The Rodent Problem in Madagascar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evoregions: Mapping Shifts in Phylogenetic Turnover Across Biogeographic
bioRxiv preprint doi: https://doi.org/10.1101/650713; this version posted May 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Evoregions: Mapping Shifts in Phylogenetic Turnover Across Biogeographic 2 Regions 3 Running head: Mapping evolutionary important regions 4 Renan Maestri1,* & Leandro Duarte1,* 5 1Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, 6 Av. Bento Gonçalves 9500, CP 15007, Porto Alegre RS 91501-970, Brazil 7 *Correspondence be sent to: Departamento de Ecologia, Universidade Federal do Rio 8 Grande do Sul, Av. Bento Gonçalves 9500, CP 15007, Porto Alegre RS 91501-970, 9 Brazil; E-mail: [email protected]; [email protected] 10 ABSTRACT: Biogeographic regionalization offers context to the geographical 11 evolution of clades. The positions of bioregions inform both the spatial location of 12 clusters in species distribution and where their most important boundaries are. 13 Nevertheless, defining bioregions based on species distribution alone only incidentally 14 recovers regions that are important during the evolution of the focal group. The extent 15 to which bioregions correspond to centers of independent diversification depends on 16 how clusters of species composition naturally reflect the radiation of single clades, 17 which is not the case when mixed colonization occurred. Here, we showed that using 18 phylogenetic turnover based on fuzzy sets, instead of species composition, led to more 19 adequate detection of evolutionary important bioregions, that is, regions that truly 20 account for the independent diversification of lineages. -
Subfamily Nesomyinae)
bs_bs_banner Biological Journal of the Linnean Society, 2013, ••, ••–••. With 5 figures Latitude drives diversification in Madagascar’s endemic dry forest rodent Eliurus myoxinus (subfamily Nesomyinae) JEFF J. SHI1†, LAUREN M. CHAN1*‡, ZAFIMAHERY RAKOTOMALALA2,3, AMY M. HEILMAN1, STEVEN M. GOODMAN3,4 and ANNE D. YODER1 1Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA 2Département de Biologie Animale, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar 3Association Vahatra, BP 3972, Antananarivo 101, Madagascar 4Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA Received 29 March 2013; revised 14 May 2013; accepted for publication 14 May 2013 Numerous hypotheses have been proposed for the historical processes governing the rich endemism of Madagas- car’s biodiversity. The ‘watershed model’ suggests that drier climates in the recent geological past have resulted in the contraction of forests around major watersheds, thereby defining areas of endemism. We test whether this hypothesis explains phylogeographical patterns in a dry forest-dependent rodent, Eliurus myoxinus, an endemic species widely distributed through western Madagascar. We sequenced the mitochondrial cytochrome b locus and nuclear introns of the β-fibrinogen and the growth hormone receptor genes for E. myoxinus. Using a parametric bootstrapping approach, we tested whether the mitochondrial gene tree data fit expectations of local differentiation given the watershed model. We additionally estimated population differentiation and historical demographic parameters, and reconstructed the spatial history of E. myoxinus to highlight spatial and temporal patterns of differentiation. The data do not support the watershed model as a clear explanation for the genetic patterns of diversity within extant E. -
Norntatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
NorntatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3087, 55 pp., 24 figures, 5 tables February 16, 1994 Systematic Studies of Madagascar's Endemic Rodents (Muroidea: Nesomyinae): Revision of the Genus Eliurus MICHAEL D. CARLETON' CONTENTS Abstract ....................................................................... 2 Introduction ................................................................... 2 Taxonomic History .................... ........................... 3 Materials and Methods. 4 Acknowledgments .7 Characterization of the Genus. 7 External. 7 Cranial and Postcranial Skeleton. 8 Dentition .10 Accounts of Species .10 Eliurus Milne Edwards .11 Eliurus myoxinus Milne Edwards .12 Eliurus minor Major .15 Eliurus majori Thomas . ..................................................... .20 Eliurus penicillatus Thomas ................................ .....................23 Eliurus tanala Major ...................................... ................... 25 Eliurus webbi Ellerman, new rank .......................... ................... 33 Eliurus petteri, new species ................................ ................... 37 Eliurus ellermani, new species ............................. ................... 39 Interspecific Relationships ................................... ................... 40 Morphometric Comparisons ............................... ................... 42 Phyletic Inferences ....................................... ................... 43 -
Mystromys Albicaudatus – White-Tailed Rat
Mystromys albicaudatus – White-tailed Rat Fynbos biomes; Dean 1978) and is endemic to South Africa and Lesotho. Although it occurs widely across the assessment region, it has an extremely patchy and fragmented area of occupancy due to its preference for microhabitats within vegetation types and transitory habitats created after fire. Out of a total area of 417,452 km2 broadly available to the species, we inferred an effective occupancy of only 3,719–12,061 km2. They are one of the rarest species in the small mammal community, as demonstrated by consistently low trapping records. Given estimated densities ranging from 0.9– 37 colonies (breeding pairs) / km2, the most likely mature population size is 6,997–13,648 individuals. Using Patrick O’Farrell grassland vegetation type as a proxy for subpopulation delineation, subpopulation size averages 178 ± 177 colonies and ranges from 1–760 colonies, which means Red List status (2016) Vulnerable C2a(i)*† the largest subpopulation is likely to be 712–1,521 mature Red List status (2008) Endangered A3c individuals. There is an inferred continuing decline from grassland habitat loss (due to expansion in crop Reasons for change Non-genuine change: agriculture, urban and industrial development, and climate New information change) and grassland habitat degradation, primarily from Red List status (2004) Endangered A3c suppression of natural fire regimens. This may represent an emerging threat to this species if fire is increasingly TOPS listing (NEMBA) (2007) None suppressed or controlled with the rise of intensive wildlife CITES listing None breeding. Grasslands are the most threatened biome in the assessment region with at least 33% transformed Endemic No already. -
Petits Mammifères (Afrosoricida Et Rodentia) Nouvellement Recensés Dans Le Parc National D’Andohahela (Parcelle 1), Madagascar
66 NOTES built their nest above the weaver colony, which was sites in nearby areas. Hence, the unusual placement also in active breeding. of the Madagascar Buzzard nest maybe an adaptation That same day I observed the raptor nest for 4 for a suitable nesting site. It would be interesting to h (7-11 am), and no aggressive interaction was know if this was a unique incident or if it occurs with observed between the weavers and adult raptors. some regularity in other areas in Madagascar lacking The adult buzzard attending the nest was a female, extensive nesting habitat. which left the nest on occasion and moved to other trees within a distance of about 150 m, presumably Acknowledgements waiting for the male to deliver prey. This behavior is I would like to thank Russell Thorstrom for his normal for raptors when the male is absent during a comments on the draft of this paper, and The Peregrine long period looking for food; the same behavior has Fund Madagascar Project staff for their suggestions. been observed for the Henst Goshawk (Accipiter Thanks also to Lucienne Wilmé and Steven M. henstii) and Madagascar Harrier-hawk (Polyboroides radiatus) (Rene de Roland, 2000). Goodman for their comments on this note. The case reported herein appears to be the first example of the Madagascar Buzzard building a nest References in association with a colony of passerines. For other Berkelman, J. D. 1995. Nest site characteristics of the members of the genus Buteo, there are parallel Madagascar Buzzard in the rain forest of the Masoala observations. -
Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2009 Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Norris, Ryan, "Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils" (2009). Graduate College Dissertations and Theses. 164. https://scholarworks.uvm.edu/graddis/164 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. PHYLOGENETIC RELATIONSHIPS AND DIVERGENCE TIMES IN RODENTS BASED ON BOTH GENES AND FOSSILS A Dissertation Presented by Ryan W. Norris to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology February, 2009 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Biology. Dissertation ~xaminationCommittee: w %amB( Advisor 6.William ~il~atrickph.~. Duane A. Schlitter, Ph.D. Chairperson Vice President for Research and Dean of Graduate Studies Date: October 24, 2008 Abstract Molecular and paleontological approaches have produced extremely different estimates for divergence times among orders of placental mammals and within rodents with molecular studies suggesting a much older date than fossils. We evaluated the conflict between the fossil record and molecular data and find a significant correlation between dates estimated by fossils and relative branch lengths, suggesting that molecular data agree with the fossil record regarding divergence times in rodents. -
UZH Publikation A4
Alle ausgestellten Tiere sortiert nach deutschen Artnamen deutsch engl wiss Vitrine Klasse Standort Aal Fresh-water Eel Anguilla anguilla einh. Fische Knochenfische EG Aaskäfer Silphidae einh. Insekten Insekten EG Adlerfregattvogel Ascension Frigatebird Fregata aquila Antarktis Vögel UG Adlerschnabel Wite-tipped Sicklebill Eutoxeres aquila Neotropis Kleinv. Vögel UG Afrikanische Waldmaus Woodland Thicket Rat Grammomys dolichurus Äthiopis Säugetiere UG Afrikanischer Scherenschnabel African Skimmer Rynchops flavirostris Äthiopis Vögel UG Agone Landloked Shad Alosa fallax lacustris einh. Fische Knochenfische EG Ährenträgerpfau Green Peafowl Pavo muticus Orientalis Vögel UG Alet Chub Leuciscus cephalus einh. Fische Knochenfische EG Alexandrasittich Princess Parrot Polytelis alexandrae Australis Vögel UG Alpen-Windelschnecke Vertigo alpestris einh. Mollusken Schnecken EG Alpenbraunelle Alpine Accentor Prunella collaris einh. Vögel Alpen Vögel EG Alpendohle Alpine Chough Pyrrhocorax graculus einh. Vögel Alpen Vögel EG Alpenkrähe Red-billed Chough Pyrrhocorax pyrrhocorax einh. Vögel Alpen Vögel EG Alpensalamander European Black Salamandra atra einh. Amphibien Amphibien EG Salamander Alpenschneehuhn Ptarmigan Lagopus muta einh. Vögel Alpen Vögel EG Alpenschneehuhn Ptarmigan Lagopus muta Eiszeiten Vögel EG Alpensegler Alpine Swift Apus melba einh. Vögel S. Vögel EG Alpenspitzmaus Alpine Shrew Sorex alpinus einh. Insektenfr. Säugetiere EG Alpenstrandläufer Dunlin Calidris alpina einh. Vögel Schlick Vögel EG Amazonasfischer Amazon Kingfisher Chloroceryle -
List of Taxa for Which MIL Has Images
LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12. -
2017 ASM Standing Committee and Representatives Annual Reports
American Society of Mammalogists Annual Reports of Standing Committees, Affiliates, and Ombudspersons 97th Annual Meeting University of Idaho 20-24 June 2017 1 Table of Contents I. Standing Committees .................................................................................................................. 3 African Graduate Student Fund Committee ........................................................... 3 Animal Care and Use Committee ........................................................................... 4 Archives Committee ................................................................................................ 7 Conservation Committee ......................................................................................... 8 Conservation Awards Committee ......................................................................... 10 Coordination Committee ....................................................................................... 10 Development Committee ....................................................................................... 11 Education and Graduate Students Committee ...................................................... 12 Grants-in-Aid Committee ...................................................................................... 14 Grinnell Award Committee ................................................................................... 18 Honoraria and Travel Awards Committee ........................................................... 19 Honorary Membership Committee ...................................................................... -
The Input of DNA Sequences to Animal Systematics: Rodents As Study Cases
6 The Input of DNA Sequences to Animal Systematics: Rodents as Study Cases Laurent Granjon1 and Claudine Montgelard2 1Institut de Recherche Pour le Développement (IRD), CBGP(UMRIRD/INRA/CIRAD/MontpellierSupAgro), Campus de Bel-Air, Dakar, 2Biogéographie et Ecologie des Vertébrés (EPHE), Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175 CNRS), Montpellier, Cedex 5 1Senegal 2France 1. Introduction 1.1 General context The advent of molecular techniques, and especially the possibility to get DNA sequences that can then be compared between individuals of any taxon using more and more powerful algorithms of analysis, has represented a kind of revolution in systematics (Lecointre et al., 2006; Giribet et al., 2007). As in other groups, mammalian systematics was for long only based on morphological and anatomical characters. A brief history of Mammal taxonomy has been provided by Wilson & Reeder (2005: xxiii), starting by early works of Trouessart (1898-99, 1904-5) and ending by the compilation by Mc Kenna & Bell (1997). Since the latter, a huge quantity of data including a significant proportion of molecular ones has accumulated, that have greatly improved our view of the relationships between main mammalian groups (Springer et al., 2004), and increased the number of individual species in each of them (Wilson & Reeder, 2005). Rodents represent the most diverse order of Mammals, comprising around 40% of both generic and specific mammalian diversity (Wilson & Reeder, 2005). In one of the first significant contribution to the study of their classification, Tullberg (1899) subdivided them into two suborders, the Sciurognathi and Hystricognathi (see Hautier et al., 2011), based on morpho-anatomical characteristics of their skull. -
The Newsletter of the Madagascar Section of the I.U.C.N./S.S.C. Primate Specialist Group NUMBER 11, June 2006
LEMUR NEWS The Newsletter of the Madagascar Section of the I.U.C.N./S.S.C. Primate Specialist Group NUMBER 11, June 2006 DPZ Deutsches Primatenzentrum Universität Hamburg Cover photo: This volume of Lemur News is dedicated to Madame Berthe Rakotosamimanana (1938-2005). LEMUR NEWS The Newsletter of the Madagascar Section of the IUCN/SSC Primate Specialist Group PSG Chairman: Russel A. Mittermeier Addresses for contributions PSG Deputy Chairman: William R. Konstant Jörg U. Ganzhorn Biozentrum Grindel Editors Martin-Luther-King-Platz 3 Jörg U. Ganzhorn D-20146 Hamburg Ken Glander Germany Jonah Ratsimbazafy E-mail: [email protected] Rodin M. Rasoloarison Michael Schwibbe Jonah Ratsimbazafy, Rodin M. Rasoloarison, Anne Yoder Rose Marie Randrianarison GERP Assistant Editors 34, Cité des Professeurs, Fort Duchesne Anja Ganzhorn Antananarivo (101) Rose Marie Randrianarison Madagascar E-mail: [email protected] Layout Heike Klensang Lemur News online Volumes 3 -present are available online at Number of copies: 1200 www.dpz.eu ISSN 0343-3528 The color plates of this volume have been funded by a contribution of the Omaha Henry Doorley Zoo. Lemur News Vol. 11, 2006 Page 1 Les fruits de ses 36 années d’enseignement et de recher- che au sein de ce département sont nombreux, et pour EDITORIAL ne citer que les étudiants qu’elle a encadrés en 3ème cy- cle, 65 ont soutenu leur mémoire de DEA dont 34 en Anthropologie Biologique, 7 en Paléontologie des Ver- The preparation of Lemur News Vol. 11 has been shad- tébrés et 24 en Biologie évolutive. Par ailleurs, 14 titu- owed by the untimely death of our colleague, Madame laires de DEA ont obtenu leur Doctorat de 3ème cycle en Berthe Rakotosamimanana in November 2005. -
New Findings at Andrahomana Cave, Southeastern Madagascar
Portland State University PDXScholar Anthropology Faculty Publications and Presentations Anthropology 4-1-2008 New Findings at Andrahomana Cave, Southeastern Madagascar David A. Burney National Tropical Botanical Garden Natalie Vasey Portland State University, [email protected] Laurie R. Godfrey University of Massachusetts William L. Jungers Stony Brook University Ramilisonina Musée d'Art et d'Archéologie See next page for additional authors Follow this and additional works at: https://pdxscholar.library.pdx.edu/anth_fac Part of the Anthropology Commons Let us know how access to this document benefits ou.y Citation Details D.A. Burney, N. Vasey, L.R. Godfrey, Ramilisonina, W.L. Jungers, M. Ramarolahy, and L. Raharivony – New Findings at Andrahomana Cave, Southeastern Madagascar. Journal of Cave and Karst Studies, v. 70, no. 1, p. 13–24. This Article is brought to you for free and open access. It has been accepted for inclusion in Anthropology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors David A. Burney, Natalie Vasey, Laurie R. Godfrey, William L. Jungers, Ramilisonina, M. F. Ramarolahy, and L. L. Raharivony This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/anth_fac/47 D.A. Burney, N. Vasey, L.R. Godfrey, Ramilisonina, W.L. Jungers, M. Ramarolahy, and L. Raharivony – New Findings at Andrahomana Cave, Southeastern Madagascar. Journal of Cave and Karst Studies, v. 70, no. 1, p. 13–24. NEW FINDINGS AT ANDRAHOMANA CAVE, SOUTHEASTERN MADAGASCAR D.A. BURNEY1,*,N.VASEY2, L.R. GODFREY3,RAMILISONINA4, W.L. JUNGERS5,M.RAMAROLAHY6, AND L.