The DMSO Reductase Family of Microbial Molybdenum Enzymes Alastair G

Total Page:16

File Type:pdf, Size:1020Kb

The DMSO Reductase Family of Microbial Molybdenum Enzymes Alastair G SHOWCASE ON RESEARCH The DMSO Reductase Family of Microbial Molybdenum Enzymes Alastair G. McEwan and Ulrike Kappler Centre for Metals in Biology, School of Molecular and Microbial Sciences, University of Queensland, QLD 4072 Molybdenum is the only element in the second row of led to a division of the oxotransferases into the sulfite transition metals which has a defined role in biology. It dehydrogenase and the dimethylsulfoxide (DMSO) exhibits redox states of (VI), (V) and (IV) within a reductase families (Fig. 1) (4). The Mo hydroxylases biologically-relevant range of redox potentials and is and oxotransferases can act either as dehydrogenases capable of catalysing both oxygen atom transfer and or reductases in catalysis. This reaction can be proton/electron transfer. Apart from nitrogenase, all summarised by the general scheme: + - enzymes containing molybdenum have an active site X + H2O D X=O + 2H + 2e composed of a molybdenum ion coordinated by one or During this process the Mo ion cycles between the two ene-dithiolate (dithiolene) groups that arise from (IV) and (VI) oxidation states with electrons being an unusual organic moiety known as the pterin transferred to or from an electron transfer partner or molybdenum cofactor or pyranopterin (1,2). The substrate. Experiments with xanthine dehydrogenase mononuclear molybdenum enzymes exhibit remarkable using 18O-labelled water have confirmed that the diversity of function and this is in part due to variations oxygen is incorporated into the product during at the Mo active site that are additional to the common substrate oxidation and this distinguishes the core structure. Prior to the appearance of X-ray crystal mononuclear molybdoenzymes from monoxygenases structures of molybdenum enzymes, EPR spectroscopy, where molecular oxygen rather than water acts as an X-ray absorption fine structure spectroscopy (EXAFS) oxygen atom donor (5). and biochemical analysis had identified differences The last decade has seen a resurgence of interest in Mo between the molybdenum hydroxylases, exemplified by enzymes as a consequence of the new structural xanthine dehydrogenase, and those enzymes that information and also because the remarkable mostly functioned as 'oxotransferases' (3). The former bioenergetic diversity of microorganisms is possess a cyanolysable sulfido group at the Mo active underpinned to a large degree by Mo enzymes (6). site, while the latter are insensitive to cyanide and may Molybdenum hydroxylases and examples of the sulfite possess oxo ligands (Fig. 1). Since 1995, X-ray crystal dehydrogenase family can be found in all three domains s t r u c t u r e s h a v e r a i s e d t h e u n d e r s t a n d i n g o f of life (4). In contrast, the DMSO reductase family molybdenum enzymes to a much higher level and have appears to be restricted to bacteria and archaea (5). Xanthine dehydrogenase family Sulfite dehydrogenase family F i g . 1 . S t r u c t u r e o f t h e m o l y b d e n u m c o f a c t o r s found in the 3 families of mononuclear molybdenum enzymes. O n l y t h e p y r a n o p t e r i n m o i e t i e s o f t h e o r g a n i c c o m p o n e n t o f t h e molybdenum cofactors are shown. For further details see http://metallo.scripps.edu/ PROMISE/MOCOMAIN. html DMSO dehydrogenase family Vol 35 No 3 December 2004 AUSTRALIAN BIOCHEMIST Page 17 DMSO Reductase: SHOWCASE ON Microbial Molybdenum Enzymes RESEARCH Table 1. Enzymes of the DMSO reductase family for which a crystal structure has been determined. Enzyme Type Reaction Source PDB DMSO reductase III (CH ) SO + 2e- + 2H+ " (CH ) S + H O Rhodobacter sphaeroides 1EU1 3 2 3 2 2 Rhodobacter capsulatus 4DMR R e s p i r a t o r y n i t r a t e II NO - + 2e- + 2H+ " NO - + H O Escherichia coli 1Q16 3 2 2 reductase (Nar) 1R27 P e r i p l a s m i c n i t r a t e I NO - + 2e- + 2H+ " NO - + H O Desulfovibrio desulfuricans 2NAP 3 2 2 reductase (Nap) TMAO reductase III (CH ) NO + 2e- + 2H+ " (CH ) N + H O Shewanella massilia 1TMO 3 3 3 3 2 Formate dehydrogenase-H I HCOOH " CO + 2e- + 2H+ Escherichia coli 1AA6 2 Formate dehydrogenase-N I HCOOH " CO + 2e- + 2H+ Escherichia coli 1KQF 2 Arsenite oxidase I AsO - + H O " AsO - + 2e- + 2H+ Alcaligenes faecalis 1G8K 2 2 3 M o l y b d e n u m E n z y m e s i n M i c r o b i a l referred to the PROMISE website (http://metallo.scripps. Respiratory Processes edu/PROMISE/MOCOMAIN.html, accessed October 2004). Two bioenergetic features which distinguish Crystal structures of seven molybdenum enzymes of prokaryotes from eukaryotes are the ability to grow the DMSO reductase family (Table 1) have revealed u n d e r a n o x i c c o n d i t i o n s u s i n g o x i d a t i v e that they have a similar tertiary structure. The phosphorylation (anaerobic respiration) and the ability prototype is DMSO reductase from Rhodobacter to generate energy by respiration using inorganic sphaeroides which contains about 40% α-helix and 20% compounds as electron donors (lithotrophy). Mo β-sheet and is composed of four domains that are enzymes of the DMSO reductase family are pivotal in folded around the Moco (8). Domains I, II and III these two bioenergetic processes (Table 1). Examples define a 'cup' shape with the Mo ion located at the of electron acceptors reduced by molybdenum base. Domain IV forms the bottom of the cup and enzymes in anaerobic respiration include nitrate, closes the cleft formed by the other domains. Domains DMSO, TMAO (trimethylamine-N-oxide), selenate, II and III form a series of hydrogen bond interactions arsenate, (per)chlorate, polysulfide and thiosulfate, with the guanosine moiety of the GMP attached to the while electron donors oxidised by molybdenum so-called P-pterin and Q-Pterin respectively, while enzymes during lithotrophic growth include nitrite, Domain IV forms extensive interactions with the arsenite and dimethylsulfide. pyranopterin moieties (Fig. 2). Structure of Molybdenum Enzymes of the Active Site Structure and Mechanism DMSO Reductase Family The four thiolates of the two pyranopterins In all enzymes of the DMSO reductase family it has coordinate the Mo ion in a distorted square planar been found that the Mo is ligated by four thiolates that structure, but additional ligands to the Mo form a arise from two pyranopterin molecules (Fig. 1). The trigonal cap and these are in part responsible for the pyranopterin is a reduced pterin derivative with a variation in the properties of Mo enzymes (Fig. 1). dihydroxybutyl side-chain containing a cis-(ene)- With the exception of arsenite oxidase, the Mo ion is dithiolate (dithiolene) group (1). With the exception of also coordinated by an amino acid side chain (2). The the Escherichia coli respiratory nitrate reductase (NarG) presence of different amino acid side chains in (7), crystal structures have shown that pyranopterin enzymes correlates with their phylogenetic relationship adopts a tryclic structure in which the pyran ring forms and this leads to their classification as Type I (cysteine an O-acetal linkage via a hydroxyl of the dihydroxybutyl or selenocysteine ligand), Type II (aspartate ligand) or side chain (2). In enzymes of the DMSO reductase Type III (serine ligand) (Table 1) (9). In addition to the family, the pyranopterin is in a dinucleotide form i.e. the amino acid ligand, each enzyme has an oxygen ligand pyranopterin phosphate is linked to a GMP molecule. In in the form of an oxo-, hydroxo- or aqua-group. One contrast, the pyranopterin in enzymes of the sulfite function of the amino acid ligand is to help 'tune' the dehydrogenase and xanthine dehydrogenase family is Mo centre to a redox potential which is appropriate for not in a dinucleotide form and ends with a single catalysis. It has been shown that in DMSO reductase phosphate residue. For further details of variations in mutation of the serine ligand to a cysteine results in a molybdenum cofactor (Moco) structure the reader is lowered mid-point potential of the MoV/IV couple Page 18 AUSTRALIAN BIOCHEMIST Vol 35 No 3 December 2004 SHOWCASE ON DMSO Reductase: RESEARCH Microbial Molybdenum Enzymes compared to wild-type enzyme, while the MoVI/V the distance from the Fe-S cluster associated with redox couple had a higher potential (10). This S147 C Domain I of the Mo-containing subunit to the edge of mutant form of DMSO reductase has almost no a pyranopterin is close enough (7Å in the case of activity towards S-oxides, and reduced activity respiratory nitrate reductase) for electron transfer at a towards some N-oxides, but higher activity towards rate sufficient for enzyme catalysis as defined by other N-oxides such as adenine N-oxide. Another Dutton's Ruler (15). For Type III enzymes (Table 1) important function of the amino acid side chains is to that lack this Fe-S cluster, the electron transfer control the bond length of the oxygen ligand to the pathway to the Mo ion is not known. The majority of Mo centre since Mo-S bonds exhibit a greater degree enzymes of the DMSO reductase family are connected of covalency which causes a weakening of Mo=O to respiratory or photosynthetic electron transfer bonds.
Recommended publications
  • Resolving Electron Transport Pathways in the Selenate Respiring Bacterium Thauera Selenatis
    RESOLVING ELECTRON TRANSPORT PATHWAYS IN THE SELENATE RESPIRING BACTERIUM THAUERA SELENATIS. Submitted by Elisabeth Clare Lowe To the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences, July 2008. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Elisabeth Clare Lowe Acknowledgements I would like to thank Clive Butler for all his help, support, encouragement and enthusiasm, especially during the move to Exeter and my last few months in the lab. Thanks to Ian Singleton for help and enthusiasm during my time in Newcastle. I also owe huge thanks to everyone in Team Butler, past and present, Carys Watts for helping me get started and all the help with the Thauera preps, Auntie Helen for being brilliant, Jim Leaver for rugby, beer, tea-offs and 30 hour growth curves and Lizzy Dridge for being a great friend and scientific team member, in and out of the lab. Thanks also to everyone in M3013 at the start of my PhD and everyone in the Biocat at the end, for lots of help, borrowing of equipment and most importantly, tea. Thanks to AFP for help, tea breaks and motivation, especially during the writing period. Thank you to everyone who has been generous with their time and equipment, namely Prof.
    [Show full text]
  • Selenium Reduction by Shigella Fergusonii Strain Tb42616 and Pantoea Vagans Strain Ewb32213-2 in Bioreactor Systems
    University of Kentucky UKnowledge Theses and Dissertations--Civil Engineering Civil Engineering 2019 BIOLOGICAL SELENIUM CONTROL: SELENIUM REDUCTION BY SHIGELLA FERGUSONII STRAIN TB42616 AND PANTOEA VAGANS STRAIN EWB32213-2 IN BIOREACTOR SYSTEMS Yuxia Ji University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-4866-4856 Digital Object Identifier: https://doi.org/10.13023/etd.2019.393 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Ji, Yuxia, "BIOLOGICAL SELENIUM CONTROL: SELENIUM REDUCTION BY SHIGELLA FERGUSONII STRAIN TB42616 AND PANTOEA VAGANS STRAIN EWB32213-2 IN BIOREACTOR SYSTEMS" (2019). Theses and Dissertations--Civil Engineering. 91. https://uknowledge.uky.edu/ce_etds/91 This Doctoral Dissertation is brought to you for free and open access by the Civil Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Civil Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Sulfite Dehydrogenases in Organotrophic Bacteria : Enzymes
    Sulfite dehydrogenases in organotrophic bacteria: enzymes, genes and regulation. Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fachbereich Biologie vorgelegt von Sabine Lehmann Tag der mündlichen Prüfung: 10. April 2013 1. Referent: Prof. Dr. Bernhard Schink 2. Referent: Prof. Dr. Andrew W. B. Johnston So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das möglichste getan hat. (Johann Wolfgang von Goethe, Italienische Reise, 1787) DANKSAGUNG An dieser Stelle möchte ich mich herzlich bei folgenden Personen bedanken: . Prof. Dr. Alasdair M. Cook (Universität Konstanz, Deutschland), der mir dieses Thema und seine Laboratorien zur Verfügung stellte, . Prof. Dr. Bernhard Schink (Universität Konstanz, Deutschland), für seine spontane und engagierte Übernahme der Betreuung, . Prof. Dr. Andrew W. B. Johnston (University of East Anglia, UK), für seine herzliche und bereitwillige Aufnahme in seiner Arbeitsgruppe, seiner engagierten Unter- stützung, sowie für die Übernahme des Koreferates, . Prof. Dr. Frithjof C. Küpper (University of Aberdeen, UK), für seine große Hilfsbereitschaft bei der vorliegenden Arbeit und geplanter Manuskripte, als auch für die mentale Unterstützung während der letzten Jahre! Desweiteren möchte ich herzlichst Dr. David Schleheck für die Übernahme des Koreferates der mündlichen Prüfung sowie Prof. Dr. Alexander Bürkle, für die Übernahme des Prüfungsvorsitzes sowie für seine vielen hilfreichen Ratschläge danken! Ein herzliches Dankeschön geht an alle beteiligten Arbeitsgruppen der Universität Konstanz, der UEA und des SAMS, ganz besonders möchte ich dabei folgenden Personen danken: . Dr. David Schleheck und Karin Denger, für die kritische Durchsicht dieser Arbeit, der durch und durch sehr engagierten Hilfsbereitschaft bei Problemen, den zahlreichen wissenschaftlichen Diskussionen und für die aufbauenden Worte, .
    [Show full text]
  • Inactivation Mechanisms of Alternative Food Processes on Escherichia Coli O157:H7
    INACTIVATION MECHANISMS OF ALTERNATIVE FOOD PROCESSES ON ESCHERICHIA COLI O157:H7 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Aaron S. Malone, M.S. ***** The Ohio State University 2009 Dissertation Committee: Approved by Professor Ahmed E. Yousef, Adviser Professor Polly D. Courtney ___________________________________ Professor Tina M. Henkin Adviser Food Science and Nutrition Professor Robert Munson ABSTRACT Application of high pressure (HP) in food processing results in a high quality and safe product with minimal impact on its nutritional and organoleptic attributes. This novel technology is currently being utilized within the food industry and much research is being conducted to optimize the technology while confirming its efficacy. Escherichia coli O157:H7 is a well studied foodborne pathogen capable of causing diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. The importance of eliminating E. coli O157:H7 from food systems, especially considering its high degree of virulence and resistance to environmental stresses, substantiates the need to understand the physiological resistance of this foodborne pathogen to emerging food preservation methods. The purpose of this study is to elucidate the physiological mechanisms of processing resistance of E. coli O157:H7. Therefore, resistance of E. coli to HP and other alternative food processing technologies, such as pulsed electric field, gamma radiation, ultraviolet radiation, antibiotics, and combination treatments involving food- grade additives, were studied. Inactivation mechanisms were investigated using molecular biology techniques including DNA microarrays and knockout mutants, and quantitative viability assessment methods. The results of this research highlighted the importance of one of the most speculated concepts in microbial inactivation mechanisms, the disruption of intracellular ii redox homeostasis.
    [Show full text]
  • Investigation of the Redox Centres of Periplasmic Selenate Reductase
    Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy Elizabeth J Dridge, Carys A Watts, Brian J Jepson, Kirsty Line, Joanne M Santini, David J Richardson, Clive S Butler To cite this version: Elizabeth J Dridge, Carys A Watts, Brian J Jepson, Kirsty Line, Joanne M Santini, et al.. Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy. Biochemical Journal, Portland Press, 2007, 408 (1), pp.19-28. 10.1042/BJ20070669. hal-00478807 HAL Id: hal-00478807 https://hal.archives-ouvertes.fr/hal-00478807 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 10 Aug 2007 as manuscript BJ20070669 1 Investigation of the redox centres of selenate reductase from Thauera selenatis by electron paramagnetic resonance spectroscopy Elizabeth J. DRIDGE1,2†, Carys A. WATTS2†, Brian J.N. JEPSON3, Kirsty LINE1, Joanne M. SANTINI4, David J. RICHARDSON3 and Clive S. BUTLER1* 1School of
    [Show full text]
  • Supplementary Material Title Comparative Proteomic Analysis Of
    Supplementary Material Title Comparative proteomic analysis of wild-type Physcomitrella patens and an OPDA-deficient Physcomitrella patens mutant with disrupted PpAOS1 and PpAOS2 genes after wounding Authors Weifeng Luoa, Setsuko Komatsub, Tatsuya Abea, Hideyuki Matsuuraa, and Kosaku Takahashia,c* Affiliations aResearch Faculty of Agriculture, Hokkaido University, Sapporo 606-8589, Japan bDepartment of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan cDepartment of Nutritional Science, Faculty of Applied BioScience, Tokyo University of Agriculture, Tokyo 165-8502, Japan. *To whom correspondence should be addressed: Tel.: +81-3-5477-2679; E-mail: [email protected]. Supplementary Fig. S1. Fig. S1. Disruption of PpAOS1 and PpAOS2 genes in P. p a te ns . A, Genomic structures of PpAOS1 and PpAOS2 in the wild-type and targeted PpAOS1 and PpAOS2 knock-out mutants (A5, A19, and A22). The npt II and aph IV expression cassettes were inserted in A5, A19, and A22 strains. B, Genomic PCR data of wild-type, and A5, A19 and A22 strains. P. patens genomic DNA was isolated from protonemata by the CTAB method (Nishiyama et al., Ref. 32). PCR was performed in 50 µL of a reaction mixture containing 1 µL of genomic DNA solution, 1.5 µL of each primer (5 µM), 25 µL of KOD One PCR Master Mix (Toyobo, Japan), and 21 µL of Milli-Q water. PCR was conducted with the following conditions: 30 cycles of 98°C for 10 s, 58°C for 5 s, and 68°C for 15 s.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • A Bacterial Process for Selenium Nanosphere Assembly
    A bacterial process for selenium nanosphere assembly Charles M. Debieuxa, Elizabeth J. Dridgea,1, Claudia M. Muellera,1, Peter Splatta, Konrad Paszkiewicza, Iona Knighta, Hannah Florancea, John Lovea, Richard W. Titballa, Richard J. Lewisb, David J. Richardsonc, and Clive S. Butlera,2 aBiosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; bInstitute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom; and cSchool of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom Edited by Dianne K. Newman, California Institute of Technology/Howard Hughes Medical Institute, Pasadena, CA, and accepted by the Editorial Board July 1, 2011 (received for review April 13, 2011) Thauera selenatis 2− − þ 2− During selenate respiration by , the reduction of SeO4 þ 2e þ 2H ⇆ SeO3 þ H2O [1] selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approxi- and mately 150 nm in diameter. We report that the Se nanospheres 2− − þ 0 SeO þ 4e þ 6H ⇆ Se þ 3H2O: [2] are associated with a protein of approximately 95 kDa. Subsequent 3 experiments to investigate the expression and secretion profile of Thauera selenatis (a β-proteobacterium) is by far the best-studied this protein have demonstrated that it is up-regulated and secreted selenate respiring bacterium (5–8). The selenate reductase in response to increasing selenite concentrations. The protein was (SerABC) isolated from T. selenatis (6) is a soluble periplasmic purified from Se nanospheres, and peptide fragments from a tryp- enzyme.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • Article (Published Version)
    Article Selenite reduction and uptake hydrogenase activity in Rhodospirillum rubrum VAN PRAAG, Esther, DEGLI AGOSTI, Robert, BACHOFEN, Reinhard Abstract R. rubrum grew in the presence of millimolar concentrations of SeO32- under anaerobic conditions and in continuous light (10 W/m2). Selenite affected the growth rate: the end of growing phase was reached already 36 h after inoculation in control cultures, but only after 58 hours in the presence of 0.5, 1 and 2 mM SeO32- with generation times of respectively 12.2 h, 13.7 h, 14.2 h and 16.6 h In the 2 latter cultures, a decrease in optical density (A650) occurred 4 to 6 hours before the stationary phase. It coincided with the beginning of the reduction process, the appearance of volatile selenium and of a peak at 420 nm in the absorption spectrum. The uptake hydrogenase (Hup) activity has been followed in intact R. rubrum cells. Generally, anincrease in activity was observed 12 h after inoculation in a fresh medium. In the control cultures and in the presence of 0.5 mM selenite, the activity of Hup showed regular fluctuations during the growth and the stationary phases with periods of about 12 h. When selenite was present, fluctuating Hup activity stopped with the SeO32- reduction, after which it dropped. At 1 and 2 mM [...] Reference VAN PRAAG, Esther, DEGLI AGOSTI, Robert, BACHOFEN, Reinhard. Selenite reduction and uptake hydrogenase activity in Rhodospirillum rubrum. Archives des Sciences, 2002, vol. 55, p. 69-80 Available at: http://archive-ouverte.unige.ch/unige:42696 Disclaimer: layout of this document may differ from the published version.
    [Show full text]
  • Download Supplementary
    Supplementary Material Title Comparative proteomic analysis of wild-type Physcomitrella patens and an OPDA-deficient Physcomitrella patens mutant with disrupted PpAOS1 and PpAOS2 genes after wounding Authors Weifeng Luoa, Setsuko Komatsub, Tatsuya Abea, Hideyuki Matsuuraa, and Kosaku Takahashia,c* Affiliations aResearch Faculty of Agriculture, Hokkaido University, Sapporo 606-8589, Japan bDepartment of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan cDepartment of Nutritional Science, Faculty of Applied BioScience, Tokyo University of Agriculture, Tokyo 165-8502, Japan. *To whom correspondence should be addressed: Tel.: +81-3-5477-2679; E-mail: [email protected]. Supplementary Fig. S1. Fig. S1. Disruption of PpAOS1 and PpAOS2 genes in P. patens. A, Genomic structures of PpAOS1 and PpAOS2 in the wild-type and targeted PpAOS1 and PpAOS2 knock-out mutants (A5, A19, and A22). The npt II and aph IV expression cassettes were inserted in A5, A19, and A22 strains. B, Genomic PCR data of wild-type, and A5, A19 and A22 strains. P. patens genomic DNA was isolated from protonemata by the CTAB method (Nishiyama et al., Ref. 32). PCR was performed in 50 µL of a reaction mixture containing 1 µL of genomic DNA solution, 1.5 µL of each primer (5 µM), 25 µL of KOD One PCR Master Mix (Toyobo, Japan), and 21 µL of Milli-Q water. PCR was conducted with the following conditions: 30 cycles of 98°C for 10 s, 58°C for 5 s, and 68°C for 15 s. The PCR products were analyzed by gel electrophoresis and visualized by ethidium bromide.
    [Show full text]
  • Discovery of Industrially Relevant Oxidoreductases
    DISCOVERY OF INDUSTRIALLY RELEVANT OXIDOREDUCTASES Thesis Submitted for the Degree of Master of Science by Kezia Rajan, B.Sc. Supervised by Dr. Ciaran Fagan School of Biotechnology Dublin City University Ireland Dr. Andrew Dowd MBio Monaghan Ireland January 2020 Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Master of Science, is entirely my own work, and that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ID No.: 17212904 Kezia Rajan Date: 03rd January 2020 Acknowledgements I would like to thank the following: God, for sending me angels in the form of wonderful human beings over the last two years to help me with any- and everything related to my project. Dr. Ciaran Fagan and Dr. Andrew Dowd, for guiding me and always going out of their way to help me. Thank you for your patience, your advice, and thank you for constantly believing in me. I feel extremely privileged to have gotten an opportunity to work alongside both of you. Everything I’ve learnt and the passion for research that this project has sparked in me, I owe it all to you both. Although I know that words will never be enough to express my gratitude, I still want to say a huge thank you from the bottom of my heart.
    [Show full text]