ORE Open Research Exeter TITLE Quinol-cytochrome c oxidoreductase and cytochrome c4 mediate electron transfer during selenate respiration in Thauera selenatis AUTHORS Lowe, EC; Bydder, S; Hartshorne, RS; et al. JOURNAL Journal of Biological Chemistry DEPOSITED IN ORE 08 May 2013 This version available at http://hdl.handle.net/10871/9201 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication QUINOL-CYTOCHROME C OXIDOREDUCTASE AND CYTOCHROME C4 MEDIATE ELECTRON TRANSFER DURING SELENATE RESPIRATION IN THAUERA SELENATIS* Elisabeth C. Lowe1, Sarah Bydder2, Robert S. Hartshorne3, Hannah L.U. Tape1, Elizabeth J. Dridge1, Charles M. Debieux1, Konrad Paszkiewicz1, Ian Singleton4, Richard J. Lewis5, Joanne M. Santini6, David J. Richardson3 and Clive S. Butler1 1School of Biosciences, Centre for Biocatalysis, University of Exeter, Stocker Road, Exeter EX4 4QD, UK 2Department of Microbiology, La Trobe University, 3086 Victoria, Australia 3School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK 4Institute for Research on Environment and Sustainability, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK 5Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK 6Institute of Structural and Molecular Biology, UCL, Gower Street, London WC1E 6BT, UK Running head: Pathways of electron transfer in T. selenatis Address correspondence to: Clive S. Butler, School of Biosciences, Centre for Biocatalysis, University of Exeter, Stocker Road, Exeter, UK. EX4 4QD. Fax: +44 1392 263434; E-mail:
[email protected] Selenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been Within the DMSOR1 family of type II classified as a type II molybdoenzyme.