A Molecular Phylogenetic Assessment of Pseudendoclonium Richard F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Hawaiian Freshwater Algae Biodiversity Survey
Sherwood et al. BMC Ecology 2014, 14:28 http://www.biomedcentral.com/1472-6785/14/28 RESEARCH ARTICLE Open Access The Hawaiian freshwater algae biodiversity survey (2009–2014): systematic and biogeographic trends with an emphasis on the macroalgae Alison R Sherwood1*, Amy L Carlile1,2, Jessica M Neumann1, J Patrick Kociolek3, Jeffrey R Johansen4, Rex L Lowe5, Kimberly Y Conklin1 and Gernot G Presting6 Abstract Background: A remarkable range of environmental conditions is present in the Hawaiian Islands due to their gradients of elevation, rainfall and island age. Despite being well known as a location for the study of evolutionary processes and island biogeography, little is known about the composition of the non-marine algal flora of the archipelago, its degree of endemism, or affinities with other floras. We conducted a biodiversity survey of the non-marine macroalgae of the six largest main Hawaiian Islands using molecular and microscopic assessment techniques. We aimed to evaluate whether endemism or cosmopolitanism better explain freshwater algal distribution patterns, and provide a baseline data set for monitoring future biodiversity changes in the Hawaiian Islands. Results: 1,786 aquatic and terrestrial habitats and 1,407 distinct collections of non-marine macroalgae were collected from the islands of Kauai, Oahu, Molokai, Maui, Lanai and Hawaii from the years 2009–2014. Targeted habitats included streams, wet walls, high elevation bogs, taro fields, ditches and flumes, lakes/reservoirs, cave walls and terrestrial areas. Sites that lacked freshwater macroalgae were typically terrestrial or wet wall habitats that were sampled for diatoms and other microalgae. Approximately 50% of the identifications were of green algae, with lesser proportions of diatoms, red algae, cyanobacteria, xanthophytes and euglenoids. -
Phylogenetic Placement of Botryococcus Braunii (Trebouxiophyceae) and Botryococcus Sudeticus Isolate Utex 2629 (Chlorophyceae)1
J. Phycol. 40, 412–423 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03173.x PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE)1 Hoda H. Senousy, Gordon W. Beakes, and Ethan Hack2 School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK The phylogenetic placement of four isolates of a potential source of renewable energy in the form of Botryococcus braunii Ku¨tzing and of Botryococcus hydrocarbon fuels (Metzger et al. 1991, Metzger and sudeticus Lemmermann isolate UTEX 2629 was Largeau 1999, Banerjee et al. 2002). The best known investigated using sequences of the nuclear small species is Botryococcus braunii Ku¨tzing. This organism subunit (18S) rRNA gene. The B. braunii isolates has a worldwide distribution in fresh and brackish represent the A (two isolates), B, and L chemical water and is occasionally found in salt water. Although races. One isolate of B. braunii (CCAP 807/1; A race) it grows relatively slowly, it sometimes forms massive has a group I intron at Escherichia coli position 1046 blooms (Metzger et al. 1991, Tyson 1995). Botryococcus and isolate UTEX 2629 has group I introns at E. coli braunii strains differ in the hydrocarbons that they positions 516 and 1512. The rRNA sequences were accumulate, and they have been classified into three aligned with 53 previously reported rRNA se- chemical races, called A, B, and L. Strains in the A race quences from members of the Chlorophyta, includ- accumulate alkadienes; strains in the B race accumulate ing one reported for B. -
A Close-Up View on ITS2 Evolution and Speciation
Caisová et al. BMC Evolutionary Biology 2011, 11:262 http://www.biomedcentral.com/1471-2148/11/262 RESEARCH ARTICLE Open Access A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae) Lenka Caisová1,2,3*†, Birger Marin1† and Michael Melkonian1 Abstract Background: The second Internal Transcriber Spacer (ITS2) is a fast evolving part of the nuclear-encoded rRNA operon located between the 5.8S and 28S rRNA genes. Based on crossing experiments it has been proposed that even a single Compensatory Base Change (CBC) in helices 2 and 3 of the ITS2 indicates sexual incompatibility and thus separates biological species. Taxa without any CBC in these ITS2 regions were designated as a ‘CBC clade’. However, in depth comparative analyses of ITS2 secondary structures, ITS2 phylogeny, the origin of CBCs, and their relationship to biological species have rarely been performed. To gain ‘close-up’ insights into ITS2 evolution, (1) 86 sequences of ITS2 including secondary structures have been investigated in the green algal order Ulvales (Chlorophyta, Viridiplantae), (2) after recording all existing substitutions, CBCs and hemi-CBCs (hCBCs) were mapped upon the ITS2 phylogeny, rather than merely comparing ITS2 characters among pairs of taxa, and (3) the relation between CBCs, hCBCs, CBC clades, and the taxonomic level of organisms was investigated in detail. Results: High sequence and length conservation allowed the generation of an ITS2 consensus secondary structure, and introduction of a novel numbering system of ITS2 nucleotides and base pairs. Alignments and analyses were based on this structural information, leading to the following results: (1) in the Ulvales, the presence of a CBC is not linked to any particular taxonomic level, (2) most CBC ‘clades’ sensu Coleman are paraphyletic, and should rather be termed CBC grades. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Biodata of Juan M. Lopez-Bautista, Author of “Red Algal Genomics: a Synopsis”
Biodata of Juan M. Lopez-Bautista, author of “Red Algal Genomics: A Synopsis” Dr. Juan M. Lopez-Bautista is currently an Associate Professor in the Department of Biological Sciences of The University of Alabama, Tuscaloosa, AL, USA, and algal curator for The University of Alabama Herbarium (UNA). He received his PhD from Louisiana State University, Baton Rouge, in 2000 (under the advisory of Dr. Russell L. Chapman). He spent 3 years as a postdoctoral researcher at The University of Louisiana at Lafayette with Dr. Suzanne Fredericq. Dr. Lopez- Bautista’s research interests include algal biodiversity, molecular systematics and evolution of red seaweeds and tropical subaerial algae. E-mail: [email protected] 227 J. Seckbach and D.J. Chapman (eds.), Red Algae in the Genomic Age, Cellular Origin, Life in Extreme Habitats and Astrobiology 13, 227–240 DOI 10.1007/978-90-481-3795-4_12, © Springer Science+Business Media B.V. 2010 RED ALGAL GENOMICS: A SYNOPSIS JUAN M. LOPEZ-BAUTISTA Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA 1. Introduction The red algae (or Rhodophyta) are an ancient and diversified group of photo- autotrophic organisms. A 1,200-million-year-old fossil has been assigned to Bangiomorpha pubescens, a Bangia-like fossil suggesting sexual differentiation (Butterfield, 2000). Most rhodophytes inhabit marine environments (98%), but many well-known taxa are from freshwater habitats and acidic hot springs. Red algae have also been reported from tropical rainforests as members of the suba- erial community (Gurgel and Lopez-Bautista, 2007). Their sizes range from uni- cellular microscopic forms to macroalgal species that are several feet in length. -
Periphyton, Excluding Diatoms and Desmids, from Yap, Caroline Islands
Micronesica 23(1): 27-40, 1990 Periphyton, Excluding Diatoms and Desmids, from Yap, Caroline Islands CHRISTOPHER s. LOBBAN I The Marine Laboratory, University of Guam, Mangilao, GU 96923, U.S .A. and 2 FAY K. DAILY , WILLIAM A . DAILY\ ROBERT W . HOSHAW\ & MARIA SCHEFTER Abstract-Freshwater habitats of Yap, Federated States of Micronesia, are described, including first algal records. Periphyton and other visible algae were collected chiefly from streams and ponds. Streams were well shaded and lacked algae except in clearings; dominant algae were Schizothrix calcicola and Microcoleus spp. (Cyanophyta) and Cladophora sp. (Chlorophyta). Open ponds were dominated by blue-green algal mats, but some also had abundant Nitella and desmids. Desmids and diatoms were numerous and will be treated in other papers. The species list is short: 12 blue-green algae, 2 red algae, 2 charophytes, 7 filamentous greens, and 5 flagellates. All are new records for Yap and many for Micronesia. No endemic species were found . The freshwater algal flora of the Yap Islands does not show characteristics of the biota of "oceanic" islands. Introduction While there has been considerable study of marine algae in Micronesia (Tsuda & Wray 1977, Tsuda 1978, 1981), freshwater algae have been all but ignored throughout Micronesia, Melanesia, and Polynesia. However, studies of island freshwater algae could contribute to understanding of both tropical limnology and island biology. The distinctiveness of tropical limnology has recently been emphasized by Lewis (1987), who showed that limnological principles derived from studies of temperate lakes cannot be intuitively extrapolated to tropical lakes . The same is also true for transfer of knowledge of streams and ponds. -
DNA Barcoding of the German Green Supralittoral Zone Indicates the Distribution and Phenotypic Plasticity of Blidingia Species and Reveals Blidingia Cornuta Sp
TAXON 70 (2) • April 2021: 229–245 Steinhagen & al. • DNA barcoding of German Blidingia species SYSTEMATICS AND PHYLOGENY DNA barcoding of the German green supralittoral zone indicates the distribution and phenotypic plasticity of Blidingia species and reveals Blidingia cornuta sp. nov. Sophie Steinhagen,1,2 Luisa Düsedau1 & Florian Weinberger1 1 GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology Department, Düsternbrooker Weg 20, 24105 Kiel, Germany 2 Department of Marine Sciences-Tjärnö, University of Gothenburg, 452 96 Strömstad, Sweden Address for correspondence: Sophie Steinhagen, [email protected] DOI https://doi.org/10.1002/tax.12445 Abstract In temperate and subarctic regions of the Northern Hemisphere, green algae of the genus Blidingia are a substantial and environment-shaping component of the upper and mid-supralittoral zones. However, taxonomic knowledge on these important green algae is still sparse. In the present study, the molecular diversity and distribution of Blidingia species in the German State of Schleswig-Holstein was examined for the first time, including Baltic Sea and Wadden Sea coasts and the off-shore island of Helgo- land (Heligoland). In total, three entities were delimited by DNA barcoding, and their respective distributions were verified (in decreasing order of abundance: Blidingia marginata, Blidingia cornuta sp. nov. and Blidingia minima). Our molecular data revealed strong taxonomic discrepancies with historical species concepts, which were mainly based on morphological and ontogenetic char- acters. Using a combination of molecular, morphological and ontogenetic approaches, we were able to disentangle previous mis- identifications of B. minima and demonstrate that the distribution of B. minima is more restricted than expected within the examined area. -
Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach
microorganisms Article Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach Veronika Sommer 1,2, Tatiana Mikhailyuk 3, Karin Glaser 1 and Ulf Karsten 1,* 1 Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; [email protected] (V.S.); [email protected] (K.G.) 2 upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany 3 National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine; [email protected] * Correspondence: [email protected] Received: 4 September 2020; Accepted: 22 October 2020; Published: 27 October 2020 Abstract: Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community “biocrust” comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. -
Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts. -
2004 University of Connecticut Storrs, CT
Welcome Note and Information from the Co-Conveners We hope you will enjoy the NEAS 2004 meeting at the scenic Avery Point Campus of the University of Connecticut in Groton, CT. The last time that we assembled at The University of Connecticut was during the formative years of NEAS (12th Northeast Algal Symposium in 1973). Both NEAS and The University have come along way. These meetings will offer oral and poster presentations by students and faculty on a wide variety of phycological topics, as well as student poster and paper awards. We extend a warm welcome to all of our student members. The Executive Committee of NEAS has extended dormitory lodging at Project Oceanology gratis to all student members of the Society. We believe this shows NEAS members’ pride in and our commitment to our student members. This year we will be honoring Professor Arthur C. Mathieson as the Honorary Chair of the 43rd Northeast Algal Symposium. Art arrived with his wife, Myla, at the University of New Hampshire in 1965 from California. Art is a Professor of Botany and a Faculty in Residence at the Jackson Estuarine Laboratory of the University of New Hampshire. He received his Bachelor of Science and Master’s Degrees at the University of California, Los Angeles. In 1965 he received his doctoral degree from the University of British Columbia, Vancouver, Canada. Over a 43-year career Art has supervised many undergraduate and graduate students studying the ecology, systematics and mariculture of benthic marine algae. He has been an aquanaut-scientist for the Tektite II and also for the FLARE submersible programs. -
Ulvella Tongshanensis (Ulvellaceae, Chlorophyta), a New Freshwater Species from China, and an Emended Morphological Circumscription of the Genus Ulvella
Fottea, Olomouc, 15(1): 95–104, 2015 95 Ulvella tongshanensis (Ulvellaceae, Chlorophyta), a new freshwater species from China, and an emended morphological circumscription of the genus Ulvella Huan ZHU1, 2, Frederik LELIAERT3, Zhi–Juan ZHAO1, 2, Shuang XIA4, Zheng–Yu HU5, Guo–Xiang LIU1* 1 Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; *Corresponding author e–mail: [email protected] 2University of Chinese Academy of Sciences, Beijing 100049, P. R. China 3Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281–S8, 9000 Ghent, Belgium 4College of Life Sciences, South–central University for Nationalities, Wuhan, 430074, P. R. China 5State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China Abstract: A new freshwater species of Ulvella, U. tongshanensis H. ZHU et G. LIU, is described from material collected from rocks under small waterfalls in Hubei Province, China. This unusual species differs from other species in the genus by the macroscopic and upright parenchymatous thalli, and by the particular habitat (most Ulvella species occur in marine environments). Phylogenetic analyses of plastid encoded rbcL and tufA, and nuclear 18S rDNA sequences, pointed towards the generic placement of U. tongshanensis and also showed a close relationship with two other freshwater species, Ulvella bullata (Jao) H. ZHU et G. LIU, comb. nov. and Ulvella prasina (Jao) H. ZHU et G. LIU, comb. nov. The latter two were previously placed in the genus Jaoa and are characterized by disc–shaped to vesicular morphology. Our study once again shows that traditionally used morphological characters are poor indicators for phylogenetic relatedness in morphologically simple algae like the Ulvellaceae. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.