Thesis, Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Thesis, Dissertation THE MICROBIAL COMMUNITY ECOLOGY OF VARIOUS SYSTEMS FOR THE CULTIVATION OF ALGAL BIODIESEL by Tisza Ann Szeremy Bell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana January 2017 ©COPYRIGHT by Tisza Ann Szeremy Bell 2017 All Rights Reserved ii DEDICATION This body of work is dedicated to my beloved best friend, the epitome of compassion and strength, the wild thing I never saw sorry for itself, who lived in love, and never let me quit - even in her absence. Ryan Marie Patterson January 6, 1983 – October 9, 2011 i carry your heart with me(i carry it in my heart)i am never without it(anywhere i go you go,my dear;and whatever is done by only me is your doing,my darling) here is the deepest secret nobody knows (here is the root of the root and the bud of the bud and the sky of the sky of a tree called life;which grows higher than soul can hope or mind can hide) and this is the wonder that’s keeping the stars apart i carry your heart(i carry it in my heart) -EE Cummings iii ACKNOWLEDGEMENTS I would like to thank family and friends for their love, support, and encouragement. I would be nowhere in this world without my amazing parents, Susi and Richard, my brother Devon, and my partner Brian Guyer, and my faithful Puli, Jack, who have loved me, commiserated with me, and tolerated me on my worst days. I am indebted to my late great-uncle, Tom Bell, the first black sheep, for his encouragement, faith, and inspirational life’s work through High Country News. I have had endless love and support from my aunt and uncle, Tunde and Dick Dwyer, my cousins Chris & Andy Szeremy, Ajna Akantisz, everyone in Hungary, and the whole of the Patterson clan especially, Uncle Billy, Mike, Marie, and Danielle. My dear friends Tracy Thomas, Flynn Murray, Karen Moll, Emily Wellington, Leila Sterman, Josiah Pisel, Julia Mead, Katie & Steve Breston, Andrea Hobbs, Kevin Clark, Mason Griffith, and Maria Blevens have given me endless strength and support. I am in debt to Julie and Jim Wellington for providing me sanctuary and solitude to write at one of my favorite places in the world, Longhorn Ranch. I am forever indebted to my lab-mates and my advisers, Brent Peyton and Matthew Fields, for their guidance and mentorship, and my committee members Anne Camper and Christine Formeman. I am especially thankful to Christine Foreman for convincing me not to quit my PhD on more than one occasion, to Sarah Codd for her mentorship, and Ann Willis for support that knew no bounds (ex: dumpster diving for samples at 11pm on a Sunday). I am grateful for the formatting prowess of Robin Kelley and to my lab mates past and present especially Kara DeLeon, Karen Moll, Muneeb Rathore, Todd Pedersen, Matthew Jackson, Jackson Herron, Katie Davis, Anna Zalaya, Chiachi Hwang, Heidi Schoen, Lakotah Doig, Emel Sen, Sarah Altenburg, and Jacob Valenzuela. iv TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 Renewable Energy and Role of Algal Biodiesel ..............................................................1 Current Algal Cultivation and Lipid Augmentation Approaches and Challenges ..........4 Strain Selection and Biomass ...................................................................................4 Stress and Nutrient Deprivation ...............................................................................4 Photobioreactors ..............................................................................................................5 Genetic Engineering .........................................................................................................6 Prospective Methodologies to Further Maximize Lipid Potential ...................................8 Identification of Promising Regional Systems and Strains......................................8 Employing Ecologic Principals to Microbial Systems ............................................8 Diversity and Productivity ...........................................................................8 Niche Occupancy and Stability ....................................................................9 The Phycosphere ........................................................................................10 Improving Stability by Utilizing Alkalinity ...............................................12 Mass Production.............................................................................................................13 Water Limitations for Mass Production .................................................................14 Viability of Wastewater .........................................................................................15 Wastewater Nutrients .............................................................................................16 Conclusion .....................................................................................................................19 2. A LIPID-ACCUMULATING ALGA MAINTAINS GROWTH IN OUTDOOR, ALKALIPHILIC RACEWAY POND WITH MIXED MICROBIAL COMMUNITIES ...................................................................................22 Contribution of Authors and Co-Authors ......................................................................22 Manuscript Information Page ........................................................................................23 Abstract ..........................................................................................................................24 Introduction ....................................................................................................................25 Methods..........................................................................................................................27 Site Description and Raceway Pond Conditions ...................................................27 Sample Collection ..................................................................................................28 DNA Extraction and Sequencing ...........................................................................29 DNA Extraction .........................................................................................29 Bar-Coded Pyrosequencing .......................................................................29 Bioinformatic Sequence and Community Analysis ...............................................30 Statistical Analysis .................................................................................................32 Results and Discussion ..................................................................................................33 Environmental Variables .......................................................................................33 Community Composition and Interaction ..............................................................34 Correlation of Environmental Variables and Community Structure .....................40 v TABLE OF CONTENTS CONTINUED Correlations between Community Members .........................................................43 Conclusions ....................................................................................................................47 Funding ..........................................................................................................................48 Acknowledgements ........................................................................................................48 3. BACTERIA AND EUKARYA COMMUNITY DURING EUTROPHICATION AND TOXIC CYANOBACTERIAL BLOOMS IN THE ALKALINE LAKE VELENCE, HUNGARY ............................ 49 Contribution of Authors and Co-Authors .................................................................... 49 Manuscript Information Page ...................................................................................... 50 Abstract ........................................................................................................................ 52 Introduction .................................................................................................................. 53 Materials and Methods ................................................................................................. 54 Site Description .................................................................................................... 54 Sample Collection ................................................................................................ 55 MALDI-TOF MS Analysis .................................................................................. 57 Chemical Analyses............................................................................................... 58 DNA Extraction and Sequencing ......................................................................... 59 DNA Extraction ....................................................................................... 59 Bar-Coded Pyrosequencing ..................................................................... 59 Processing of Pyrosequencing Data and Community Analysis ........................... 61 Statistical Analysis ............................................................................................... 62 Results and Discussion ................................................................................................ 63 Chemical Analyses............................................................................................... 64
Recommended publications
  • Phylogenetic Placement of Botryococcus Braunii (Trebouxiophyceae) and Botryococcus Sudeticus Isolate Utex 2629 (Chlorophyceae)1
    J. Phycol. 40, 412–423 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03173.x PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE)1 Hoda H. Senousy, Gordon W. Beakes, and Ethan Hack2 School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK The phylogenetic placement of four isolates of a potential source of renewable energy in the form of Botryococcus braunii Ku¨tzing and of Botryococcus hydrocarbon fuels (Metzger et al. 1991, Metzger and sudeticus Lemmermann isolate UTEX 2629 was Largeau 1999, Banerjee et al. 2002). The best known investigated using sequences of the nuclear small species is Botryococcus braunii Ku¨tzing. This organism subunit (18S) rRNA gene. The B. braunii isolates has a worldwide distribution in fresh and brackish represent the A (two isolates), B, and L chemical water and is occasionally found in salt water. Although races. One isolate of B. braunii (CCAP 807/1; A race) it grows relatively slowly, it sometimes forms massive has a group I intron at Escherichia coli position 1046 blooms (Metzger et al. 1991, Tyson 1995). Botryococcus and isolate UTEX 2629 has group I introns at E. coli braunii strains differ in the hydrocarbons that they positions 516 and 1512. The rRNA sequences were accumulate, and they have been classified into three aligned with 53 previously reported rRNA se- chemical races, called A, B, and L. Strains in the A race quences from members of the Chlorophyta, includ- accumulate alkadienes; strains in the B race accumulate ing one reported for B.
    [Show full text]
  • Transcriptional Landscapes of Lipid Producing Microalgae Benoît M
    Transcriptional landscapes of lipid producing microalgae Benoît M. Carrères 2019 Transcriptional landscapes of lipid producing microalgae Benoî[email protected]:~$ ▮ Transcriptional landscapes of lipid producing microalgae Benoît Manuel Carrères Thesis committee Promotors Prof. Dr Vitor A. P. Martins dos Santos Professor of Systems and Synthetic Biology Wageningen University & Research Prof. Dr René H. Wij$els Professor of Bioprocess Engineering Wageningen University & Research Co-promotors Dr Peter J. Schaa% Associate professor* Systems and Synthetic Biology Wageningen University & Research Dr Dirk E. Martens Associate professor* Bioprocess Engineering Wageningen University & Research ,ther mem-ers Prof. Dr Alison Smith* University of Cam-ridge Prof. Dr. Dic+ de Ridder* Wageningen University & Research Dr Aalt D.). van Di#+* Wageningen University & Research Dr Ga-ino Sanche/(Pere/* Genetwister* Wageningen This research 0as cond1cted under the auspices of the .rad1ate School V2A. 3Advanced studies in Food Technology* Agro-iotechnology* Nutrition and Health Sciences). Transcriptional landscapes of lipid producing microalgae Benoît Manuel Carrères Thesis su-mitted in ful8lment of the re9uirements for the degree of doctor at Wageningen University -y the authority of the Rector Magnificus, Prof. Dr A.P.). Mol* in the presence of the Thesis' ommittee a%%ointed by the Academic Board to be defended in pu-lic on Wednesday 2; Novem-er 2;<= at 1.>; p.m in the Aula. Benoît Manuel Carrères 5ranscriptional landsca%es of lipid producing
    [Show full text]
  • <I>Euprymna Scolopes</I>
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-10-2009 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes Brian Shawn Wong Won University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cell Biology Commons, Molecular Biology Commons, and the Other Animal Sciences Commons Recommended Citation Wong Won, Brian Shawn, "Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes" (2009). Honors Scholar Theses. 67. https://opencommons.uconn.edu/srhonors_theses/67 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes . Author: Brian Shawn Wong Won Advisor: Spencer V. Nyholm Ph.D. University of Connecticut Honors Program Date submitted: 05/11/09 1 Abstract The subject of our study is the Hawaiian bobtail squid, Euprymna scolopes , which is known for its model symbiotic relationship with the bioluminescent bacterium, Vibrio fischeri . The interactions between E. scolopes and V. fischeri provide an exemplary model of the biochemical and molecular dynamics of symbiosis since both members can be cultivated separately and V. fischeri can be genetically modified 1. However, in a laboratory setting, the mortality of embryonic E. scolopes can be a recurrent problem. In many of these fatalities, the egg cases display a pink-hued biofilm, and rosy pigmentation has also been noted in the deaths of several adult squid. To identify the microbial components of this biofilm, we cloned and sequenced the 16s ribosomal DNA gene from pink, culture-grown isolates from infected egg cases and adult tissues.
    [Show full text]
  • Ultrastructure of Mitosis and Gametogenesis in Cladophora Flexuosa (Dillwyn) Harvey
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1973 Ultrastructure of Mitosis and Gametogenesis in Cladophora flexuosa (Dillwyn) Harvey Kenneth Wilson Bullock College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Developmental Biology Commons Recommended Citation Bullock, Kenneth Wilson, "Ultrastructure of Mitosis and Gametogenesis in Cladophora flexuosa (Dillwyn) Harvey" (1973). Dissertations, Theses, and Masters Projects. Paper 1539624845. https://dx.doi.org/doi:10.21220/s2-td1w-ff67 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ULTRASTRUCTURE OF MITOSIS AND G AMETOGENESIS i \ IN CLADOPHORA FLEXU03A (DILLWYN) HARVEY A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Arts By Kenneth Wilson Bullock 197^ APPROVAL SHEET This thesis is submitted in partial fulfillment of .the requirements for the degree of Master of Arts Approved, September 197^ U7 Martin C. Mathes, Ph.D. Lawrence L. Wiseman, Ph.D. TABLE OF CONTENTS Page ACKNOWLEDGMENTS ................................... iv LIST OF F I G U R E S ...................................... v ABSTRACT........................ vii INTRODUCTION ...................................... 2 MATERIALS AND METHODS ............................ 15 RESULTS .............................................. 1? D I S C U S S I O N .........................................25 KEY TO A B B R E V I A T I O N S ..............................
    [Show full text]
  • The Symbiotic Green Algae, Oophila (Chlamydomonadales
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-16-2016 The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Schultz University of Connecticut - Storrs, [email protected] Recommended Citation Schultz, Nikolaus, "The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History" (2016). Master's Theses. 1035. https://opencommons.uconn.edu/gs_theses/1035 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. The Symbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Eduard Schultz B.A., Trinity College, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Connecticut 2016 Copyright by Nikolaus Eduard Schultz 2016 ii ACKNOWLEDGEMENTS This thesis was made possible through the guidance, teachings and support of numerous individuals in my life. First and foremost, Louise Lewis deserves recognition for her tremendous efforts in making this work possible. She has performed pioneering work on this algal system and is one of the preeminent phycologists of our time. She has spent hundreds of hours of her time mentoring and teaching me invaluable skills. For this and so much more, I am very appreciative and humbled to have worked with her. Thank you Louise! To my committee members, Kurt Schwenk and David Wagner, thank you for your mentorship and guidance.
    [Show full text]
  • BEATRIZ JORRIN RUBIO.Pdf
    Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Ph.D Thesis Beatriz Jorrín Rubio Licenciada en Biología 2016 Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Departamento de Biotecnología Ph.D Thesis: Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Author: Beatriz Jorrín Rubio Licenciada en Biología Director: Juan Imperial Ródenas Licenciado en Biología Doctor en Biología Madrid, 2016 A mis padres A Sofía A mis hermanos “There’s the story, then there’s the real story, then there’s the story of how the story came to be told. Then there’s what you leave out of the story. Which is part of the story too.” Maddaddam Margaret Atwood RECONOCIMIENTOS Esta Tesis se ha desarrollado en el laboratorio de Genómica y Biotecnología de Bacterias Diazotróficas Asociadas con Plantas del Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Para el desarrollo de esta Tesis he contado con una beca UPM homologada financiada por el proyecto MICROGEN: Genómica Comparada Microbiana (Programa Consolider), que ha sido también el proyecto financiador del trabajo experimental. Quisiera reconocer la labor de aquellas personas que han contribuido al desarrollo y consecución de esta Tesis. Dr. Juan Imperial, por la dirección y supervisión de esta Tesis. Por ser un gran mentor y por enseñarme todo lo que sé. Dr. Manuel González Guerrero, por enseñarme los entresijos de la Ciencia y del trabajo en el laboratorio. Dra. Gisèle Laguerre, por su participación en el inicio de este proyecto y por facilitarnos el suelo P1 de Dijon.
    [Show full text]
  • Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales
    Polar Biol (2017) 40:1169–1184 DOI 10.1007/s00300-016-2045-4 REVIEW Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales 1 1 1 Marina Cvetkovska • Norman P. A. Hu¨ner • David Roy Smith Received: 20 February 2016 / Revised: 20 July 2016 / Accepted: 10 October 2016 / Published online: 21 October 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract The Earth is a cold place. Most of it exists at or Introduction below the freezing point of water. Although seemingly inhospitable, such extreme environments can harbour a Almost 80 % of the Earth’s biosphere is permanently variety of organisms, including psychrophiles, which can below 5 °C, including most of the oceans, the polar, and withstand intense cold and by definition cannot survive at alpine regions (Feller and Gerday 2003). These seemingly more moderate temperatures. Eukaryotic algae often inhospitable places are some of the least studied but most dominate and form the base of the food web in cold important ecosystems on the planet. They contain a huge environments. Consequently, they are ideal systems for diversity of prokaryotic and eukaryotic organisms, many of investigating the evolution, physiology, and biochemistry which are permanently adapted to the cold (psychrophiles) of photosynthesis under frigid conditions, which has (Margesin et al. 2007). The environmental conditions in implications for the origins of life, exobiology, and climate such habitats severely limit the spread of terrestrial plants, change. Here, we explore the evolution and diversification and therefore, primary production in perpetually cold of photosynthetic eukaryotes in permanently cold climates. environments is largely dependent on microbes.
    [Show full text]
  • The Cytology of Zoosporogenesis in the Filamentous Green Algal Genus Klebsormidium Author(S): J
    The Cytology of Zoosporogenesis in the Filamentous Green Algal Genus Klebsormidium Author(s): J. R. Cain, K. R. Mattox and K. D. Stewart Source: Transactions of the American Microscopical Society, Vol. 92, No. 3 (Jul., 1973), pp. 398-404 Published by: Wiley on behalf of American Microscopical Society Stable URL: https://www.jstor.org/stable/3225243 Accessed: 13-02-2019 17:57 UTC REFERENCES Linked references are available on JSTOR for this article: https://www.jstor.org/stable/3225243?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms American Microscopical Society, Wiley are collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Microscopical Society This content downloaded from 132.248.28.28 on Wed, 13 Feb 2019 17:57:04 UTC All use subject to https://about.jstor.org/terms 398 TRANS. AMER. MICROS. SOC., VOL. 92, NO. 3, JULY 1973 U. S. GEOL. SURVEYSURVEY BULL.BULL. NO.NO. 1248,1248, WASHINGTON,WASHINGTON, D.D. C.C. WAKIL, S. J.,J., MCLAIN,MCLAIN, L.L. W.,W., JR.JR. && WARSHAW,WARSHAW, J.J.
    [Show full text]
  • Phylogeny, Heat-Stress and Enzymatic Heat-Sensitivity in the Antarctic Psychrophile, Chlamydomonas Sp. UWO 241
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-5-2018 12:30 PM Phylogeny, Heat-Stress and Enzymatic Heat-Sensitivity in the Antarctic Psychrophile, Chlamydomonas sp. UWO 241 Marc Possmayer The University of Western Ontario Supervisor Hüner, Norman P.A. The University of Western Ontario Co-Supervisor Maxwell, Denis P. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Marc Possmayer 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Plant Sciences Commons Recommended Citation Possmayer, Marc, "Phylogeny, Heat-Stress and Enzymatic Heat-Sensitivity in the Antarctic Psychrophile, Chlamydomonas sp. UWO 241" (2018). Electronic Thesis and Dissertation Repository. 5737. https://ir.lib.uwo.ca/etd/5737 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Psychrophilic species, micro-organisms which are unable to grow at temperatures of or above 20°C, are abundant in perennially cold ecosystems across the globe. Intensifying scientific investigation of these organisms from ecological to molecular scales has underscored the ability of life on Earth to adapt to environments which seem inhospitable due to high or low temperatures, high salinity, pressure and light, and ultra-low nutrient availability. Psychrophilic organisms that are also photosynthetic represent a much more limited group than psychrophiles generally, as their habitats must be well buffered against the warming influence of the infra-red energy accompanying sunlight.
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Photosynthetic Carbon Acquisition in the Lichen Photobionts Coccomyxa and Trebouxia (Chlorophyta)
    PHYSIOLOGIA PLANTARUM 101: 67-76. 1997 Copyright © Physiologia Plantarum 1997 Printed in Dettmark - all rights reserved ISSN 0031-9317 Photosynthetic carbon acquisition in the lichen photobionts Coccomyxa and Trebouxia (Chlorophyta) Kristin Palmqvist, Asuncion de los Rios, Carmen Ascaso and Goran Samuelsson Palmqvist, K., de los Rios, A., Ascaso, C. and Samuelsson, G. 1997. Photosynthetic carbon acquisition in the lichen photobionts Coccomyxa and Trebouxia (Chlorophyta). - Physiol. Plant. 101: 67-76. Processes involved in photosynthetic CO2 acquisition were characterised for the iso- lated lichen photobiont Trebouxia erici (Chlorophyta, Trebouxiophyceae) and com- pared with Coccomyxa (Chlorophyta), a lichen photobiont without a photosynthetic COi-concentrating mechanism. Comparisons of ultrastructure and immuno-gold la- belling of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) showed that the chloroplast was larger in T. erici and that the majority of Rubisco was located in its centrally located pyrenoid. Coccomyxa had no pyrenoid and Rubisco was evenly distributed in its chloroplast. Both species preferred CO2 rather than HCO3 as an external substrate for photosynthesis, but T. erici was able to use CO2 concentra- tions below 10-12 \xM more efficiently than Coccomyxa. In T. erici, the lipid-insolu- ble carbonic anhydrase (CA; EC 4.2.1.1) inhibitor acetazolamide (AZA) inhibited photosynthesis at CO2 concentrations below 1 \xM, while the lipid-soluble CA inhibi- tor ethoxyzolamide (EZA) inhibited C02-dependent O2 evolution over the whole CO2 range. EZA inhibited photosynthesis also in Coccomyxa, but to a much lesser extent below 10-12 |iM CO2. The intemal CA activity of Trebouxia, per unit chlorophyll (Chi), was ca 10% of that of Coccomyxa.
    [Show full text]