Arsenic and Selenium in Microbial Metabolism*

Total Page:16

File Type:pdf, Size:1020Kb

Arsenic and Selenium in Microbial Metabolism* ANRV286-MI60-05 ARI 16 August 2006 16:34 Arsenic and Selenium in Microbial Metabolism∗ John F. Stolz,1 Partha Basu,2 Joanne M. Santini,3 and Ronald S. Oremland4 1Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282; email: [email protected] 2Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282; email: [email protected] 3Department of Biology, University College London, London WC1E 6BT, United Kingdom; email: [email protected] 4Water Resources Division, U.S. Geological Survey, Menlo Park, California 94025; email: [email protected] Annu. Rev. Microbiol. 2006. 60:107–30 Key Words First published online as a Review in selenate respiration, selenocysteine, arsenate reductase, arsenite Advance on May 8, 2006 oxidase, biogeochemical cycles, organoarsenicals The Annual Review of Microbiology is online at micro.annualreviews.org Abstract This article’s doi: Arsenic and selenium are readily metabolized by prokaryotes, par- 10.1146/annurev.micro.60.080805.142053 ticipating in a full range of metabolic functions including as- by Duquesne University on 09/12/06. For personal use only. Copyright c 2006 by Annual Reviews. similation, methylation, detoxification, and anaerobic respiration. All rights reserved Arsenic speciation and mobility is affected by microbes through 0066-4227/06/1013-0107$20.00 oxidation/reduction reactions as part of resistance and respiratory ∗The U.S. Government has the right to processes. A robust arsenic cycle has been demonstrated in diverse Annu. Rev. Microbiol. 2006.60:107-130. Downloaded from arjournals.annualreviews.org retain a nonexclusive, royalty-free license environments. Respiratory arsenate reductases, arsenic methyltrans- in and to any copyright covering this ferases, and new components in arsenic resistance have been recently paper. described. The requirement for selenium stems primarily from its in- corporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaero- bic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in 76Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies. 107 ANRV286-MI60-05 ARI 16 August 2006 16:34 lights some of the most recent advances in Contents ecology, biochemistry, and molecular biology and discusses the impact genomics studies are INTRODUCTION................. 108 beginning to have. Phylogeny and Diversity .......... 108 Ecology.......................... 109 ARSENIC IN CELLULAR Phylogeny and Diversity METABOLISM.................. 112 Concerted efforts have been made over the Methylation ...................... 112 past decade to isolate and characterize organ- Organoarsenicals ................. 114 isms capable of generating energy from oxi- Arsenic Resistance ................ 114 dation/reduction reactions with oxyanions of Respiratory Arsenate Reductase . 115 arsenic and selenium. These efforts have been Arsenite Oxidase ................. 117 aided by the identification of environments SELENIUM IN CELLULAR where these elements play an important role METABOLISM.................. 118 in ecology (see below), the development of Selenocysteine ................... 119 selective media, and the inclusion of arsenate Methylation ...................... 120 and selenate as electron acceptors tested in Respiratory Selenate Reductase . 121 the characterization of new isolates. As a re- CONCLUSIONS AND FUTURE sult, the list of species capable of carrying out DIRECTIONS .................. 121 oxidization/reduction reactions with oxyan- ions of selenium and arsenic continues to grow. Arsenite-oxidizing bacteria have been INTRODUCTION known since 1918 (34); however, the first Selenium (Se) has been called an “essential chemolithoautotrophic species were de- toxin,” as it is required for certain cell pro- scribed only recently (92, 121). More Selenate cesses and enzymes, but it becomes delete- than 30 strains representing at least nine respiration: the generation of energy rious at greater doses. The requirement for genera of arsenite-oxidizing prokaryotes through the selenium stems primarily from its incorpora- have been reported and include α-, β-, dissimilatory tion into selenocysteine and its function in and γ-Proteobacteria, and Thermus (97). reduction of selenate selenoenzymes. Arsenic (As) is also consid- Physiologically diverse, they include het- Chemolitho- ered an essential toxin, but its beneficial qual- erotrophic and chemolithoautotrophic by Duquesne University on 09/12/06. For personal use only. autotrophic ities are more subtle. In humans, acute and arsenite-oxidizing prokaryotes (32, 117, 121, arsenite-oxidizing chronic exposures result in defined patholo- 122). It is also apparent that green sulfur (e.g., prokaryotes: microbes that gies (e.g., arsenicosis, arseniasis, and death), Chlorobium limicola and Chlorobium phaeobac- generate energy and yet arsenic can promote angiogenesis and teroides) and filamentous green nonsulfur Annu. Rev. Microbiol. 2006.60:107-130. Downloaded from arjournals.annualreviews.org through arsenite increased respiratory capacity. In prokaryotes, bacteria (e.g., Chloroflexus aurantiacus) may oxidation while using these two elements are readily metabolized be capable of arsenite oxidation, as homologs carbon dioxide for and participate in a full range of metabolic of arsenite oxidase have been identified in cell carbon functions including assimilation, methylation, their genomes. Arsenite oxidation by Archaea Heterotrophic detoxification, and anaerobic respiration. Re- has yet to be definitively demonstrated; arsenite-oxidizing prokaryotes: cent reviews have provided overviews of the however, arsenic oxidation and reduction in microbes that oxidize microbial ecology of selenium (133) and ar- Sulfolobus acidocaldarius have been reported arsenite but require senic (97, 98); the resistance mechanisms for (130) and homologs of arsenite oxidase have an alternative source arsenic (82, 112); and the biochemistry and been identified in the genomes of Sulfolobus of energy and molecular biology involved in selenoproteins tokodaii and Aeropyrum pernix (64). In addi- organic matter for growth (24), selenate respiration (123), and arsenic tion, archaeal 16S rDNA sequences, those metabolism (15, 123, 131). This review high- of both Crenarchaeota and Euryarchaeota, 108 Stolz et al. ANRV286-MI60-05 ARI 16 August 2006 16:34 were found to coincide with the zone of ing other terminal electron acceptors such arsenite oxidation in a Yellowstone hot spring as oxygen, nitrate, nitrite, Fe(III), fumarate, (50). Most species are aerobic, using oxygen sulfate, thiosulfate, sulfur, dimethyl sulfoxide, Arsenate as the electron acceptor. However, the and trimethyl amine oxide (97). respiration: the γ-Proteobacterium Alcalilimnicola ehrlichei Prokaryotes capable of gaining energy generation of energy (strain MLHE-1) oxidizes arsenite under from oxidation/reduction reactions with through the anoxic conditions while respiring nitrate (92), oxyanions of selenium are also phylogenet- dissimilatory and two recently described chemolithoau- ically diverse and metabolically versatile. At reduction of arsenate totrophs, α-Proteobacterium strain DAO10 present, 20 species are known and include and β-Proteobacterium strain DAO1, couple members of the Crenarchaeota, low and high arsenite oxidation to denitrification (110). G+C gram-positive bacteria, Halanaerobac- Thus, arsenite can serve as an electron donor ter, and β-, γ-, and ε-Proteobacteria. Many of in anaerobic respiration. The discovery of the organisms also use arsenate as a terminal arsenite oxidase in anaerobic photosynthetic electron acceptor; however, only the haloalka- bacteria poses the intriguing possibility that liphilic Bacillus selenitireducens (137) and three arsenite might be a source of electrons in strains of an Aquificales species (HGMK-1, 2, photosynthesis. and 3) (138) use selenite. Dissimilatory arsenate-reducing bacteria are a more recent discovery (3, 63, 70, 71, 87). Nevertheless, at last count at least 24 Ecology prokaryotes use arsenate as a terminal electron Biogeochemical cycle of arsenic. Arsenic acceptor (97, 98). They include members of primarily occurs in four oxidation states, arse- the Crenarchaeota, Aquificae, Chrysiogenes, nate As(V), arsenite As(III), elemental As(0), Deferribacteres, low G+C gram-positive bac- and arsenide As(-III). Inorganic As(V) and − teria, Halanaerobacter, and γ-, δ-, and ε- As(III) are readily soluble with H2AsO4 and = Proteobacteria (98). A full range of elec- HAsO4 occurring primarily in aerobic envi- o − tron donors are also employed including ronments, and H3AsO3 and H2AsO3 more organics, such as acetate, lactate, and aro- common in anoxic environments. Elemental matics (e.g., syringic acid, ferulic acid, phe- arsenic occurs rarely, and arsines have been nol, benzoate, toluene) (3, 51, 66, 86, 89, identified from fungal cultures and strongly 134, 139), and inorganics (e.g., hydrogen, sul- reducing environments (6). The importance fide). The recently described chemolithoau- of arsenic in microbial ecology and its bio- by Duquesne University on 09/12/06. For personal use only. totrophic arsenate respirer, strain MLMS-1 geochemical cycle have also been realized (a δ-Proteobacterium),
Recommended publications
  • Resolving Electron Transport Pathways in the Selenate Respiring Bacterium Thauera Selenatis
    RESOLVING ELECTRON TRANSPORT PATHWAYS IN THE SELENATE RESPIRING BACTERIUM THAUERA SELENATIS. Submitted by Elisabeth Clare Lowe To the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences, July 2008. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Elisabeth Clare Lowe Acknowledgements I would like to thank Clive Butler for all his help, support, encouragement and enthusiasm, especially during the move to Exeter and my last few months in the lab. Thanks to Ian Singleton for help and enthusiasm during my time in Newcastle. I also owe huge thanks to everyone in Team Butler, past and present, Carys Watts for helping me get started and all the help with the Thauera preps, Auntie Helen for being brilliant, Jim Leaver for rugby, beer, tea-offs and 30 hour growth curves and Lizzy Dridge for being a great friend and scientific team member, in and out of the lab. Thanks also to everyone in M3013 at the start of my PhD and everyone in the Biocat at the end, for lots of help, borrowing of equipment and most importantly, tea. Thanks to AFP for help, tea breaks and motivation, especially during the writing period. Thank you to everyone who has been generous with their time and equipment, namely Prof.
    [Show full text]
  • Selenium Reduction by Shigella Fergusonii Strain Tb42616 and Pantoea Vagans Strain Ewb32213-2 in Bioreactor Systems
    University of Kentucky UKnowledge Theses and Dissertations--Civil Engineering Civil Engineering 2019 BIOLOGICAL SELENIUM CONTROL: SELENIUM REDUCTION BY SHIGELLA FERGUSONII STRAIN TB42616 AND PANTOEA VAGANS STRAIN EWB32213-2 IN BIOREACTOR SYSTEMS Yuxia Ji University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-4866-4856 Digital Object Identifier: https://doi.org/10.13023/etd.2019.393 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Ji, Yuxia, "BIOLOGICAL SELENIUM CONTROL: SELENIUM REDUCTION BY SHIGELLA FERGUSONII STRAIN TB42616 AND PANTOEA VAGANS STRAIN EWB32213-2 IN BIOREACTOR SYSTEMS" (2019). Theses and Dissertations--Civil Engineering. 91. https://uknowledge.uky.edu/ce_etds/91 This Doctoral Dissertation is brought to you for free and open access by the Civil Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Civil Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Microbial (Per)Chlorate Reduction in Hot Subsurface Environments
    Microbial (Per)chlorate Reduction in Hot Subsurface Environments Martin G. Liebensteiner Thesis committee Promotor Prof. Dr Alfons J.M. Stams Personal chair at the Laboratory of Microbiology Wageningen University Co-promotor Dr Bart P. Lomans Principal Scientist Shell Global Solutions International B.V., Rijswijk Other members Prof. Dr Willem J.H. van Berkel, Wageningen University Prof. Dr Mike S.M. Jetten, Radboud University Nijmegen Prof. Dr Ian Head, Newcastle University, UK Dr Timo J. Heimovaara, Delft University of Technology This research was conducted under the auspices of the Graduate School for Socio-Economic and Natural Sciences of the Environment (SENSE) Microbial (Per)chlorate Reduction in Hot Subsurface Environments Martin G. Liebensteiner Thesis submitted in fulfi lment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnifi cus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 17 October 2014 at 4 p.m. in the Aula. Martin G. Liebensteiner Microbial (Per)chlorate Reduction in Hot Subsurface Environments 172 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN 978-94-6257-125-9 TABLE OF CONTENTS Chapter 1 General introduction and thesis outline 7 Chapter 2 Microbial redox processes in deep subsurface environments 23 and the potential application of (per)chlorate in oil reservoirs Chapter 3 (Per)chlorate reduction by the hyperthermophilic
    [Show full text]
  • Investigation of the Redox Centres of Periplasmic Selenate Reductase
    Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy Elizabeth J Dridge, Carys A Watts, Brian J Jepson, Kirsty Line, Joanne M Santini, David J Richardson, Clive S Butler To cite this version: Elizabeth J Dridge, Carys A Watts, Brian J Jepson, Kirsty Line, Joanne M Santini, et al.. Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy. Biochemical Journal, Portland Press, 2007, 408 (1), pp.19-28. 10.1042/BJ20070669. hal-00478807 HAL Id: hal-00478807 https://hal.archives-ouvertes.fr/hal-00478807 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 10 Aug 2007 as manuscript BJ20070669 1 Investigation of the redox centres of selenate reductase from Thauera selenatis by electron paramagnetic resonance spectroscopy Elizabeth J. DRIDGE1,2†, Carys A. WATTS2†, Brian J.N. JEPSON3, Kirsty LINE1, Joanne M. SANTINI4, David J. RICHARDSON3 and Clive S. BUTLER1* 1School of
    [Show full text]
  • Enzymes and Electron Transport in Microbial Chlorate Respiration
    Faculty of Technology and Science Chemistry Jan Bohlin Enzymes and electron transport in microbial chlorate respiration DISSERTATION Karlstad University Studies 2008:36 Jan Bohlin Enzymes and electron transport in microbial chlorate respiration Karlstad University Studies 2008:36 Jan Bohlin. Enzymes and electron transport in microbial chlorate respiration DISSERTATION Karlstad University Studies 2008:36 ISSN 1403-8099 ISBN 978-91-7063-196-2 © The Author Distribution: Faculty of Technology and Science Chemistry 651 88 Karlstad 054-700 10 00 www.kau.se Printed at: Universitetstryckeriet, Karlstad 2008 Abstract Microbial chlorate respiration plays an important role in the turnover of oxochlorates in nature and in industrial waste management. This thesis deals with the characterization of the molecular components of chlorate respiration in Ideonella dechloratans. Chlorate respiration utilizes two soluble periplasmic enzymes, chlorate reductase and chlorite dismutase, to convert chlorate to chloride and oxygen. The genes encoding the enzymes participating in the chlorate degradation have been sequenced, and are found in close proximity, forming a gene cluster for chlorate metabolism. This work also includes the successful recombinant expression of three genes from Ideonella dechloratans. Two of the gene products, chlorite dismutase and the C subunit of chlorate reductase, participate in the chlorate respiration. The third gene, which is found close to the gene cluster for chlorate metabolism, encodes a soluble c-type cytochrome. The localization of the gene suggests the corresponding protein as a candidate for a role as electron donor to chlorate reductase. Also, the role of soluble periplasmic c cytochromes of Ideonella dechloratans in chlorate respiration was studied. At least one of the soluble c cytochromes was found capable of serving as electron donor for chlorate reduction.
    [Show full text]
  • The DMSO Reductase Family of Microbial Molybdenum Enzymes Alastair G
    SHOWCASE ON RESEARCH The DMSO Reductase Family of Microbial Molybdenum Enzymes Alastair G. McEwan and Ulrike Kappler Centre for Metals in Biology, School of Molecular and Microbial Sciences, University of Queensland, QLD 4072 Molybdenum is the only element in the second row of led to a division of the oxotransferases into the sulfite transition metals which has a defined role in biology. It dehydrogenase and the dimethylsulfoxide (DMSO) exhibits redox states of (VI), (V) and (IV) within a reductase families (Fig. 1) (4). The Mo hydroxylases biologically-relevant range of redox potentials and is and oxotransferases can act either as dehydrogenases capable of catalysing both oxygen atom transfer and or reductases in catalysis. This reaction can be proton/electron transfer. Apart from nitrogenase, all summarised by the general scheme: + - enzymes containing molybdenum have an active site X + H2O D X=O + 2H + 2e composed of a molybdenum ion coordinated by one or During this process the Mo ion cycles between the two ene-dithiolate (dithiolene) groups that arise from (IV) and (VI) oxidation states with electrons being an unusual organic moiety known as the pterin transferred to or from an electron transfer partner or molybdenum cofactor or pyranopterin (1,2). The substrate. Experiments with xanthine dehydrogenase mononuclear molybdenum enzymes exhibit remarkable using 18O-labelled water have confirmed that the diversity of function and this is in part due to variations oxygen is incorporated into the product during at the Mo active site that are additional to the common substrate oxidation and this distinguishes the core structure. Prior to the appearance of X-ray crystal mononuclear molybdoenzymes from monoxygenases structures of molybdenum enzymes, EPR spectroscopy, where molecular oxygen rather than water acts as an X-ray absorption fine structure spectroscopy (EXAFS) oxygen atom donor (5).
    [Show full text]
  • Pseudomonas Stutzeri Biology Of
    Biology of Pseudomonas stutzeri Jorge Lalucat, Antoni Bennasar, Rafael Bosch, Elena García-Valdés and Norberto J. Palleroni Microbiol. Mol. Biol. Rev. 2006, 70(2):510. DOI: 10.1128/MMBR.00047-05. Downloaded from Updated information and services can be found at: http://mmbr.asm.org/content/70/2/510 These include: http://mmbr.asm.org/ REFERENCES This article cites 395 articles, 145 of which can be accessed free at: http://mmbr.asm.org/content/70/2/510#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on January 28, 2014 by Red de Bibliotecas del CSIC Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, June 2006, p. 510–547 Vol. 70, No. 2 1092-2172/06/$08.00ϩ0 doi:10.1128/MMBR.00047-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Biology of Pseudomonas stutzeri Jorge Lalucat,1,2* Antoni Bennasar,1 Rafael Bosch,1 Elena Garcı´a-Valde´s,1,2 and Norberto J. Palleroni3 Departament de Biologia, Microbiologia, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain1; Institut Mediterrani d’Estudis Avanc¸ats (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain2; and Department of Biochemistry and Microbiology, Rutgers University, Cook Campus, 3 New Brunswick, New Jersey 08901-8520 Downloaded from INTRODUCTION .......................................................................................................................................................511
    [Show full text]
  • A Bacterial Process for Selenium Nanosphere Assembly
    A bacterial process for selenium nanosphere assembly Charles M. Debieuxa, Elizabeth J. Dridgea,1, Claudia M. Muellera,1, Peter Splatta, Konrad Paszkiewicza, Iona Knighta, Hannah Florancea, John Lovea, Richard W. Titballa, Richard J. Lewisb, David J. Richardsonc, and Clive S. Butlera,2 aBiosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; bInstitute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom; and cSchool of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom Edited by Dianne K. Newman, California Institute of Technology/Howard Hughes Medical Institute, Pasadena, CA, and accepted by the Editorial Board July 1, 2011 (received for review April 13, 2011) Thauera selenatis 2− − þ 2− During selenate respiration by , the reduction of SeO4 þ 2e þ 2H ⇆ SeO3 þ H2O [1] selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approxi- and mately 150 nm in diameter. We report that the Se nanospheres 2− − þ 0 SeO þ 4e þ 6H ⇆ Se þ 3H2O: [2] are associated with a protein of approximately 95 kDa. Subsequent 3 experiments to investigate the expression and secretion profile of Thauera selenatis (a β-proteobacterium) is by far the best-studied this protein have demonstrated that it is up-regulated and secreted selenate respiring bacterium (5–8). The selenate reductase in response to increasing selenite concentrations. The protein was (SerABC) isolated from T. selenatis (6) is a soluble periplasmic purified from Se nanospheres, and peptide fragments from a tryp- enzyme.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • Arsenic Transformations
    Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations Nathaniel R. Glassera, Paul H. Oyalab, Thomas H. Osbornec, Joanne M. Santinic, and Dianne K. Newmana,d,1 aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125; bDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; cInstitute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; and dDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited by Joan Selverstone Valentine, University of California, Los Angeles, CA, and approved July 13, 2018 (received for review May 9, 2018) Arsenate respiration by bacteria was discovered over two decades A microbe’s capacity for arsenate respiration corresponds ago and is catalyzed by diverse organisms using the well-conserved with the genes encoding the arsenate respiratory reductase (Arr) Arr enzyme complex. Until now, the mechanisms underpinning this complex, present in phylogenetically diverse organisms, includ- metabolism have been relatively opaque. Here, we report the struc- ing Gram-negative and Gram-positive bacteria (13). The ture of an Arr complex (solved by X-ray crystallography to 1.6-Å Arr complex is a member of the DMSO reductase family of resolution), which was enabled by an improved Arr expression molybdoenzymes and comprises two proteins, a large subunit method in the genetically tractable arsenate respirer Shewanella ArrA and a smaller subunit ArrB (13, 14). The ArrA subunit is sp. ANA-3. We also obtained structures bound with the substrate predicted to contain a Mo atom coordinated by a pyranopterin arsenate (1.8 Å), the product arsenite (1.8 Å), and the natural in- guanine dinucleotide cofactor (Mo-bisPGD), as well as a single hibitor phosphate (1.7 Å).
    [Show full text]
  • Peak Antibody Name Immunogen
    Positive in Supp. Peak Antibody name Immunogen/ Antigen type Source/Strain Phylum Group/Cluster this study References 1 A139 Sonicated cells Leptospirillum ferroxidans Nitrospirae Fe-S oxidizers cultures [1] 2 IVE3C_182 Intact cells Acidithiobacillus ferroxidans Gammaproteobacteria Fe-S oxidizers cultures + [1] 3 A183 Sonicated cells A. ferroxidans Gammaproteobacteria Fe-S oxidizers cultures + [1] 4 A184 Intact cells A. ferroxidans Gammaproteobacteria Fe-S oxidizers cultures + [1] 5 A186 Intact cells L. ferroxidans Nitrospirae Fe-S oxidizers cultures + [1] 6 IVE1BF Biofilm L. pherrifilum (LPH2) fermentor Nitrospirae Fe-S oxidizers cultures + [2] 7 IVE1S100 Soluble cellular fraction (SB-S100) L. pherrifilum (LPH2) fermentor Nitrospirae Fe-S oxidizers cultures + [2] 8 IVE1C2 Pellet insoluble cellular fraction L. pherrifilum (LPH2) fermentor Nitrospirae Fe-S oxidizers cultures + [2] 9 IVE2S1 Supernatant NtD (Leptospirillum ferrifilum) Nitrospirae Fe-S oxidizers cultures + [2] 10 IVE3C1 Celulas Intactas Acidithiobacillus caldus Gammaproteobacteria Fe-S oxidizers cultures + [2] 11 IVE3S100 Soluble cellular fraction (SB-100) A. ferroxidans Gammaproteobacteria Fe-S oxidizers cultures + [2] 12 IVE4C1 Intact cells Acidithiobacillus thioxidans Gammaproteobacteria Fe-S oxidizers cultures + [2] 13 IVE4C2 Pellet S100 A. thioxidans Gammaproteobacteria Fe-S oxidizers cultures + [2] 14 IVE4S100 Soluble cellular fraction (SB-100) A. thioxidans Gammaproteobacteria Fe-S oxidizers cultures + [2] 15 IVE5C1 Intact cells Acidithiobacillus albertensis Gammaproteobacteria Fe-S oxidizers cultures + [2] 16 IVE6C1 Intact cells A. caldus Gammaproteobacteria Fe-S oxidizers cultures + [2] 17 IVE6C2 Pellet S100 A. caldus Gammaproteobacteria Fe-S oxidizers cultures + [2] 18 IVE6S100 Soluble cellular fraction (SB-100) A. caldus Gammaproteobacteria Fe-S oxidizers cultures [2] 19 IVE7C1 Intact cells Halothiobacillus neapolitanus Gammaproteobacteria Fe-S oxidizers cultures + [3] 20 IVE8C1 Intact cells Acidimicrobium ferrooxidans Actinobacteria Fe-S oxidizers cultures + [3] 21 IVE9C1 Intact cells L.
    [Show full text]
  • Genome-Resolved Metagenomics Identiies Genetic Mobility, Metabolic
    The ISME Journal (2018) 12:1568–1581 https://doi.org/10.1038/s41396-018-0081-5 ARTICLE Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate- reducing communities 1 1 1,2 1 1 Tyler P. Barnum ● Israel A. Figueroa ● Charlotte I. Carlström ● Lauren N. Lucas ● Anna L. Engelbrektson ● John D. Coates1 Received: 19 October 2017 / Revised: 9 January 2018 / Accepted: 18 January 2018 / Published online: 23 February 2018 © International Society for Microbial Ecology 2018 Abstract Dissimilatory perchlorate reduction is an anaerobic respiratory pathway that in communities might be influenced by metabolic interactions. Because the genes for perchlorate reduction are horizontally transferred, previous studies have been unable to identify uncultivated perchlorate-reducing populations. Here we recovered metagenome-assembled genomes from perchlorate-reducing sediment enrichments and employed a manual scaffolding approach to reconstruct gene clusters for perchlorate reduction found within mobile genetic elements. De novo assembly and binning of four enriched communities 1234567890();,: yielded 48 total draft genomes. In addition to canonical perchlorate reduction gene clusters and taxa, a new type of gene cluster with an alternative perchlorate reductase was identified. Phylogenetic analysis indicated past exchange between these gene clusters, and the presence of plasmids with either gene cluster shows that the potential for gene transfer via plasmid persisted throughout enrichment. However, a majority of genomes in each community lacked perchlorate reduction genes. Putative chlorate-reducing or sulfur-reducing populations were dominant in most communities, supporting the hypothesis that metabolic interactions might result from perchlorate reduction intermediates and byproducts. Other populations included a novel phylum-level lineage (Ca.
    [Show full text]