Extraordinary Phylogenetic Diversity and Metabolic Versatility in Aquifer Sediment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor. -
Sulfite Dehydrogenases in Organotrophic Bacteria : Enzymes
Sulfite dehydrogenases in organotrophic bacteria: enzymes, genes and regulation. Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fachbereich Biologie vorgelegt von Sabine Lehmann Tag der mündlichen Prüfung: 10. April 2013 1. Referent: Prof. Dr. Bernhard Schink 2. Referent: Prof. Dr. Andrew W. B. Johnston So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das möglichste getan hat. (Johann Wolfgang von Goethe, Italienische Reise, 1787) DANKSAGUNG An dieser Stelle möchte ich mich herzlich bei folgenden Personen bedanken: . Prof. Dr. Alasdair M. Cook (Universität Konstanz, Deutschland), der mir dieses Thema und seine Laboratorien zur Verfügung stellte, . Prof. Dr. Bernhard Schink (Universität Konstanz, Deutschland), für seine spontane und engagierte Übernahme der Betreuung, . Prof. Dr. Andrew W. B. Johnston (University of East Anglia, UK), für seine herzliche und bereitwillige Aufnahme in seiner Arbeitsgruppe, seiner engagierten Unter- stützung, sowie für die Übernahme des Koreferates, . Prof. Dr. Frithjof C. Küpper (University of Aberdeen, UK), für seine große Hilfsbereitschaft bei der vorliegenden Arbeit und geplanter Manuskripte, als auch für die mentale Unterstützung während der letzten Jahre! Desweiteren möchte ich herzlichst Dr. David Schleheck für die Übernahme des Koreferates der mündlichen Prüfung sowie Prof. Dr. Alexander Bürkle, für die Übernahme des Prüfungsvorsitzes sowie für seine vielen hilfreichen Ratschläge danken! Ein herzliches Dankeschön geht an alle beteiligten Arbeitsgruppen der Universität Konstanz, der UEA und des SAMS, ganz besonders möchte ich dabei folgenden Personen danken: . Dr. David Schleheck und Karin Denger, für die kritische Durchsicht dieser Arbeit, der durch und durch sehr engagierten Hilfsbereitschaft bei Problemen, den zahlreichen wissenschaftlichen Diskussionen und für die aufbauenden Worte, . -
Inactivation Mechanisms of Alternative Food Processes on Escherichia Coli O157:H7
INACTIVATION MECHANISMS OF ALTERNATIVE FOOD PROCESSES ON ESCHERICHIA COLI O157:H7 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Aaron S. Malone, M.S. ***** The Ohio State University 2009 Dissertation Committee: Approved by Professor Ahmed E. Yousef, Adviser Professor Polly D. Courtney ___________________________________ Professor Tina M. Henkin Adviser Food Science and Nutrition Professor Robert Munson ABSTRACT Application of high pressure (HP) in food processing results in a high quality and safe product with minimal impact on its nutritional and organoleptic attributes. This novel technology is currently being utilized within the food industry and much research is being conducted to optimize the technology while confirming its efficacy. Escherichia coli O157:H7 is a well studied foodborne pathogen capable of causing diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. The importance of eliminating E. coli O157:H7 from food systems, especially considering its high degree of virulence and resistance to environmental stresses, substantiates the need to understand the physiological resistance of this foodborne pathogen to emerging food preservation methods. The purpose of this study is to elucidate the physiological mechanisms of processing resistance of E. coli O157:H7. Therefore, resistance of E. coli to HP and other alternative food processing technologies, such as pulsed electric field, gamma radiation, ultraviolet radiation, antibiotics, and combination treatments involving food- grade additives, were studied. Inactivation mechanisms were investigated using molecular biology techniques including DNA microarrays and knockout mutants, and quantitative viability assessment methods. The results of this research highlighted the importance of one of the most speculated concepts in microbial inactivation mechanisms, the disruption of intracellular ii redox homeostasis. -
Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation Into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N
plants Review Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N Tadakatsu Yoneyama 1,* and Akira Suzuki 2,* 1 Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan 2 Institut Jean-Pierre Bourgin, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), UMR1318, RD10, F-78026 Versailles, France * Correspondence: [email protected] (T.Y.); [email protected] (A.S.) Received: 3 September 2020; Accepted: 29 September 2020; Published: 2 October 2020 Abstract: Although the nitrate assimilation into amino acids in photosynthetic leaf tissues is active under the light, the studies during 1950s and 1970s in the dark nitrate assimilation provided fragmental and variable activities, and the mechanism of reductant supply to nitrate assimilation in darkness remained unclear. 15N tracing experiments unraveled the assimilatory mechanism of nitrogen from nitrate into amino acids in the light and in darkness by the reactions of nitrate and nitrite reductases, glutamine synthetase, glutamate synthase, aspartate aminotransferase, and asparagine synthetase. Nitrogen assimilation in illuminated leaves and non-photosynthetic roots occurs either in the redundant way or in the specific manner regarding the isoforms of nitrogen assimilatory enzymes in their cellular compartments. The electron supplying systems necessary to the enzymatic reactions share in part a similar electron donor system at the expense of carbohydrates in both leaves and roots, but also distinct reducing systems regarding the reactions of Fd-nitrite reductase and Fd-glutamate synthase in the photosynthetic and non-photosynthetic organs. -
Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis
International Journal of Molecular Sciences Article Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis Álvaro Costa-Broseta , MariCruz Castillo and José León * Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain; [email protected] (Á.C.-B.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +34-963877882 Received: 15 September 2020; Accepted: 29 September 2020; Published: 1 October 2020 Abstract: Plant growth is the result of the coordinated photosynthesis-mediated assimilation of oxidized forms of C, N and S. Nitrate is the predominant N source in soils and its reductive assimilation requires the successive activities of soluble cytosolic NADH-nitrate reductases (NR) and plastid stroma ferredoxin-nitrite reductases (NiR) allowing the conversion of nitrate to nitrite and then to ammonium. However, nitrite, instead of being reduced to ammonium in plastids, can be reduced to nitric oxide (NO) in mitochondria, through a process that is relevant under hypoxic conditions, or in the cytoplasm, through a side-reaction catalyzed by NRs. We use a loss-of-function approach, based on CRISPR/Cas9-mediated genetic edition, and gain-of-function, using transgenic overexpressing HA-tagged Arabidopsis NiR1 to characterize the role of this enzyme in controlling plant growth, and to propose that the NO-related post-translational modifications, by S-nitrosylation of key C residues, might inactivate NiR1 under stress conditions. NiR1 seems to be a key target in regulating nitrogen assimilation and NO homeostasis, being relevant to the control of both plant growth and performance under stress conditions. -
Metabolic Versatility of the Nitrite-Oxidizing Bacterium Nitrospira
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185504; this version posted July 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira 2 marina and its proteomic response to oxygen-limited conditions 3 Barbara Bayer1*, Mak A. Saito2, Matthew R. McIlvin2, Sebastian Lücker3, Dawn M. Moran2, 4 Thomas S. Lankiewicz1, Christopher L. Dupont4, and Alyson E. Santoro1* 5 6 1 Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, 7 CA, USA 8 2 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, 9 Woods Hole, MA, USA 10 3 Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands 11 4 J. Craig Venter Institute, La Jolla, CA, USA 12 13 *Correspondence: 14 Barbara Bayer, Department of Ecology, Evolution and Marine Biology, University of California, 15 Santa Barbara, CA, USA. E-mail: [email protected] 16 Alyson E. Santoro, Department of Ecology, Evolution and Marine Biology, University of 17 California, Santa Barbara, CA, USA. E-mail: [email protected] 18 19 Running title: Genome and proteome of Nitrospira marina 20 21 Competing Interests: The authors declare that they have no conflict of interest. 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185504; this version posted July 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Supplementary Material Title Comparative Proteomic Analysis Of
Supplementary Material Title Comparative proteomic analysis of wild-type Physcomitrella patens and an OPDA-deficient Physcomitrella patens mutant with disrupted PpAOS1 and PpAOS2 genes after wounding Authors Weifeng Luoa, Setsuko Komatsub, Tatsuya Abea, Hideyuki Matsuuraa, and Kosaku Takahashia,c* Affiliations aResearch Faculty of Agriculture, Hokkaido University, Sapporo 606-8589, Japan bDepartment of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan cDepartment of Nutritional Science, Faculty of Applied BioScience, Tokyo University of Agriculture, Tokyo 165-8502, Japan. *To whom correspondence should be addressed: Tel.: +81-3-5477-2679; E-mail: [email protected]. Supplementary Fig. S1. Fig. S1. Disruption of PpAOS1 and PpAOS2 genes in P. p a te ns . A, Genomic structures of PpAOS1 and PpAOS2 in the wild-type and targeted PpAOS1 and PpAOS2 knock-out mutants (A5, A19, and A22). The npt II and aph IV expression cassettes were inserted in A5, A19, and A22 strains. B, Genomic PCR data of wild-type, and A5, A19 and A22 strains. P. patens genomic DNA was isolated from protonemata by the CTAB method (Nishiyama et al., Ref. 32). PCR was performed in 50 µL of a reaction mixture containing 1 µL of genomic DNA solution, 1.5 µL of each primer (5 µM), 25 µL of KOD One PCR Master Mix (Toyobo, Japan), and 21 µL of Milli-Q water. PCR was conducted with the following conditions: 30 cycles of 98°C for 10 s, 58°C for 5 s, and 68°C for 15 s. -
DNA and RNA-SIP Reveal Nitrospira Spp. As Key Drivers of Nitrification in 2 Groundwater-Fed Biofilters
bioRxiv preprint doi: https://doi.org/10.1101/703868; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 DNA and RNA-SIP reveal Nitrospira spp. as key drivers of nitrification in 2 groundwater-fed biofilters 3 4 Running title: Nitrospira drives nitrification in groundwater-fed biofilters 5 Authors: Arda Gülay1,4*, Jane Fowler1, Karolina Tatari1, Bo Thamdrup3, Hans-Jørgen Albrechtsen1, 6 Waleed Abu Al-Soud2, Søren J. Sørensen2 and Barth F. Smets1* 7 1 Department of Environmental Engineering, Technical University of Denmark, Building 113, Miljøvej, 2800 8 Kgs Lyngby, Denmark. Phone: +45 45251600. FAX: +45 45932850. e-mail: [email protected], jfow@ 9 env.dtu.dk, [email protected], [email protected]* 10 2 Department of Biology, University of Copenhagen, Universitetsparken 15, Building 1, 2100 Copenhagen, 11 Denmark. Phone: +45 35323710. FAX: +45 35322128. e-mail: [email protected], [email protected] 12 3 Nordic Center for Earth Evolution, Department of Biology, University of Southern Denmark, Campusvej 55, 13 5230 Odense, Denmark. Phone: +45 35323710. FAX: +45 35322128. e-mail: [email protected] 14 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States, 15 26 Oxford St, Cambridge, MA 02138, Phone: +1 (617)4951564. e-mail: [email protected] 16 17 *Corresponding authors 18 Keywords: Nitrification, comammox, Nitrospira, DNA SIP, RNA SIP 19 bioRxiv preprint doi: https://doi.org/10.1101/703868; this version posted July 16, 2019. -
The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. -
The DMSO Reductase Family of Microbial Molybdenum Enzymes Alastair G
SHOWCASE ON RESEARCH The DMSO Reductase Family of Microbial Molybdenum Enzymes Alastair G. McEwan and Ulrike Kappler Centre for Metals in Biology, School of Molecular and Microbial Sciences, University of Queensland, QLD 4072 Molybdenum is the only element in the second row of led to a division of the oxotransferases into the sulfite transition metals which has a defined role in biology. It dehydrogenase and the dimethylsulfoxide (DMSO) exhibits redox states of (VI), (V) and (IV) within a reductase families (Fig. 1) (4). The Mo hydroxylases biologically-relevant range of redox potentials and is and oxotransferases can act either as dehydrogenases capable of catalysing both oxygen atom transfer and or reductases in catalysis. This reaction can be proton/electron transfer. Apart from nitrogenase, all summarised by the general scheme: + - enzymes containing molybdenum have an active site X + H2O D X=O + 2H + 2e composed of a molybdenum ion coordinated by one or During this process the Mo ion cycles between the two ene-dithiolate (dithiolene) groups that arise from (IV) and (VI) oxidation states with electrons being an unusual organic moiety known as the pterin transferred to or from an electron transfer partner or molybdenum cofactor or pyranopterin (1,2). The substrate. Experiments with xanthine dehydrogenase mononuclear molybdenum enzymes exhibit remarkable using 18O-labelled water have confirmed that the diversity of function and this is in part due to variations oxygen is incorporated into the product during at the Mo active site that are additional to the common substrate oxidation and this distinguishes the core structure. Prior to the appearance of X-ray crystal mononuclear molybdoenzymes from monoxygenases structures of molybdenum enzymes, EPR spectroscopy, where molecular oxygen rather than water acts as an X-ray absorption fine structure spectroscopy (EXAFS) oxygen atom donor (5). -
Indications for Enzymatic Denitriication to N2O at Low Ph in an Ammonia
The ISME Journal (2019) 13:2633–2638 https://doi.org/10.1038/s41396-019-0460-6 BRIEF COMMUNICATION Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon 1,2 1 3 4 1 4 Man-Young Jung ● Joo-Han Gwak ● Lena Rohe ● Anette Giesemann ● Jong-Geol Kim ● Reinhard Well ● 5 2,6 2,6,7 1 Eugene L. Madsen ● Craig W. Herbold ● Michael Wagner ● Sung-Keun Rhee Received: 19 February 2019 / Revised: 5 May 2019 / Accepted: 27 May 2019 / Published online: 21 June 2019 © The Author(s) 2019. This article is published with open access Abstract Nitrous oxide (N2O) is a key climate change gas and nitrifying microbes living in terrestrial ecosystems contribute significantly to its formation. Many soils are acidic and global change will cause acidification of aquatic and terrestrial ecosystems, but the effect of decreasing pH on N2O formation by nitrifiers is poorly understood. Here, we used isotope-ratio mass spectrometry to investigate the effect of acidification on production of N2O by pure cultures of two ammonia-oxidizing archaea (AOA; Nitrosocosmicus oleophilus and Nitrosotenuis chungbukensis) and an ammonia-oxidizing bacterium (AOB; Nitrosomonas 15 europaea). For all three strains acidification led to increased emission of N2O. However, changes of N site preference (SP) 1234567890();,: 1234567890();,: values within the N2O molecule (as indicators of pathways for N2O formation), caused by decreasing pH, were highly different between the tested AOA and AOB. While acidification decreased the SP value in the AOB strain, SP values increased to a maximum value of 29‰ in N. oleophilus. In addition, 15N-nitrite tracer experiments showed that acidification boosted nitrite transformation into N2O in all strains, but the incorporation rate was different for each ammonia oxidizer. -
Supplementary Figure Legends for Rands Et Al. 2019
Supplementary Figure legends for Rands et al. 2019 Figure S1: Display of all 485 prophage genome maps predicted from Gram-Negative Firmicutes. Each horizontal line corresponds to an individual prophage shown to scale and color-coded for annotated phage genes according to the key displayed in the right- side Box. The left vertical Bar indicates the Bacterial host in a colour code. Figure S2: Projection of virome sequences from 183 human stool samples on A. Acidaminococcus intestini RYC-MR95, and B. Veillonella parvula UTDB1-3. The first panel shows the read coverage (Y-axis) across the complete Bacterial genome sequence (X-axis; with bp coordinates). Predicted prophage regions are marked with red triangles and magnified in the suBsequent panels. Virome reads projected outside of prophage prediction are listed in Table S4. Figure S3: The same display of virome sequences projected onto Bacterial genomes as in Figure S2, But for two different Negativicute species: A. Dialister Marseille, and B. Negativicoccus massiliensis. For non-phage peak annotations, see Table S4. Figure S4: Gene flanking analysis for the lysis module from all prophages predicted in all the different Bacterial clades (Table S2), a total of 3,462 prophages. The lysis module is generally located next to the tail module in Firmicute prophages, But adjacent to the packaging (terminase) module in Escherichia phages. 1 Figure S5: Candidate Mu-like prophage in the Negativicute Propionispora vibrioides. Phage-related genes (arrows indicate transcription direction) are coloured and show characteristics of Mu-like genome organization. Figure S6: The genome maps of Negativicute prophages harbouring candidate antiBiotic resistance genes MBL (top three Veillonella prophages) and tet(32) (bottom Selenomonas prophage remnant); excludes the ACI-1 prophage harbouring example characterised previously (Rands et al., 2018).