Tropics 16-3.Indb

Total Page:16

File Type:pdf, Size:1020Kb

Tropics 16-3.Indb TROPICS Vol. 16 (3) Issued May 31, 2007 Effects of an alien shrub species, Leucaena leucocephala, on establishment of native mid-successional tree species after disturbance in the national park in the Chichijima island, a subtropical oceanic island * Kenji HATA , Jun-Ichirou SUZUKI and Naoki KACHI Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa 1−1, Hachioji, Tokyo, 192−0397, Japan *Corresponding author: Kenji HATA. Tel; +81−426−77−2585, Fax; +81−426−77−2559, E-mail: [email protected] ABSTRACT Effects of an invasion of an alien & Duggin, 1997), which would change successional shrub species, Leucaena leucocephala , were pathways of native plants in an invaded habitat. The investigated on subsequent establishment of a successional pathways of native species in some tropical native mid-successional wooden species, Schima and subtropical oceanic islands were affected by an mertensiana at early-successional stages after alien shrub species, Leucaena leucocephala (L.) de disturbance in a subtropical oceanic island, Wit (Leguminosae). The species invaded and formed Chichijima in Japan. Changes in basal areas, dense monotypic thickets in disturbed areas in many densities and size distribution of forests at a site oceanic islands, which should have prevented seedlings dominated by L. leucocephala were compared with of woody species and understory herbaceous species those at a site dominated by native shrub species, from germination and/or growth under canopies of L. Trema orientalis at early-successional stages. leucocephala (e.g. Decker 1992, Mueller-Dombois and Effects of L. leucocephala on germination of seeds Fosberg 1998, Yamamura et al. 1999). and growth of seedlings of S. mertensiana were Germination or growth of some plant species in a quantified at the sites. There were few recruited subtropical region were inhibited by aqueous extracts seedlings of S. mertensiana and they did not grow of plant tissues of L. leucocephala under experimental at the site dominated by L. leucocephala. On the conditions (Chou & Kuo, 1986). These allelopathic effects other hand, there were a few recruited seedlings of L. leucocephala could prevent seedlings of endemic and within a 1 m x 1 m area and they positively grew other native plants from establishment in oceanic islands, at the site dominated by T. orientalis. Germination which inevitably influences the native successional rates of seeds and growth rates of seedlings pathway. This process should be quantitatively described of S. mertensiana at the site dominated by L. for conservation of endemic plants in oceanic islands. leucocephala were lower than those at the site Effects of invasion of L. leucocephala on native dominated by T. orientalis. Germination of seeds successional pathways were described by comparison and growth of seedlings of S. mertensiana were of structure of the secondary forests between forests inhibited by L. leucocephala at the disturbed site, dominated by L. leucocephala and those by native species which potentially changed an early successional in the Bonin Islands. In addition, histories of vegetation pathway of the plant community. types of the forests were also analyzed based on aerial photographs (Yoshida & Oka, 2000). There were Key words: invasive plants, Schima mertensiana, differences in the structures and successional pathways Bonin Islands, seed germination, seedling growth, of the forests (Yoshida & Oka, 2000). However, we still Trema orientalis do not know quantitative effects of the invasion of L. leucocephala on establishment of native plants at mid- or late-successional stages. For this purpose, it is necessary INTRODUCTION to compare establishment and growth of native plants at Invasion of an alien plant species often prevents native sites at which L. leucocephala invaded or not. plant species (Myers & Bazely, 2003) from establishment It is hypothesized that native plants of mid- or late- due to shading (Weihe & Neely, 1997), litter accumulation successional species in subtropical oceanic islands would (Walker & Vitousek, 1991) and allelopathy (Gentle be prevented from establishment in a forest dominated 284 Kenji HATA, Jun-Ichirou SUZUKI and Naoki KACHI by L. leucocephala at early successional stages because at the both sites. Forest floors of the study sites were of allelopathic effects of L. leucocephala (Chou & Kuo, covered with herbaceous species, and the most dominant 1986). Based on the hypothesis, we tested the prediction species was Stachytarpheta jamaicensis (L.) Vahl that germination of seeds and growth of seedlings (Verbenaceae). of native mid-successional species under plants of L. leucocephala are lower than those under plants of native Measurements of forests dominated by L. species. leucocephala or T. orientalis In order to test the prediction, firstly, we compared A 10 m × 10 m plot was established at each site in July changes in biomass, densities and size distribution of 2001. The areas from which the broadcasting towers dominant species in a forest dominated by L. leucocephala were removed were so limited that only one plot was with those in a forest dominated by native species at established at the site. All the individuals of woody early-successional stages for three years in the Bonin species in the plots were tagged, and their diameters at (Ogasawara) Islands, subtropical islands in the northern ground level were measured. Subsequent measurements Pacific. Secondly, we compared germination rates of a were carried out in July 2002 and September 2003. mid-successional species of a native tree and growth rates of its seedlings in the forest dominated by L. Field experiments leucocephala with those in the forest dominated by a A field experiment was carried out in order to test native species appeared at early-successional stages by whether established plants of L. leucocephala prevented field experiments. plants of S. mertensiana from germination and growth. Five 1 m × 1 m plots were established under canopies of L. leucocephala outside of the 10 m × 10 m plot at the site MATERIALS AND METHODS dominated by L. leucocephala and other five 1 m × 1 m Plant species plots under canopies of T. orientalis outside of the 10 m × A shrub species, L. leucocephala, was introduced to the 10 m plot at the site dominated by T. orientalis. Each 1 m Bonin Islands in 1862 (Funakoshi, 1989) and spread into × 1 m plot was located at least 1 m away each other. abandoned areas (Shimizu, 1989). A native shrub species, These five 1 m × 1 m plots were divided into three Trema orientalis Blume (Ulmaceae) appears at early categories: three 1 m × 1 m plots of the five 1 m × 1 m stages in a secondary succession in the Bonin Islands plots were allocated to a seedling transplant experiment. (Shimizu, 1989). A wooden species, Schima mertensiana In one of the rest two 1 m × 1 m plots, germinated (Sieb. et Zucc.) Koidez (Theaceae), is endemic to seedlings were counted. Total canopy openness was the Bonin Islands, and dominates at middle stages in measured in the rest 1 m × 1 m plots. secondary succession (Shimizu, 1989). In May 2002, the seedling transplant experiment was conducted. Sixty seedlings of S. mertensiana with Study site ca. 10 cm in height and ca. 0.2 cm in diameter at ground This study was conducted at two sites in secondary level were collected near the 10 m × 10 m plots but forests at Yoakedaira (27˚05 ′ N, 142˚12 ′ E, 220 m above outside of the 1 m × 1 m plots. Ten of the seedlings were sea level) in the national park in the largest island of the transplanted into each of the 1 m × 1 m plots after their Bonin Islands, Chichijima. The ground at the study sites diameters at ground level and heights were measured. (ca. 400 m2) were bared by the removal of broadcasting Each of the seedlings was planted 20 cm away from the towers in 1999. Surface soils and vegetation around the others. All transplanted seedlings were harvested and towers were cleared. One of the study sites was invaded dried at 70 ˚C for 72 h for weighting at the end of the and dominated by an alien species, L. leucocephala, and transplant experiment in May 2003. another site by a native species, T. orientalis after 1999. The initial biomass of the transplanted seedlings was The study sites were surrounded by the secondary estimated based on the relationship between diameters at forest dominated by S. mertensiana (Appendix 1). Many ground level, heights, and dry weights. The relationship mature trees of S. mertensiana could be homogeneously was determined by the 24 seedlings of S. mertensiana dispersed in the secondary forests. Indeed, dispersed collected near the 10 m × 10 m plots but outside of the 1 seeds of S. mertensiana were often observed at the m × 1 m plots. The regression equation was; study sites (personal observation). Therefore, sufficient the initial dry weight (g) = 0.23116 + 1.2608 (diameter numbers of seeds of S. mertensiana could be dispersed at ground level (cm))2 x height (cm), r2 = 0.667, p < 0.0001. Effects of L. leucocephala on S. mertensiana in an oceanic island 285 One of the six 1 m × 1 m plots was abandoned openness of each point. because nine transplanted seedlings died by June 2002. A 1 m × 1 m plot, therefore, was newly established and ten Data analysis seedlings of S. mertensiana were transplanted in the plot Effects of existences of S. jamaicensis on germination of in June 2002. seeds and growth of seedlings of S. mertensiana were not Two hundred seeds that were collected in a detected (data not shown). Therefore, the effects were secondary forest around the study sites were sown in not considered in the further analyses. November 2002 into a pot with 21 cm in diameter and All statistical analyses were carried out using the 17 cm in depth.
Recommended publications
  • Differential Resistance of Gordonieae Trees to Phytophthora Cinnamomi
    HORTSCIENCE 44(5):1484–1486. 2009. Successful crosses of Franklinia · Schima produced the intergeneric hybrid ·Schimlinia (Ranney et al., 2003) and crosses of Frank- Differential Resistance of Gordonieae linia · Gordonia produced the intergeneric hybrid ·Gordlinia (Ranney and Fantz, 2006). Trees to Phytophthora cinnamomi However, little is known about the resistance 1 2,5 3 of related species and potential parents to Elisabeth M. Meyer , Thomas G. Ranney , and Thomas A. Eaker P. cinnamomi. The objective of this study Department of Horticultural Science, Mountain Horticultural Crops was to evaluate a collection of species, Research and Extension Center, North Carolina State University, 455 clones, and hybrids of Franklinia, Gordonia, Research Drive, Fletcher, NC 28732 and Schima for resistance to P. cinnamomi. 4 Kelly Ivors Materials and Methods Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, During the summer of 2008, seven taxa of Gordonieae trees were inoculated with Mills River, NC 28759 P. cinnamomi at the North Carolina State Additional index words. host plant resistance, disease resistance, Abies fraseri, Franklinia University Mountain Horticultural Crops alatamaha, Gordonia lasianthus, ·Gordlinia grandiflora, ·Schimlinia floribunda, Schima Research Station in Mills River, NC. These taxa included F. alatamaha, G. lasianthus, S. wallichii, Schima khasiana, Phytophthora cinnamomi khasiana, S. wallichii, ·Gordlinia H2004- Abstract. Trees in the Theaceae tribe Gordonieae are valuable nursery crops, but some of 024-008, ·Schimlinia H2002-022-083, and these taxa are known to be highly susceptible to root rot caused by Phytophthora ·Schimlinia H2002-022-084. The plants of cinnamomi Rands. The objective of this study was to evaluate a collection of Gordonieae the selected Gordonieae taxa were 5-month- taxa for resistance to this pathogen.
    [Show full text]
  • Agrosilvopastoral Systems in Northern Thailand and Northern Laos: Minority Peoples’ Knowledge Versus Government Policy
    Land 2014, 3, 414-436; doi:10.3390/land3020414 OPEN ACCESS land ISSN 2073-445X www.mdpi.com/journal/land/ Article Agrosilvopastoral Systems in Northern Thailand and Northern Laos: Minority Peoples’ Knowledge versus Government Policy Chalathon Choocharoen 1, Andreas Neef 2,*, Pornchai Preechapanya 3 and Volker Hoffmann 1 1 Institute for Social Sciences of the Agricultural Sector, Rural Communication and Extension (430a), University of Hohenheim, 70593 Stuttgart, Germany; E-Mails: [email protected] (C.C.); [email protected] (V.H.) 2 Center for Development Studies, School of Social Sciences, Faculty of Arts, University of Auckland, Auckland 1142, New Zealand 3 Queen Sirikit Botanic Garden, Mae Rim, Chiang Mai 50180, Thailand; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +64-9-9233486; Fax: +64-9-3737439. Received: 28 January 2014; in revised form: 2 May 2014 / Accepted: 13 May 2014 / Published: 20 May 2014 Abstract: Traditional agrosilvopastoral systems have been an important component of the farming systems and livelihoods of thousands of ethnic minority people in the uplands of Mainland Southeast Asia. Drawing on a combination of qualitative and participatory inquiries in nine ethnic minority communities, this study emphasizes the complex articulation of local farmers’ knowledge which has been so far excluded from governmental development and conservation policies in the northern uplands of Thailand and Laos. Qualitative analysis of local knowledge systems is performed using the Agroecological Knowledge Toolkit (AKT5) software. Results show that ethnic minorities in the two countries perceive large ruminants to be a highly positive component of local forest agro-ecosystems due to their contribution to nutrient cycling, forest fire control, water retention, and leaf-litter dispersal.
    [Show full text]
  • Schima Wallichii (DC.) Korth
    Schima wallichii (DC.) Korth. Theaceae simartolu, schima, samak, needlewood, mang tan, Chinese guger tree, chilauni LOCAL NAMES Bengali (cheloni,mukria sal,makrisal); Burmese (laukya); Chinese (he,muhe,heshu,hemu,haozi haozi,gaobei,Chinese guger tree); English (needlewood,schima); Hindi (makusal,kanak,dieng-shyr-nagan,chilauni,nogabhe); Indonesian (seru,madang gatal,puspa); Javanese (medang gatal,seru); Lao (Sino- Tibetan) (‘mi,boun nak,‘khai sou); Malay (kelinchi padi,gegatal,medang gatal,gatal-gatal,samak); Nepali (sule-chilauni,aule-chilaune,chilaune,goe- chassi); Thai (thalo,champa dong,bunnak); Trade name (simartolu,Chinese guger tree,samak,needlewood,schima,mang tan,chilauni); Vietnamese (v[oos]i thu[oos]c) BOTANIC DESCRIPTION Schima wallichii is an evergreen, medium-sized to large tree growing to 47 m in height; bole cylindrical, branchless for up to 25 m, diameter up to 125 (max. 250) cm, with a steep buttresses rarely up to 1.8 m high; bark surface ruggedly cracked into small, thick, angular pieces, red-brown to dark grey; inner bark with skin-irritating fibres, bright red in colour. Leaves spiral, oblong to broadly elliptic, 6-13 x 3-5 cm; base wedge shaped; apex acute to acuminate; margin toothed; secondary veins 6-8 pairs; petioles about 3 mm long. Flowers solitary in axils at the apices of twigs, with 2 bracteoles, pentamerous; sepals subequal, persistent in fruit; petals connate at base, white, with a rosy flush; stamens many, adnate to the corolla base; anthers versatile; ovary superior, 5-locular with 2-6 ovules in each cell; style simple. Fruit a woody subglobose capsule, 2-3 cm in diameter, silky, opening by 5 valves; seeds winged all around.
    [Show full text]
  • Forest Structures, Composition, and Distribution on a Pacific Island, with Reference to Ecological Release and Speciation!
    Pacific Science (1991), vol. 45, no. 1: 28-49 © 1991 by University of Hawaii Press. All rights reserved Forest Structures, Composition, and Distribution on a Pacific Island, with Reference to Ecological Release and Speciation! YOSHIKAZU SHIMIZU2 AND HIDEO TABATA 3 ABSTRACT: Native forest and scrub of Chichijima, the largest island in the Bonins, were classified into five types based on structural features: Elaeocarpus­ Ardisia mesic forest, 13-16 m high, dominated by Elaeocarpus photiniaefolius and Ardisia sieboldii; Pinus-Schima mesic forest, 12-16 m high, consisting of Schima mertensiana and an introduced pine , Pinus lutchuensis; Rhaphiolepis­ Livistonia dry forest, 2-6 m high, mainly occupied by Rhaphiolepis indica v. integerrima; Distylium-Schima dry forest, 3-8 m high, dominated by Distylium lepidotum and Schima mertensiana; and Distylium-Pouteria dry scrub, 0.3­ 1.5 m high, mainly composed of Distylium lepidotum. A vegetation map based on this classification was developed. Species composition and structural features of each type were analyzed in terms of habitat condition and mechanisms of regeneration. A group of species such as Pouteria obovata, Syzgygium buxifo­ lium, Hibiscus glaber, Rhaphiolepis indica v. integerrima, and Pandanus boninen­ sis, all with different growth forms from large trees to stunted shrubs, was subdominant in all vegetation types. Schima mertensiana , an endemic pioneer tree, occurred in both secondary forests and climax forests as a dominant canopy species and may be an indication of "ecological release," a characteristic of oceanic islands with poor floras and little competitive pressure. Some taxonomic groups (Callicarpa, Symplocos, Pittosporum, etc.) have speciated in the under­ story of Distylium-Schima dry forest and Distylium-Pouteria dry scrub.
    [Show full text]
  • Vegetation Changes from the Late Pleistocene Through the Holocene from Three Areas of Archaeological Significance in Thailand Joyce C
    ARTICLE IN PRESS Quaternary International 113 (2004) 111–132 Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand Joyce C. Whitea,*, Daniel Pennyb, Lisa Kealhoferc, BernardMaloney d,{ a University of Pennsylvania Museum, 3260 South Street, Philadelphia, PA 19104-6324, USA b School of Geosciences, Department of Archaeology and the Australian Key Centre for Microscopy and Microanalysis, University of Sydney, Madsen Building FO9, 2006 NSW, Australia c Department of Anthropology and Sociology/Environmental Studies Program, Santa Clara University, Santa Clara, CA 95053, USA d School of Archaeology and Palaeoecology, The Queen’s University, Belfast BT7 1NN, Northern Ireland, UK Abstract Reconstruction of the environmental history of mainlandSoutheast Asia from the late Pleistocene is a relatively recent endeavor. Beginning in the mid-1990s, lacustrine sediments in Thailand with deposits dating from the late Pleistocene have been cored and analyzedfor palaeoenvironmental indicators.The three cores reportedhere were extractedby the ThailandPalaeoenvironment Project, whose objective was to retrieve empirical data on vegetation and sedimentary sequences that can in turn be related to the growing archaeological record from this part of monsoonal Asia. This evidence, along with data from other recently analyzed cores, is beginning to develop a picture of regionally diverse environmental/cultural trajectories. Possible relationships between the environmental changes and cultural and/or climatic impacts are discussed. r 2003 Elsevier LtdandINQUA. All rights reserved. 1. Introduction cene hadbeen extractedandanalyzedfor palaeovegeta- tion andother environmental changes. Those records For research on the evolution of Asia’s monsoonal that hadbeen publishedwere only a few millennia in system, Thailandholdsa key geographic position.
    [Show full text]
  • A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 24 | Issue 1 Article 8 2007 A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M. Prince Rancho Santa Ana Botanic Garden, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Prince, Linda M. (2007) "A Brief Nomenclatural Review of Genera and Tribes in Theaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 24: Iss. 1, Article 8. Available at: http://scholarship.claremont.edu/aliso/vol24/iss1/8 Aliso 24, pp. 105–121 ᭧ 2007, Rancho Santa Ana Botanic Garden A BRIEF NOMENCLATURAL REVIEW OF GENERA AND TRIBES IN THEACEAE LINDA M. PRINCE Rancho Santa Ana Botanic Garden, 1500 North College Ave., Claremont, California 91711-3157, USA ([email protected]) ABSTRACT The angiosperm family Theaceae has been investigated extensively with a rich publication record of anatomical, cytological, paleontological, and palynological data analyses and interpretation. Recent developmental and molecular data sets and the application of cladistic analytical methods support dramatic changes in circumscription at the familial, tribal, and generic levels. Growing interest in the family outside the taxonomic and systematic fields warrants a brief review of the recent nomenclatural history (mainly 20th century), some of the classification systems currently in use, and an explanation of which data support various classification schemes. An abridged bibliography with critical nomen- clatural references is provided. Key words: anatomy, classification, morphology, nomenclature, systematics, Theaceae. INTRODUCTION acters that were restricted to the family and could be used to circumscribe it.
    [Show full text]
  • Winged Seeds from the Early Miocene of the Mecsek Mts, W Hungary
    Palaeobiodiversity and Palaeoenvironments https://doi.org/10.1007/s12549-020-00461-0 ORIGINAL PAPER Fossil Gordonia (s.l.)–like (Theaceae) winged seeds from the early Miocene of the Mecsek Mts, W Hungary Boglárka Erdei1 & Lilla Hably1 Received: 3 March 2020 /Revised: 5 May 2020 /Accepted: 21 September 2020 # The Author(s) 2021 Abstract Winged seeds were recovered from two sites of the late early Miocene (Karpatian) flora of Magyaregregy, Mecsek Mts, W Hungary. The seeds are assigned to the fossil-genus and species, Mecsekispermum gordonioides Hably and Erdei gen. nov. et sp. nov., and are tentatively related to the family Theaceae. Based on the overall character of the winged seeds and the isodiametric surface pattern of the seed coat, the seeds are most comparable with species of Gordonia J. Ellis (s.l.,) in Theeae (Laplacea Kunth or Polyspora Sweet). A comparison with winged seeds of other fossil genera, e.g. Saportaspermum Meyer and Manchester, and winged seeds of modern genera in various families is also given. The fossil flora is preserved in the fish scale-bearing clay marl belonging to the Feked Formation and Komló Claymarl Member and dated as Karpatian (late Burdigalian, standard chronostratigraphy). Keywords Fossil flora . Magyaregregy . Saportaspermum . Mecsekispermum . Fish scale-bearing clay marl . Karpatian Introduction Kentucky and Tennessee (Grote and Dilcher 1992; Martínez-Millán 2010). Winged fruits or seeds have frequently been reported in the The classification of the family Theaceae varied in many European fossil record. Disseminules having an apical or lat- authors, according to the characters emphasised (Prince and eral wing have been described variously as Cedrelospermum Parks 2001).
    [Show full text]
  • (Theaceae) Species: Insights Into DNA Barcoding and Phylogeny
    RESEARCH ARTICLE Comparative chloroplast genomes of eleven Schima (Theaceae) species: Insights into DNA barcoding and phylogeny Xiang-Qin Yu1,2, Bryan T. Drew3, Jun-Bo Yang1, Lian-Ming Gao2*, De-Zhu Li1* 1 Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China, 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China, 3 Department of a1111111111 Biology, University of Nebraska, Kearney, NE, United States of America a1111111111 a1111111111 * [email protected] (DZL); [email protected] (LMG) a1111111111 a1111111111 Abstract Schima is an ecologically and economically important woody genus in tea family (Thea- ceae). Unresolved species delimitations and phylogenetic relationships within Schima limit OPEN ACCESS our understanding of the genus and hinder utilization of the genus for economic purposes. Citation: Yu X-Q, Drew BT, Yang J-B, Gao L-M, Li In the present study, we conducted comparative analysis among the complete chloroplast D-Z (2017) Comparative chloroplast genomes of (cp) genomes of 11 Schima species. Our results indicate that Schima cp genomes possess eleven Schima (Theaceae) species: Insights into DNA barcoding and phylogeny. PLoS ONE 12(6): a typical quadripartite structure, with conserved genomic structure and gene order. The size e0178026. https://doi.org/10.1371/journal. of the Schima cp genome is about 157 kilo base pairs (kb). They consistently encode 114 pone.0178026 unique genes, including 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, with 17 dupli- Editor: Genlou Sun, Saint Mary's University, cated in the inverted repeat (IR).
    [Show full text]
  • Phylogeny and Biogeography of the Tea Family
    Systematic Biology Page 2 of 46 PHYLOGENY AND BIOGEOGRPHY OF THE TEA FAMILY 1 Title page 2 Title: Phytogeographic history of the Tea family inferred through high-resolution phylogeny and 3 fossils Downloaded from https://academic.oup.com/sysbio/advance-article/doi/10.1093/sysbio/syab042/6295695 by guest on 10 June 2021 4 Running title: Phylogeny and biogeography of the tea family 5 *Yujing Yan1,2, *Charles C. Davis2, Dimitar Dimitrov1,3, Zhiheng Wang4, Carsten Rahbek5,1,4,6,7, Michael 6 Krabbe Borregaard1 7 1. Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, 8 Universitetsparken 15, 2100, Copenhagen, Denmark 9 2. Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Ave, 10 Cambridge, MA 02138, USA 11 3. Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020 12 Bergen, Norway 13 4. Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory of Earth Surface 14 Processes of Ministry of Education, Peking University, Beijing 100871, China 15 5. Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Universitetsparken 16 15, 2100 Copenhagen, Denmark 17 6. Department of Life Sciences, Imperial College London, Silkwood Park campus, Ascot SL5 7PY, UK 18 7. Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark. 19 20 * Corresponding authors: 21 Yujing Yan, email: [email protected] 22 Charles C. Davis, email: [email protected] 23 24 25 26 © The Author(s) 2021. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 05 PARIS, 2014-05-01 CONTENTS _______________________________________________________________________ Pests & Diseases 2014/081 - Eradication of Synchytrium endobioticum from Austria 2014/082 - Dothistroma septosporum detected in Baden-Württemberg, Germany 2014/083 - Dothistroma pini and Dothistroma septosporum occur in Slovenia 2014/084 - Situation of Phytophthora lateralis in the Netherlands 2014/085 - Dendroctonus valens: an invasive forest pest in China 2014/086 - Laurel wilt (Raffaelea lauricola) and its vector (Xyleborus glabratus): addition to the EPPO Alert List 2014/087 - First report of Scyphophorus acupunctatus in Cyprus 2014/088 - Incursion of Potato spindle tuber viroid in potato breeding material in the Netherlands 2014/089 - First report of ‘Candidatus Phytoplasma ulmi’ in the United Kingdom 2014/090 - PPV-CR: a new strain of Plum pox virus described from sour cherry in Russia 2014/091 - EPPO report on notifications of non-compliance CONTENTS ___________________________________________________________________________ Invasive Plants 2014/092 - Ailanthus altissima occurs in Turkey 2014/093 - Control methods against Acer negundo 2014/094 - Is the proportion of alien species in man-made habitats influenced by city size? 2014/095 - Variation in seed traits and germination potential of Solanum elaeagnifolium in Greece 2014/096 - The response of Parthenium hysterophorus
    [Show full text]
  • In Vitro Evaluation of Schima Wallichii (DC.) Korth. Fruit for Potential
    Journal of Applied Pharmaceutical Science Vol. 5 (09), pp. 124-126, September, 2015 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2015.50923 ISSN 2231-3354 In vitro evaluation of Schima wallichii (DC.)Korth.fruit for potential antibacterial activity Ankur Das Barma1*, Jyochhana Priya Mohanty1, Prosanta Pal1, Nihar Ranjan Bhuyan2 1Department of Pharmacognosy, Himalayan Pharmacy Institute, Majhitar, East Sikkim-737136, India. 2Department of Pharmaceutical Analysis & Quality Assurance, Himalayan Pharmacy Institute, Majhitar, East Sikkim-737136, India. ABSTRACT ARTICLE INFO Article history: Schima wallichii (DC.) Korth. is a large evergreen and well known tree of Sikkim Himalayan region. The bark of Received on: 02/07/2015 this plant is traditionally used as antipyretic, antiseptic, anthelmintic, wound healing agent. In the present study Revised on: 05/08/2015 an attempt has taken to investigate for potential antibacterial activity by taking different extracts of fruits of Accepted on: 29/08/2015 Schima wallichii (DC.) Korth. against Gram-positive bacteria (Staphylococcus aureus NCTC 8530 and Bacillus Available online: 27/09/2015 liherfernis 10341) and Gram-negative bacteria (Escherichia coli HD10; Salmonella paratyphi A2 and Vibrio cholera 64). Antibacterial activity of Schima wallichii (DC.) Korth. fruit extracts (benzene, acetone and aqueous) Key words: were assayed by the disc diffusion method. Among all the extracts, acetone extract was found most active against Schima wallichii (DC.) Escherichia coli HD10 and Bacillus liherfernis 10341 but this extract have no effect in case of Vibrio cholera 64. Korth. fruit, antibacterial The MIC (Minimum Inhibitory Concentrations) of the extract was found 100 µg/ml for Escherichia coli HD10 activity, agar disc diffusion and 150 µg/ml for Bacillus liherfernis 10341.
    [Show full text]
  • And Type the TITLE of YOUR WORK in All Caps
    MICROPROPAGATION AND SOMATIC EMBRYOGENESIS IN FRANKLINIA ALATAMAHA BARTRAM EX MARSHALL by DAVID GLENN BELESKI (Under the Direction of Scott Merkle) ABSTRACT Franklinia alatamaha (Theaceae) is a monotypic genus, believed to be extinct in the wild since 1803. It exists solely as ex situ cultivated specimens. A thorough literature review including primary sources, previously unrecognized publications, and current studies in the field, provides a number of possible answers towards the ongoing debate over the species’ origins and causes of its extirpation. In addition, a complete micropropagation system for the production of axenic shoot cultures and fully rooted potted plantlets was developed. A variety of plant growth regulator (PGR) combinations, as well as explant sources, were tested for the initiation of both dormant and active shoot cultures. The influence of gibberellic acid (GA3) and various chelating compounds were tested for their applicability toward in vitro propagation. Finally a variety of treatments were tested for their effect on rooting the previously cultured shoots in vitro prior to hardening off. INDEX WORDS: Franklinia alatamaha, Micropropagation, Organogenesis, Gordoniae, Theaceae, in vitro propagation, micropropagation, Plant Growth Regulator (PGR), plant conservation, ex-situ preservation, paleobotany, auxin, cytokinin, chelation, EDDHA, EDTA MICROPROPAGATION AND SOMATIC EMBRYOGENESIS IN FRANKLINIA ALATAMAHA BARTRAM EX MARSHALL by DAVID GLENN BELESKI B.A., Rider University, 2003 A.A.S., State University of New York
    [Show full text]