Phylogeny, Heat-Stress and Enzymatic Heat-Sensitivity in the Antarctic Psychrophile, Chlamydomonas Sp. UWO 241

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny, Heat-Stress and Enzymatic Heat-Sensitivity in the Antarctic Psychrophile, Chlamydomonas Sp. UWO 241 Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-5-2018 12:30 PM Phylogeny, Heat-Stress and Enzymatic Heat-Sensitivity in the Antarctic Psychrophile, Chlamydomonas sp. UWO 241 Marc Possmayer The University of Western Ontario Supervisor Hüner, Norman P.A. The University of Western Ontario Co-Supervisor Maxwell, Denis P. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Marc Possmayer 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Plant Sciences Commons Recommended Citation Possmayer, Marc, "Phylogeny, Heat-Stress and Enzymatic Heat-Sensitivity in the Antarctic Psychrophile, Chlamydomonas sp. UWO 241" (2018). Electronic Thesis and Dissertation Repository. 5737. https://ir.lib.uwo.ca/etd/5737 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Psychrophilic species, micro-organisms which are unable to grow at temperatures of or above 20°C, are abundant in perennially cold ecosystems across the globe. Intensifying scientific investigation of these organisms from ecological to molecular scales has underscored the ability of life on Earth to adapt to environments which seem inhospitable due to high or low temperatures, high salinity, pressure and light, and ultra-low nutrient availability. Psychrophilic organisms that are also photosynthetic represent a much more limited group than psychrophiles generally, as their habitats must be well buffered against the warming influence of the infra-red energy accompanying sunlight. Photosynthetic psychrophiles face the added challenge of balancing the biophysical capture and biochemical transformation of light energy. The psychrophilic green alga Chlamydomonas sp. UWO 241 (hereafter UWO 241) has been the subject of numerous publications, however these are mainly focused on adaptations which facilitate life at low temperature as opposed to restricting it from moderate ones. In this thesis I critically examine previously published phylogenies placing UWO 241 as a strain of Chlamydomonas raudensis, investigate the changes in mRNA abundance in UWO 241 in response to high steady-state growth temperatures and heat shock using targeted and transcriptome-wide approaches, and investigate the regulatory enzymes of the carbon-fixing Calvin-Benson-Bassham (CBB) cycle for signs of heat sensitivity using the techniques of Homology Modelling and Molecular Dynamics. These investigations revealed that, contrary to previously published reports, UWO 241 is not closely related to C. raudensis SAG 49.72. Here, I also show that mRNA abundance in UWO 241 does not respond to different steady-state growth temperatures or a heat-shock temperature shift regime in ways similar to the related mesophile, Chlamydomonas reinhardtii. Additionally, analysis of the regulatory CBB cycle enzymes of UWO 241 for indications of heat-lability indicated that glyceraldehyde-3- phosphate dehydrogenase may be the heat-limited enzyme in this pathway. These findings deepen our understanding of the reasons that this Antarctic alga is unable to grow at moderate temperatures. i Keywords Chlamydomonas sp. UWO 241, psychrophile, phylogenetics, heat stress, heat shock, Calvin cycle, molecular dynamics ii Co-Authorship Statement Chapter 2 was previously published in the Journal of Phycology with Rajesh K. Gupta, Dr. Beth Szyszka-Mroz, Dr. Denis P. Maxwell, Dr. Marc‐André Lachance, Dr. Norman P.A. Hüner and Dr. David R. Smith as co-authors. Rajesh Gupta provided scientific rationale, Dr. Szyszka-Mroz assisted with the collection of light-micrographs, Dr. Lachance provided scientific rationale and assisted with the phylogenetic analyses, Dr. Maxwell, provided funding and editorial comments, Dr. Hüner provided funding and assisted with the revisions of the manuscript, and Dr. Smith provided funding and helped write the manuscript. Chapter 3 was conceived of, performed by and written by Marc Possmayer with the following exception. Dr. Marina Cvetkovska and Nina Malczewski isolated protein, performed SDS-PAGE, Western Blotting and densitometry analysis for various Heat Shock Proteins in Chlamydomonas reinhardtii and C. sp. UWO 241 grown at steady-state temperatures. Dr. Marina Cvetkovska wrote methods text detailing these procedures. iii Acknowledgments To my supervisors, Drs. Denis Maxwell and Norman Hüner, I owe an immense debt of gratitude for their support, mentorship, scientific insights and contagious enthusiasm during my studies. Their consistent, patient confidence in me was essential in the performance of the work described in this thesis as was the inspiration I derived from their leadership. I believe they considerably exceeded the expectations of their role as supervisors. Thank-you Norm and Denis, you have my heartfelt thanks. I thank my advisory committee members, Drs. Robert Cumming, David R. Smith and Charlie G. Trick, for their encouragement and suggestions. In particular, David Smith was inspiring as senior author of Chapter 2 of this thesis, and Charlie Trick not only provided equipment used in experiments described here, but also ensured that the results were interpreted with a high level of scientific rigour. Fellow authors of the publications I have written and co-authored are due thanks for their contributions. Specifically, the spirit of inquiry and analytic expertise of Dr. Marc‐André Lachance was essential in motivating and producing Chapter 2 of this thesis. Fellow members, past and present, of the Maxwell and Hüner labs were invariably a pleasure to work with and helped create not only an atmosphere conducive to scientific inquiry but also one of excitement. Specifically, I thank Drs. Marina Cvetkovska, Alex Ivanov, Shanmugasundaram Pakkiriswami and Beth Szyszka-Mroz for their insights and comradery. I also thank current and former students of the Environmental Stress Biology Group of the Biology Department for sharing their expertise, enthusiasm and company. iv Table of Contents Abstract ................................................................................................................................ i Co-Authorship Statement................................................................................................... iii Acknowledgments.............................................................................................................. iv Table of Contents ................................................................................................................ v List of Tables ..................................................................................................................... ix List of Figures .................................................................................................................... xi List of Abbreviations ....................................................................................................... xvi Chapter 1 ............................................................................................................................. 1 1 General Introduction and Literature Review.................................................................. 1 1.1 Psychrophiles: Environment and Diversity ............................................................ 1 1.2 Characteristics of Psychrophiles ............................................................................. 2 1.2.1 Cellular Membranes .................................................................................... 2 1.2.2 Antifreeze Proteins and Compatible Solutes .............................................. 3 1.2.3 Cold-active Enzymes .................................................................................. 3 1.3 Photosynthetic Psychrophiles ................................................................................. 5 1.4 Psychrophilic Chlamydomonad Habitats and Diversity ....................................... 11 1.5 Characteristics of Chlamydomonad Psychrophiles .............................................. 11 1.6 Characteristics of Chlamydomonas sp. UWO 241 ............................................... 14 1.7 Phylogeny of UWO 241........................................................................................ 17 1.8 Evolution of Cold Adaptation and Psychrophily in Microorganisms ................... 18 1.9 Heat Stress ............................................................................................................ 19 1.9.1 Characteristics of the Heat Shock Response in C. reinhardtii .................. 19 1.9.2 Heat Shock and the Photosynthetic Apparatus ......................................... 23 1.9.3 Heat Stress and Heat Shock in Psychrophiles........................................... 24 v 1.10 Molecular Dynamics .......................................................................................... 25 1.11 Thesis objectives ................................................................................................ 26 1.12 References .......................................................................................................... 28 Chapter 2 ........................................................................................................................... 38 2 Resolving
Recommended publications
  • Molecular Phylogeny and Systematics of Terrestrial Ulvophyceae II.)
    Phytotaxa 324 (1): 001–041 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.324.1.1 Toward a monograph of non-marine Ulvophyceae using an integrative approach (Molecular phylogeny and systematics of terrestrial Ulvophyceae II.) TATYANA DARIENKO1 & THOMAS PRÖSCHOLD2 1 University of Göttingen, Experimental Phycology and Culture Collection of Algae, Nikolausberger Weg 18, D-37073 Göttingen, Ger- many, and Kholodny Institute of Botany, National Academy of Science, Tereschenkivska Str. 2, Kyiv 01601, Ukraine 2 University of Innsbruck, Research Institute for Limnology, Mondseestr. 9, A-5310 Mondsee, Austria Corresponding author: Thomas Pröschold, E-mail: [email protected] Abstract Phylogenetic analyses of SSU rDNA sequences have shown that coccoid and filamentous green algae are distributed among all classes of the Chlorophyta. One of these classes, the Ulvophyceae, mostly contains marine seaweeds and microalgae. However, new studies have shown that there are filamentous and sarcinoid freshwater and terrestrial spe- cies (including symbionts in lichens) among the Ulvophyceae, but very little is known about these species. Ultrastruc- tural studies of some of them have confirmed that the flagellar apparatus of zoospores (counterclockwise basal body orientation) is typical for the Ulvophyceae. In addition to ultrastructural features, the presence of a “Codiolum”-stage is characteristic of some members of this algal class. We studied more than 50 strains of freshwater and terrestrial ulvophycean microalgae obtained from the different public culture collection and our own isolates using an integra- tive approach. Three independent lineages of the Ulvophyceae containing terrestrial species were revealed by these methods.
    [Show full text]
  • Ultrastructure of Mitosis and Gametogenesis in Cladophora Flexuosa (Dillwyn) Harvey
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1973 Ultrastructure of Mitosis and Gametogenesis in Cladophora flexuosa (Dillwyn) Harvey Kenneth Wilson Bullock College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Developmental Biology Commons Recommended Citation Bullock, Kenneth Wilson, "Ultrastructure of Mitosis and Gametogenesis in Cladophora flexuosa (Dillwyn) Harvey" (1973). Dissertations, Theses, and Masters Projects. Paper 1539624845. https://dx.doi.org/doi:10.21220/s2-td1w-ff67 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ULTRASTRUCTURE OF MITOSIS AND G AMETOGENESIS i \ IN CLADOPHORA FLEXU03A (DILLWYN) HARVEY A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Arts By Kenneth Wilson Bullock 197^ APPROVAL SHEET This thesis is submitted in partial fulfillment of .the requirements for the degree of Master of Arts Approved, September 197^ U7 Martin C. Mathes, Ph.D. Lawrence L. Wiseman, Ph.D. TABLE OF CONTENTS Page ACKNOWLEDGMENTS ................................... iv LIST OF F I G U R E S ...................................... v ABSTRACT........................ vii INTRODUCTION ...................................... 2 MATERIALS AND METHODS ............................ 15 RESULTS .............................................. 1? D I S C U S S I O N .........................................25 KEY TO A B B R E V I A T I O N S ..............................
    [Show full text]
  • The Cytology of Zoosporogenesis in the Filamentous Green Algal Genus Klebsormidium Author(S): J
    The Cytology of Zoosporogenesis in the Filamentous Green Algal Genus Klebsormidium Author(s): J. R. Cain, K. R. Mattox and K. D. Stewart Source: Transactions of the American Microscopical Society, Vol. 92, No. 3 (Jul., 1973), pp. 398-404 Published by: Wiley on behalf of American Microscopical Society Stable URL: https://www.jstor.org/stable/3225243 Accessed: 13-02-2019 17:57 UTC REFERENCES Linked references are available on JSTOR for this article: https://www.jstor.org/stable/3225243?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms American Microscopical Society, Wiley are collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Microscopical Society This content downloaded from 132.248.28.28 on Wed, 13 Feb 2019 17:57:04 UTC All use subject to https://about.jstor.org/terms 398 TRANS. AMER. MICROS. SOC., VOL. 92, NO. 3, JULY 1973 U. S. GEOL. SURVEYSURVEY BULL.BULL. NO.NO. 1248,1248, WASHINGTON,WASHINGTON, D.D. C.C. WAKIL, S. J.,J., MCLAIN,MCLAIN, L.L. W.,W., JR.JR. && WARSHAW,WARSHAW, J.J.
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]
  • Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
    Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages.
    [Show full text]
  • Photosynthetic Carbon Acquisition in the Lichen Photobionts Coccomyxa and Trebouxia (Chlorophyta)
    PHYSIOLOGIA PLANTARUM 101: 67-76. 1997 Copyright © Physiologia Plantarum 1997 Printed in Dettmark - all rights reserved ISSN 0031-9317 Photosynthetic carbon acquisition in the lichen photobionts Coccomyxa and Trebouxia (Chlorophyta) Kristin Palmqvist, Asuncion de los Rios, Carmen Ascaso and Goran Samuelsson Palmqvist, K., de los Rios, A., Ascaso, C. and Samuelsson, G. 1997. Photosynthetic carbon acquisition in the lichen photobionts Coccomyxa and Trebouxia (Chlorophyta). - Physiol. Plant. 101: 67-76. Processes involved in photosynthetic CO2 acquisition were characterised for the iso- lated lichen photobiont Trebouxia erici (Chlorophyta, Trebouxiophyceae) and com- pared with Coccomyxa (Chlorophyta), a lichen photobiont without a photosynthetic COi-concentrating mechanism. Comparisons of ultrastructure and immuno-gold la- belling of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) showed that the chloroplast was larger in T. erici and that the majority of Rubisco was located in its centrally located pyrenoid. Coccomyxa had no pyrenoid and Rubisco was evenly distributed in its chloroplast. Both species preferred CO2 rather than HCO3 as an external substrate for photosynthesis, but T. erici was able to use CO2 concentra- tions below 10-12 \xM more efficiently than Coccomyxa. In T. erici, the lipid-insolu- ble carbonic anhydrase (CA; EC 4.2.1.1) inhibitor acetazolamide (AZA) inhibited photosynthesis at CO2 concentrations below 1 \xM, while the lipid-soluble CA inhibi- tor ethoxyzolamide (EZA) inhibited C02-dependent O2 evolution over the whole CO2 range. EZA inhibited photosynthesis also in Coccomyxa, but to a much lesser extent below 10-12 |iM CO2. The intemal CA activity of Trebouxia, per unit chlorophyll (Chi), was ca 10% of that of Coccomyxa.
    [Show full text]
  • Isolamento, Seleção E Caracterização De Microalgas Com Alta Produtividade De Biomassa Em Meio De Cultivo a Base De Vinhaça E Co2
    UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO MULTIDISCIPLINAR EM SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM BIOCIÊNCIAS HUGO SANTANA ISOLAMENTO, SELEÇÃO E CARACTERIZAÇÃO DE MICROALGAS COM ALTA PRODUTIVIDADE DE BIOMASSA EM MEIO DE CULTIVO A BASE DE VINHAÇA E CO2 Vitória da Conquista, BA 2016 HUGO SANTANA ISOLAMENTO, SELEÇÃO E CARACTERIZAÇÃO DE MICROALGAS COM ALTA PRODUTIVIDADE DE BIOMASSA EM MEIO DE CULTIVO A BASE DE VINHAÇA E CO2 Dissertação apresentada ao Programa de Pós- Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, como requisito para a obtenção do grau de mestre em Biociências. Orientador: Dr. Félix Gonçalves de Siqueira Universidade Federal da Bahia – UFBA EMBRAPA Agroenergia Co-orientador: Dr. Bruno dos Santos Alves Figueiredo Brasil Universidade Federal da Bahia – UFBA EMBRAPA Agroenergia Vitória da Conquista 2016 Biblioteca Universitária Campus Anísio Teixeira – UFBA SANTANA, Hugo. Isolamento, seleção e caracterização de microalgas com alta produtividade de biomassa em meio de cultivo a base de vinhaça e CO2/ Hugo Santana. – 2016. 120 f.: il. Orientador: Dr. Félix Gonçalves de Siqueira. Dissertação (mestrado) – Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa de Pós-Graduação em Biociências, 2016. 1. Microalgas. 2. Vinhaça. 3. Biocombustíveis. 4. Biorrefinaria. I. Universidade Federal da Bahia. Instituto Multidisciplinar em Saúde. II. Siqueira, Félix Gonçalves de. III. Título CDU: 582.26 AGRADECIMENTOS Agradeço à minha família por todo o apoio e paciência durante este período. À Carolina Cereijo, companheira dentro e fora do laboratório, que esteve sempre ao meu lado, me apoiando em todos os momentos. Aos meus amigos, distantes ou não, que contribuíram mesmo que indiretamente para que este momento chegasse.
    [Show full text]
  • 7 Systematics of the Green Algae
    7989_C007.fm Page 123 Monday, June 25, 2007 8:57 PM Systematics of the green 7 algae: conflict of classic and modern approaches Thomas Pröschold and Frederik Leliaert CONTENTS Introduction ....................................................................................................................................124 How are green algae classified? ........................................................................................125 The morphological concept ...............................................................................................125 The ultrastructural concept ................................................................................................125 The molecular concept (phylogenetic concept).................................................................131 Classic versus modern approaches: problems with identification of species and genera.....................................................................................................................134 Taxonomic revision of genera and species using polyphasic approaches....................................139 Polyphasic approaches used for characterization of the genera Oogamochlamys and Lobochlamys....................................................................................140 Delimiting phylogenetic species by a multi-gene approach in Micromonas and Halimeda .....................................................................................................................143 Conclusions ....................................................................................................................................144
    [Show full text]
  • Cultivation of a Native Alga for Biomass and Biofuel Accumulation in Coal Bed Methane Production Water
    Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water Authors: Logan H. Hodgkiss, J. Nagy, Elliott P. Barnhart, Alfred B. Cunningham, & Matthew W. Fields NOTICE: this is the author’s version of a work that was accepted for publication in Algal Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Algal Research, [Vol. 19, November 2016] DOI#10.1016/j.algal.2016.07.014. Hodgskiss LH, Nagy J, Barnhart EP, Cunningham AB, Fields MWF, “Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water,” Algal Research, 2016 Nov; 19(1):63-68 Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water L.H. Hodgskiss a,b,J.Nagyc,E.P. Barnhartd,b, A.B. Cunningham a,b,e, M.W. Fields b,c,e,⁎ a Department of Civil Engineering, Montana State University, Bozeman, MT 59717, United States b Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, United States c Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States d U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, United States e Energy Research Institute, Montana State University, Bozeman, MT 59717, United States Keywords: Coal bed methane (CBM) production has resulted in thousands of ponds in the Powder River Powder river Basin of low-quality water in a water-challenged region.
    [Show full text]
  • Molecular Phylogeny and Classification of The
    ARTICLE IN PRESS Protist, Vol. ], ]]]–]]], ]] ]]]] http://www.elsevier.de/protis Published online date 10 December 2009 ORIGINAL PAPER Molecular Phylogeny and Classification of the Mamiellophyceae class. nov. (Chlorophyta) based on Sequence Comparisons of the Nuclear- and Plastid-encoded rRNA Operons Birger Marin1, and Michael Melkonian Biowissenschaftliches Zentrum, Botanisches Institut, Lehrstuhl I, Universitat¨ zu Koln,¨ Otto-Fischer-Str. 6, 50674 Koln,¨ Germany Submitted August 10, 2009; Accepted October 19, 2009 Monitoring Editor: David Moreira Molecular phylogenetic analyses of the Mamiellophyceae classis nova, a ubiquitous group of largely picoplanktonic green algae comprising scaly and non-scaly prasinophyte unicells, were performed using single and concatenated gene sequence comparisons of the nuclear- and plastid-encoded rRNA operons. The study resolved all major clades within the class, identified molecular signature sequences for most clades through an exhaustive search for non-homoplasious synapomorphies [Marin et al. (2003): Protist 154: 99-145] and incorporated these signatures into the diagnoses of two novel orders, Monomastigales ord nov., Dolichomastigales ord. nov., and four novel families, Monomastigaceae fam. nov., Dolichomastigaceae fam. nov., Crustomastigaceae fam. nov., and Bathycoccaceae fam. nov., within a revised classification of the class. A database search for the presence of environmental rDNA sequences in the Monomastigales and Dolichomastigales identified an unexpectedly large genetic diversity of Monomastigales
    [Show full text]
  • Thesis, Dissertation
    THE MICROBIAL COMMUNITY ECOLOGY OF VARIOUS SYSTEMS FOR THE CULTIVATION OF ALGAL BIODIESEL by Tisza Ann Szeremy Bell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana January 2017 ©COPYRIGHT by Tisza Ann Szeremy Bell 2017 All Rights Reserved ii DEDICATION This body of work is dedicated to my beloved best friend, the epitome of compassion and strength, the wild thing I never saw sorry for itself, who lived in love, and never let me quit - even in her absence. Ryan Marie Patterson January 6, 1983 – October 9, 2011 i carry your heart with me(i carry it in my heart)i am never without it(anywhere i go you go,my dear;and whatever is done by only me is your doing,my darling) here is the deepest secret nobody knows (here is the root of the root and the bud of the bud and the sky of the sky of a tree called life;which grows higher than soul can hope or mind can hide) and this is the wonder that’s keeping the stars apart i carry your heart(i carry it in my heart) -EE Cummings iii ACKNOWLEDGEMENTS I would like to thank family and friends for their love, support, and encouragement. I would be nowhere in this world without my amazing parents, Susi and Richard, my brother Devon, and my partner Brian Guyer, and my faithful Puli, Jack, who have loved me, commiserated with me, and tolerated me on my worst days.
    [Show full text]
  • Toward a Monograph of Non-Marine Ulvophyceae Using an Integrative Approach (Molecular Phylogeny and Systematics of Terrestrial Ulvophyceae II.)
    Phytotaxa 324 (1): 001–041 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.324.1.1 Toward a monograph of non-marine Ulvophyceae using an integrative approach (Molecular phylogeny and systematics of terrestrial Ulvophyceae II.) TATYANA DARIENKO1 & THOMAS PRÖSCHOLD2 1 University of Göttingen, Experimental Phycology and Culture Collection of Algae, Nikolausberger Weg 18, D-37073 Göttingen, Ger- many, and Kholodny Institute of Botany, National Academy of Science, Tereschenkivska Str. 2, Kyiv 01601, Ukraine 2 University of Innsbruck, Research Institute for Limnology, Mondseestr. 9, A-5310 Mondsee, Austria Corresponding author: Thomas Pröschold, E-mail: [email protected] Abstract Phylogenetic analyses of SSU rDNA sequences have shown that coccoid and filamentous green algae are distributed among all classes of the Chlorophyta. One of these classes, the Ulvophyceae, mostly contains marine seaweeds and microalgae. However, new studies have shown that there are filamentous and sarcinoid freshwater and terrestrial spe- cies (including symbionts in lichens) among the Ulvophyceae, but very little is known about these species. Ultrastruc- tural studies of some of them have confirmed that the flagellar apparatus of zoospores (counterclockwise basal body orientation) is typical for the Ulvophyceae. In addition to ultrastructural features, the presence of a “Codiolum”-stage is characteristic of some members of this algal class. We studied more than 50 strains of freshwater and terrestrial ulvophycean microalgae obtained from the different public culture collection and our own isolates using an integra- tive approach. Three independent lineages of the Ulvophyceae containing terrestrial species were revealed by these methods.
    [Show full text]