICATION This body of work is dedicated to my beloved best friend, the epitome of compassion and strength, the wild thing I never saw sorry for itself, who lived in love, and never let me quit - even in her absence. Ryan Marie Patterson January 6, 1983 – October 9, 2011 i carry your heart with me(i carry it in my heart)i am never without it(anywhere i go you go,my dear;and whatever is done by only me is your doing,my darling) here is the deepest secret nobody knows (here is the root of the root and the bud of the bud and the sky of the sky of a tree called life;which grows higher than soul can hope or mind can hide) and this is the wonder that’s keeping the stars apart i carry your heart(i carry it in my heart) -EE Cummings iii ACKNOWLEDGEMENTS I would like to thank family and friends for their love, support, and encouragement. I would be nowhere in this world without my amazing parents, Susi and Richard, my brother Devon, and my partner Brian Guyer, and my faithful Puli, Jack, who have loved me, commiserated with me, and tolerated me on my worst days.
    [Show full text]
  • Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico 2 “Dead Zone” 3 4 J
    bioRxiv preprint doi: https://doi.org/10.1101/095471; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Metabolic roles of uncultivated bacterioplankton lineages in the northern Gulf of Mexico 2 “Dead Zone” 3 4 J. Cameron Thrash1*, Kiley W. Seitz2, Brett J. Baker2*, Ben Temperton3, Lauren E. Gillies4, 5 Nancy N. Rabalais5,6, Bernard Henrissat7,8,9, and Olivia U. Mason4 6 7 8 1. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA 9 2. Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port 10 Aransas, TX, USA 11 3. School of Biosciences, University of Exeter, Exeter, UK 12 4. Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, 13 FL, USA 14 5. Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, 15 LA, USA 16 6. Louisiana Universities Marine Consortium, Chauvin, LA USA 17 7. Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 18 13288 Marseille, France 19 8. INRA, USC 1408 AFMB, F-13288 Marseille, France 20 9. Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia 21 22 *Correspondence: 23 JCT [email protected] 24 BJB [email protected] 25 26 27 28 Running title: Decoding microbes of the Dead Zone 29 30 31 Abstract word count: 250 32 Text word count: XXXX 33 34 Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/095471; this version posted June 12, 2017.
    [Show full text]
  • Post. Mikrobiol. 4-2013.Indb
    POLSKIE TOWARZYSTWO MIKROBIOLOGÓW Kwartalnik Tom 52 Zeszyt 2•2013 KWIECIE¡ – CZERWIEC CODEN: PMKMAV 52 (2) Advances in Microbiology 2013 POLSKIE TOWARZYSTWO MIKROBIOLOGÓW Kwartalnik Tom 52 Zeszyt 3•2013 LIPIEC – WRZESIE¡ CODEN: PMKMAV 52 (3) Advances in Microbiology 2013 POLSKIE TOWARZYSTWO MIKROBIOLOGÓW Kwartalnik Tom 52 Zeszyt 4•2013 PAèDZIERNIK – GRUDZIE¡ CODEN: PMKMAV 52 (4) Advances in Microbiology 2013 Index Copernicus ICV = 9,52 (2012) Impact Factor ISI = 0,151 (2012) Punktacja MNiSW = 15,00 (2012) http://www.pm.microbiology.pl RADA REDAKCYJNA JACEK BIELECKI (Uniwersytet Warszawski), RYSZARD CHRÓST (Uniwersytet Warszawski), JERZY DŁUGOŃSKI (Uniwersytet Łódzki), DANUTA DZIERŻANOWSKA (Centrum Zdrowia Dziecka), EUGENIA GOSPODAREK (Collegium Medicum UMK w Bydgoszczy), JERZY HREBENDA (Uniwersytet Warszawski), WALERIA HRYNIEWICZ (Narodowy Instytut Leków), MAREK JAKÓBISIAK (Warszawski Uniwersytet Medyczny), ANDRZEJ PASZEWSKI (Instytut Biochemii i Biofizyki PAN), ANDRZEJ PIEKAROWICZ (Uniwersytet Warszawski), ANTONI RÓŻALSKI (Uniwersytet Łódzki), ALEKSANDRA SKŁODOWSKA (Uniwersytet Warszawski), BOHDAN STAROŚCIAK (Warszawski Uniwersytet Medyczny), BOGUSŁAW SZEWCZYK (Uniwersytet Gdański), ELŻBIETA TRAFNY (Wojskowy Instytut Higieny i Epidemiologii), STANISŁAWA TYLEWSKA-WIERZBANOWSKA (Państwowy Zakład Higieny), GRZEGORZ WĘGRZYN (Uniwersytet Gdański), PIOTR ZIELENKIEWICZ (Uniwersytet Warszawski) REDAKCJA JACEK BIELECKI (redaktor naczelny), JERZY HREBENDA (zastępca), BOHDAN STAROŚCIAK (sekretarz), MARTA BRZÓSTKOWSKA (korekta tekstów angielskich)
    [Show full text]
  • Metagenomic Study of Red Biofilms from Diamante Lake Reveals Ancient Arsenic Bioenergetics in Haloarchaea
    The ISME Journal (2016) 10, 299–309 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea Nicolás Rascovan1, Javier Maldonado2, Martín P Vazquez1 and María Eugenia Farías2 1Instituto de Agrobiotecnología de Rosario (INDEAR), Ocampo 210 bis (2000), Predio CCT Rosario, Santa Fe, Argentina and 2Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient.
    [Show full text]