The Rodent Problem in Madagascar

Total Page:16

File Type:pdf, Size:1020Kb

The Rodent Problem in Madagascar i Jean-Marci Duplantier and Daniel Rakotondravony Abstract In Madagascar the rodent problem is linked to one species, the black rat (Rattus rattus). This chapter will describe its population dynamics in agro-ecosystemsand its impact in agricultural crops, in stored grain, on human health and on the endemic rodent community. The black rat has spread absolutely everywhere: from sea level to more than 2,000 m-in houses, fields and also in the forests. It represents more than 95% of rodent catches in the fields and inside houses. Reproduction of rats living in fields stops during the cold season when their maximum annual abundance is observed. Irrigated rice crops suffer the greatest damage with losses estimated at 2.5% of the harvest. Rodent damage is also important for pluvial riceand to a lesser 'fi-- degree for cassava, sweet potatoes and tomatoes. Damage to cacao and sugar I cane are important only in the small, poorly-maintainedpersonal plantations. Plague ,I is undeniably the most important disease linked with rodents in Madagascar. It is endemic to the centre of the island in rural areas located above 800 m and its 5: prevalence is increasing. Rodent control in Madagascar is extremely complex because of the economic difficulties facing the country and because the black rat has displayed such successful colonisation in absolutely all habitats. Keywords Black rat, conservation biology, Madagascar, plague, rice fields, rodent control, rodent damage ! In : <( Ecologically-based rodent management $h. - Eds : Grant Singleton, Lyn Hinds, Herwig Leirs and Zhibin Zhang ACIAR editions, septembre 1999 'h, c 441 o 1O026038 Ecologically-based Rodent Management INTRODUCTION years ago. Significant immigration occurred only 1,000 years ago. The human settlers are of both Asiatic (Indonesian) and African N MADAGASCAR,the rodent origin. A mountain range, 2,800 m high, problem is clearly linked to one divides the island into two from north to I species, the black rat (Rattus raffus), south (Figure 1).The east side of the country and concerns both agriculture and public is more abrupt than the west. The effect of health, as well as conservationbiology. the monsoon and the trade winds on this Eruptions of rat populations were reported relief determines the different climates and in 1916,1932 and 1965 (Rakotomanana 1965; different types of vegetation within the Ravoavy 1966; in Zehrer 1999). After the last island. Human activities have significantly eruption, black rats were declared a public changed the vegetation and now the calamityby the Malagasy state, and different climatic regions can be agricultural pest management of rodents characterised by their agricultural became state-controlled. With respect to landscapes. public health, the major disease problem is The east coast of Madagascar has no dry undeniably the plague (caused by the season and rainfall ranges from 2,000 to bacillus Yersìnia pestis). It spread from the 3,000 mm per year. The original type of seaports of Madagascar at the end of the last vegetation is rainforest. This type of forest is century and during the past 70 years in rapid regression, due mostly to 'slash- permanent rural foci have existed in the and-bum' agriculture. The centre of the- Ir central part of the island, above 800 m. island, called the highlands, has a high Another major issue is that Madagascar's altitude, tropical climate characterised by a endemic rodents are threatened with cold and dry season from May to October extinction as a result of competitionwith the and a hot, rainy season from November to black rat in addition to habitat loss. This April. Before human settlement, it was a chapter will examine how this situation mosaic of forests-savannah. Today, the arose, and describe the impact of the black landscape is totally modified by people, rat in agricultural fields, in stored grain, on dominated by rice-growingin the valleys human health and on the endemic rodent and by dry farming-on the slopes (mainly community in Madagascar. corn and cassava). The primary forests are Madagascar is the fourth largest island in extremely rare, but there are plantations of the world (after Greenland, New Guinea and pin$and eucalyptus. The drier, west coast is Borneo), with a surface area of 587,000 less populated, and is a mixture of square km.It is 1,600 km long from north to cult&vationand pasture. The south is semi- south and 580 km at its widest point. It has aridkith a 10 month dry season, dominated been separated from the African continent by spiny bush. It is a cattle-rearing region for 160 million years. The minimum distance with some small patches of cultivated land. to Africa is now 300 km. The first human settlements occurred approximately2,000 442 Rodent Problems in Madagascar Y NU t plague areas <200m 200-500m 1 500-1 OOOm >1 OOOm 120km Figure 1. Map of Madagascar: relief, localisation of plague foci, main towns and study sites. 443 Ecologically-based Rodent Management COMMUNITY THE RODENT IN the catches in the capital, Antananarivo MADAGASCAR (Rakotondravony1992), which is situated in the centre of the island, and today it has At least 23 species of rodents exist today in reached nearly 95% (Duplantier et al., Madagascar (Rakotondravonyand unpublished data). Recently, we trapped Randrianjafy 1998).Like all animal and plant some individuals in rice fields on the east groups on the island, this order is .coast, several km from the cities. characterised by a high rate of endemism. The house mouse is commonly found in All the endemic rodents belong to the same houses but is less numerous than the black sub-family, Nesomyinae, which is divided rat. It is also found in rice fields, savannas into 8 genera and 20 species. They live and swamp edges, but in low numbers. The almost exclusively in the forest and their date and method of its settlement of current distribution is limited to the Madagascar is not known. remaining primary forests. Brachyiiromys raniirohitra and Nesomys ..lfus are captured The black rat could have come to on farmland but only where this is close to a Madagascar with the first immigrants forest (Rakotondravonyand Randrianjafy approximately2,000 years ago, however its 1998).The destruction of primary forests in presence is confirmed only from the 11th Madagascar, well illustrated by Green and century from excavations of an Islamic Sussman (WO), threatens the extinction of a archaeological site in the north of great number of animal species. It is Madagascar (Rakotozafy 1996; Radimilahy particularly the case for endemic rodents of 1997).The shrew Stincus murinus, native to the Nesomyinae sub-family: not only do all Southeast Asia, must have settled in a of them live in the forests and will therefore similar way. Today, the shrew is found all suffer from habitat loss, but the over the island, but it is less abundant than fragmentation of these forests makes it easier the black rat. The black rat has spread for the highly competitiveblack rat to everywhere.It can be found from sea level to penetrate into the forest. Today, it is more than 2,000 m-in Kouses, fields and common to encounter this species in the also in the forests. In the highlands and in primary forests (Goodman 1995). the middle-west, R. rattus represents more In Madagascar, populated areas are the than 98% of rodent catches both inside and exclusivi domain of three introduced outside buildings (Duplantier et al., species, &e black rat (R. raftus),the Norway unpublished data). Rats$nanosika (1995) rat (Rat& norvegicus) and the house mouse quoted the same figure Gom the east coast (Mus musculus). R. noruegicus has the most coconut plantations. In the fields of the restricted distribution-it is only found in coastal regions of Tulear (south-west) and the seaports and the big cities. It has been Tamatave (east), Rafanomezana (1998a) located in the seaports since the 1930s, but found 97% of rodents to be R. rattus. In the the date of its spread to the highland cities is natural forest of Andranomay, in the unknown (Brygoo 1966). At the beginning of highlands, R. ratfusrepresented two thirds the 1980s, it represented more than 80% of of captures from 1981 to 1982 and the 444 Rodent Problems in Madagascar endemic genus Eliurus only one third Reproduction of the black rat (Rakotondravony1992). At the edge of the forests and within fields at Important studies have been undertaken Andranomay, Rakotondravony (1992) recently on the endemic rodents which are monitored the reproduction in the black rat the most threatened order of mammals in over two years (1981-1982) (Figure 2). Madagascar (Goodman1995). However, due Reproductionbegins before the rainy season to their restricted distribution and scarcity, (Novemberto April) with the maximum they are of minor importance to agriculture number of pregnant females occurring in the and probably also to human health. middle of this period. These data have been confirmed recently: in 1996-1997 there was an interruption to reproduction in the fields POPULATION OF THE BIOLOGY from May to August, with maximum BUCK RAT reproduction in January (Rafanomezana It is a paradox that the black rat is the 1999). number one problem of agriculture and In Mandoto, reproduction of rats living in public health but little research has been houses does not seem to be linked with conducted on this species. Different survey season (Figure 3; Rahelinirina and programs have been conducted by the Duplantier 1999). However, among the rats Department of Plant Protection (Ministry of trapped outside, no reproduction occurs Agriculture), but most of the results are still between July and December-thereafter unpublished except for some data on breeding increases until May and ceases reproduction (Rafanomezana 1999).In fact, abruptly in June.
Recommended publications
  • Evoregions: Mapping Shifts in Phylogenetic Turnover Across Biogeographic
    bioRxiv preprint doi: https://doi.org/10.1101/650713; this version posted May 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Evoregions: Mapping Shifts in Phylogenetic Turnover Across Biogeographic 2 Regions 3 Running head: Mapping evolutionary important regions 4 Renan Maestri1,* & Leandro Duarte1,* 5 1Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, 6 Av. Bento Gonçalves 9500, CP 15007, Porto Alegre RS 91501-970, Brazil 7 *Correspondence be sent to: Departamento de Ecologia, Universidade Federal do Rio 8 Grande do Sul, Av. Bento Gonçalves 9500, CP 15007, Porto Alegre RS 91501-970, 9 Brazil; E-mail: [email protected]; [email protected] 10 ABSTRACT: Biogeographic regionalization offers context to the geographical 11 evolution of clades. The positions of bioregions inform both the spatial location of 12 clusters in species distribution and where their most important boundaries are. 13 Nevertheless, defining bioregions based on species distribution alone only incidentally 14 recovers regions that are important during the evolution of the focal group. The extent 15 to which bioregions correspond to centers of independent diversification depends on 16 how clusters of species composition naturally reflect the radiation of single clades, 17 which is not the case when mixed colonization occurred. Here, we showed that using 18 phylogenetic turnover based on fuzzy sets, instead of species composition, led to more 19 adequate detection of evolutionary important bioregions, that is, regions that truly 20 account for the independent diversification of lineages.
    [Show full text]
  • Subfamily Nesomyinae)
    bs_bs_banner Biological Journal of the Linnean Society, 2013, ••, ••–••. With 5 figures Latitude drives diversification in Madagascar’s endemic dry forest rodent Eliurus myoxinus (subfamily Nesomyinae) JEFF J. SHI1†, LAUREN M. CHAN1*‡, ZAFIMAHERY RAKOTOMALALA2,3, AMY M. HEILMAN1, STEVEN M. GOODMAN3,4 and ANNE D. YODER1 1Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA 2Département de Biologie Animale, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar 3Association Vahatra, BP 3972, Antananarivo 101, Madagascar 4Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA Received 29 March 2013; revised 14 May 2013; accepted for publication 14 May 2013 Numerous hypotheses have been proposed for the historical processes governing the rich endemism of Madagas- car’s biodiversity. The ‘watershed model’ suggests that drier climates in the recent geological past have resulted in the contraction of forests around major watersheds, thereby defining areas of endemism. We test whether this hypothesis explains phylogeographical patterns in a dry forest-dependent rodent, Eliurus myoxinus, an endemic species widely distributed through western Madagascar. We sequenced the mitochondrial cytochrome b locus and nuclear introns of the β-fibrinogen and the growth hormone receptor genes for E. myoxinus. Using a parametric bootstrapping approach, we tested whether the mitochondrial gene tree data fit expectations of local differentiation given the watershed model. We additionally estimated population differentiation and historical demographic parameters, and reconstructed the spatial history of E. myoxinus to highlight spatial and temporal patterns of differentiation. The data do not support the watershed model as a clear explanation for the genetic patterns of diversity within extant E.
    [Show full text]
  • Norntatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    NorntatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3087, 55 pp., 24 figures, 5 tables February 16, 1994 Systematic Studies of Madagascar's Endemic Rodents (Muroidea: Nesomyinae): Revision of the Genus Eliurus MICHAEL D. CARLETON' CONTENTS Abstract ....................................................................... 2 Introduction ................................................................... 2 Taxonomic History .................... ........................... 3 Materials and Methods. 4 Acknowledgments .7 Characterization of the Genus. 7 External. 7 Cranial and Postcranial Skeleton. 8 Dentition .10 Accounts of Species .10 Eliurus Milne Edwards .11 Eliurus myoxinus Milne Edwards .12 Eliurus minor Major .15 Eliurus majori Thomas . ..................................................... .20 Eliurus penicillatus Thomas ................................ .....................23 Eliurus tanala Major ...................................... ................... 25 Eliurus webbi Ellerman, new rank .......................... ................... 33 Eliurus petteri, new species ................................ ................... 37 Eliurus ellermani, new species ............................. ................... 39 Interspecific Relationships ................................... ................... 40 Morphometric Comparisons ............................... ................... 42 Phyletic Inferences ....................................... ................... 43
    [Show full text]
  • Mystromys Albicaudatus – White-Tailed Rat
    Mystromys albicaudatus – White-tailed Rat Fynbos biomes; Dean 1978) and is endemic to South Africa and Lesotho. Although it occurs widely across the assessment region, it has an extremely patchy and fragmented area of occupancy due to its preference for microhabitats within vegetation types and transitory habitats created after fire. Out of a total area of 417,452 km2 broadly available to the species, we inferred an effective occupancy of only 3,719–12,061 km2. They are one of the rarest species in the small mammal community, as demonstrated by consistently low trapping records. Given estimated densities ranging from 0.9– 37 colonies (breeding pairs) / km2, the most likely mature population size is 6,997–13,648 individuals. Using Patrick O’Farrell grassland vegetation type as a proxy for subpopulation delineation, subpopulation size averages 178 ± 177 colonies and ranges from 1–760 colonies, which means Red List status (2016) Vulnerable C2a(i)*† the largest subpopulation is likely to be 712–1,521 mature Red List status (2008) Endangered A3c individuals. There is an inferred continuing decline from grassland habitat loss (due to expansion in crop Reasons for change Non-genuine change: agriculture, urban and industrial development, and climate New information change) and grassland habitat degradation, primarily from Red List status (2004) Endangered A3c suppression of natural fire regimens. This may represent an emerging threat to this species if fire is increasingly TOPS listing (NEMBA) (2007) None suppressed or controlled with the rise of intensive wildlife CITES listing None breeding. Grasslands are the most threatened biome in the assessment region with at least 33% transformed Endemic No already.
    [Show full text]
  • Petits Mammifères (Afrosoricida Et Rodentia) Nouvellement Recensés Dans Le Parc National D’Andohahela (Parcelle 1), Madagascar
    66 NOTES built their nest above the weaver colony, which was sites in nearby areas. Hence, the unusual placement also in active breeding. of the Madagascar Buzzard nest maybe an adaptation That same day I observed the raptor nest for 4 for a suitable nesting site. It would be interesting to h (7-11 am), and no aggressive interaction was know if this was a unique incident or if it occurs with observed between the weavers and adult raptors. some regularity in other areas in Madagascar lacking The adult buzzard attending the nest was a female, extensive nesting habitat. which left the nest on occasion and moved to other trees within a distance of about 150 m, presumably Acknowledgements waiting for the male to deliver prey. This behavior is I would like to thank Russell Thorstrom for his normal for raptors when the male is absent during a comments on the draft of this paper, and The Peregrine long period looking for food; the same behavior has Fund Madagascar Project staff for their suggestions. been observed for the Henst Goshawk (Accipiter Thanks also to Lucienne Wilmé and Steven M. henstii) and Madagascar Harrier-hawk (Polyboroides radiatus) (Rene de Roland, 2000). Goodman for their comments on this note. The case reported herein appears to be the first example of the Madagascar Buzzard building a nest References in association with a colony of passerines. For other Berkelman, J. D. 1995. Nest site characteristics of the members of the genus Buteo, there are parallel Madagascar Buzzard in the rain forest of the Masoala observations.
    [Show full text]
  • Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2009 Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Norris, Ryan, "Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils" (2009). Graduate College Dissertations and Theses. 164. https://scholarworks.uvm.edu/graddis/164 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. PHYLOGENETIC RELATIONSHIPS AND DIVERGENCE TIMES IN RODENTS BASED ON BOTH GENES AND FOSSILS A Dissertation Presented by Ryan W. Norris to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology February, 2009 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Biology. Dissertation ~xaminationCommittee: w %amB( Advisor 6.William ~il~atrickph.~. Duane A. Schlitter, Ph.D. Chairperson Vice President for Research and Dean of Graduate Studies Date: October 24, 2008 Abstract Molecular and paleontological approaches have produced extremely different estimates for divergence times among orders of placental mammals and within rodents with molecular studies suggesting a much older date than fossils. We evaluated the conflict between the fossil record and molecular data and find a significant correlation between dates estimated by fossils and relative branch lengths, suggesting that molecular data agree with the fossil record regarding divergence times in rodents.
    [Show full text]
  • UZH Publikation A4
    Alle ausgestellten Tiere sortiert nach deutschen Artnamen deutsch engl wiss Vitrine Klasse Standort Aal Fresh-water Eel Anguilla anguilla einh. Fische Knochenfische EG Aaskäfer Silphidae einh. Insekten Insekten EG Adlerfregattvogel Ascension Frigatebird Fregata aquila Antarktis Vögel UG Adlerschnabel Wite-tipped Sicklebill Eutoxeres aquila Neotropis Kleinv. Vögel UG Afrikanische Waldmaus Woodland Thicket Rat Grammomys dolichurus Äthiopis Säugetiere UG Afrikanischer Scherenschnabel African Skimmer Rynchops flavirostris Äthiopis Vögel UG Agone Landloked Shad Alosa fallax lacustris einh. Fische Knochenfische EG Ährenträgerpfau Green Peafowl Pavo muticus Orientalis Vögel UG Alet Chub Leuciscus cephalus einh. Fische Knochenfische EG Alexandrasittich Princess Parrot Polytelis alexandrae Australis Vögel UG Alpen-Windelschnecke Vertigo alpestris einh. Mollusken Schnecken EG Alpenbraunelle Alpine Accentor Prunella collaris einh. Vögel Alpen Vögel EG Alpendohle Alpine Chough Pyrrhocorax graculus einh. Vögel Alpen Vögel EG Alpenkrähe Red-billed Chough Pyrrhocorax pyrrhocorax einh. Vögel Alpen Vögel EG Alpensalamander European Black Salamandra atra einh. Amphibien Amphibien EG Salamander Alpenschneehuhn Ptarmigan Lagopus muta einh. Vögel Alpen Vögel EG Alpenschneehuhn Ptarmigan Lagopus muta Eiszeiten Vögel EG Alpensegler Alpine Swift Apus melba einh. Vögel S. Vögel EG Alpenspitzmaus Alpine Shrew Sorex alpinus einh. Insektenfr. Säugetiere EG Alpenstrandläufer Dunlin Calidris alpina einh. Vögel Schlick Vögel EG Amazonasfischer Amazon Kingfisher Chloroceryle
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • 2017 ASM Standing Committee and Representatives Annual Reports
    American Society of Mammalogists Annual Reports of Standing Committees, Affiliates, and Ombudspersons 97th Annual Meeting University of Idaho 20-24 June 2017 1 Table of Contents I. Standing Committees .................................................................................................................. 3 African Graduate Student Fund Committee ........................................................... 3 Animal Care and Use Committee ........................................................................... 4 Archives Committee ................................................................................................ 7 Conservation Committee ......................................................................................... 8 Conservation Awards Committee ......................................................................... 10 Coordination Committee ....................................................................................... 10 Development Committee ....................................................................................... 11 Education and Graduate Students Committee ...................................................... 12 Grants-in-Aid Committee ...................................................................................... 14 Grinnell Award Committee ................................................................................... 18 Honoraria and Travel Awards Committee ........................................................... 19 Honorary Membership Committee ......................................................................
    [Show full text]
  • The Input of DNA Sequences to Animal Systematics: Rodents As Study Cases
    6 The Input of DNA Sequences to Animal Systematics: Rodents as Study Cases Laurent Granjon1 and Claudine Montgelard2 1Institut de Recherche Pour le Développement (IRD), CBGP(UMRIRD/INRA/CIRAD/MontpellierSupAgro), Campus de Bel-Air, Dakar, 2Biogéographie et Ecologie des Vertébrés (EPHE), Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175 CNRS), Montpellier, Cedex 5 1Senegal 2France 1. Introduction 1.1 General context The advent of molecular techniques, and especially the possibility to get DNA sequences that can then be compared between individuals of any taxon using more and more powerful algorithms of analysis, has represented a kind of revolution in systematics (Lecointre et al., 2006; Giribet et al., 2007). As in other groups, mammalian systematics was for long only based on morphological and anatomical characters. A brief history of Mammal taxonomy has been provided by Wilson & Reeder (2005: xxiii), starting by early works of Trouessart (1898-99, 1904-5) and ending by the compilation by Mc Kenna & Bell (1997). Since the latter, a huge quantity of data including a significant proportion of molecular ones has accumulated, that have greatly improved our view of the relationships between main mammalian groups (Springer et al., 2004), and increased the number of individual species in each of them (Wilson & Reeder, 2005). Rodents represent the most diverse order of Mammals, comprising around 40% of both generic and specific mammalian diversity (Wilson & Reeder, 2005). In one of the first significant contribution to the study of their classification, Tullberg (1899) subdivided them into two suborders, the Sciurognathi and Hystricognathi (see Hautier et al., 2011), based on morpho-anatomical characteristics of their skull.
    [Show full text]
  • The Newsletter of the Madagascar Section of the I.U.C.N./S.S.C. Primate Specialist Group NUMBER 11, June 2006
    LEMUR NEWS The Newsletter of the Madagascar Section of the I.U.C.N./S.S.C. Primate Specialist Group NUMBER 11, June 2006 DPZ Deutsches Primatenzentrum Universität Hamburg Cover photo: This volume of Lemur News is dedicated to Madame Berthe Rakotosamimanana (1938-2005). LEMUR NEWS The Newsletter of the Madagascar Section of the IUCN/SSC Primate Specialist Group PSG Chairman: Russel A. Mittermeier Addresses for contributions PSG Deputy Chairman: William R. Konstant Jörg U. Ganzhorn Biozentrum Grindel Editors Martin-Luther-King-Platz 3 Jörg U. Ganzhorn D-20146 Hamburg Ken Glander Germany Jonah Ratsimbazafy E-mail: [email protected] Rodin M. Rasoloarison Michael Schwibbe Jonah Ratsimbazafy, Rodin M. Rasoloarison, Anne Yoder Rose Marie Randrianarison GERP Assistant Editors 34, Cité des Professeurs, Fort Duchesne Anja Ganzhorn Antananarivo (101) Rose Marie Randrianarison Madagascar E-mail: [email protected] Layout Heike Klensang Lemur News online Volumes 3 -present are available online at Number of copies: 1200 www.dpz.eu ISSN 0343-3528 The color plates of this volume have been funded by a contribution of the Omaha Henry Doorley Zoo. Lemur News Vol. 11, 2006 Page 1 Les fruits de ses 36 années d’enseignement et de recher- che au sein de ce département sont nombreux, et pour EDITORIAL ne citer que les étudiants qu’elle a encadrés en 3ème cy- cle, 65 ont soutenu leur mémoire de DEA dont 34 en Anthropologie Biologique, 7 en Paléontologie des Ver- The preparation of Lemur News Vol. 11 has been shad- tébrés et 24 en Biologie évolutive. Par ailleurs, 14 titu- owed by the untimely death of our colleague, Madame laires de DEA ont obtenu leur Doctorat de 3ème cycle en Berthe Rakotosamimanana in November 2005.
    [Show full text]
  • New Findings at Andrahomana Cave, Southeastern Madagascar
    Portland State University PDXScholar Anthropology Faculty Publications and Presentations Anthropology 4-1-2008 New Findings at Andrahomana Cave, Southeastern Madagascar David A. Burney National Tropical Botanical Garden Natalie Vasey Portland State University, [email protected] Laurie R. Godfrey University of Massachusetts William L. Jungers Stony Brook University Ramilisonina Musée d'Art et d'Archéologie See next page for additional authors Follow this and additional works at: https://pdxscholar.library.pdx.edu/anth_fac Part of the Anthropology Commons Let us know how access to this document benefits ou.y Citation Details D.A. Burney, N. Vasey, L.R. Godfrey, Ramilisonina, W.L. Jungers, M. Ramarolahy, and L. Raharivony – New Findings at Andrahomana Cave, Southeastern Madagascar. Journal of Cave and Karst Studies, v. 70, no. 1, p. 13–24. This Article is brought to you for free and open access. It has been accepted for inclusion in Anthropology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors David A. Burney, Natalie Vasey, Laurie R. Godfrey, William L. Jungers, Ramilisonina, M. F. Ramarolahy, and L. L. Raharivony This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/anth_fac/47 D.A. Burney, N. Vasey, L.R. Godfrey, Ramilisonina, W.L. Jungers, M. Ramarolahy, and L. Raharivony – New Findings at Andrahomana Cave, Southeastern Madagascar. Journal of Cave and Karst Studies, v. 70, no. 1, p. 13–24. NEW FINDINGS AT ANDRAHOMANA CAVE, SOUTHEASTERN MADAGASCAR D.A. BURNEY1,*,N.VASEY2, L.R. GODFREY3,RAMILISONINA4, W.L. JUNGERS5,M.RAMAROLAHY6, AND L.
    [Show full text]