A Consensus Phylogenomic Approach Highlights Paleopolyploid and Rapid Radiation in the History of Ericales
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi
J. Microbiol. Biotechnol. (2016), 26(8), 1367–1374 http://dx.doi.org/10.4014/jmb.1603.03009 Research Article Review jmb Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi Berry (Actinidia arguta) on Lipopolysaccharide-Stimulated RAW 264.7 Cells Xiangxue An1,2, Sang Gil Lee3, Hee Kang4, Ho Jin Heo5, Youn-Sup Cho6, and Dae-Ok Kim1,2* 1Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea 2Skin Biotechnology Center, Kyung Hee University, Suwon 16229, Republic of Korea 3Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA 4Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea 5Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea 6Fruit Research Institute, Jeollanam-do Agricultural Research and Extension Services, Wando 59104, Republic of Korea Received: March 4, 2016 Revised: April 15, 2016 The present study evaluated the total phenolic and flavonoid contents as well as total Accepted: May 9, 2016 antioxidant capacity (TAC) of three cultivars of Actinidia arguta Planch. kiwi berries; cv. Mansoo (Mansoo), cv. Chiak (Chiak), and cv. Haeyeon (Haeyeon). In addition, the anti- inflammatory effects of the three cultivars of kiwi berries were investigated using a First published online lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cell line. Mansoo had the May 9, 2016 highest total phenolic content and TAC among the three cultivars, whereas Chiak had the *Corresponding author highest total flavonoid content. The total antioxidant capacities of the kiwi berry extracts were Phone: +82-31-201-3796; more strongly correlated with total phenolic content than with total flavonoid content. -
Print This Article
JOURNAL OF NATURAL REMEDIES DOI: 10.18311/jnr/2017/15945 Ethnobotanical Profiles and Phytochemical Constituents of Barringtonia racemosa L. for Potential Scrutiny of Bioactive Compounds through Plant Biotechnology Nurul Izzati Osman1, Norrizah Jaafar Sidik1* and Asmah Awal2 1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. 2Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. Abstract This paper reviews the traditional uses and customs of people in the use of Barringtonia racemosa L., a type of plant mangrove species in their daily life and medicinal approaches. In addition, the phytochemical constituents and the studies in plant biotechnology carried out on this species were also reviewed and summarized by referring to the available documented literatures. It is aimed to provide a systematic review of such topics to facilitate understanding and providing information regarding that particular species. From the current review of literature, it has been clearly depicted that B. racemosa is having promising potentials for natural product discovery through plant biotechnology to be further scrutinized in this species. The information gathered from the ethnobotanical uses of this species as well as its phytochemical constituents are useful to provide a significant background for future works regarding plant secondary metabolites from this species to be further explored by the application of plant biotechnology. Keywords: Barringtonia racemosa L., Ethnobotany, Ethnopharmacology, Plant Bioactive Compounds, Phytochemistry 1. Introduction of plants not only lies in its medicinal properties used in herbal treatment but in fact, plants have been among the Our mother nature has a great diversity of plant species most significant element in daily household needs and and the existence of plant kingdom provides various being incorporated in industrial setting for instance in the benefits towards mankind. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Incorporating the Plant Phenological Trajectory Into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform
remote sensing Article Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform Huiying Li 1,2, Mingming Jia 1,3,4,* , Rong Zhang 1, Yongxing Ren 1,5 and Xin Wen 1,5 1 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; [email protected] (H.L.); zrfi[email protected] (R.Z.); [email protected] (Y.R.); [email protected] (X.W.) 2 School of Management Engineering, Qingdao University of Technology, Qingdao 266520, China 3 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China 4 National Earth System Science Data Center, Beijing 100101, China 5 College of Earth Sciences, Jilin University, Changchun 130061, China * Correspondence: [email protected] Received: 12 September 2019; Accepted: 22 October 2019; Published: 24 October 2019 Abstract: Information on mangrove species composition and distribution is key to studying functions of mangrove ecosystems and securing sustainable mangrove conservation. Even though remote sensing technology is developing rapidly currently, mapping mangrove forests at the species level based on freely accessible images is still a great challenge. This study built a Sentinel-2 normalized difference vegetation index (NDVI) time series (from 2017-01-01 to 2018-12-31) to represent phenological trajectories of mangrove species and then demonstrated the feasibility of phenology-based mangrove species classification using the random forest algorithm in the Google Earth Engine platform. It was found that (i) in Zhangjiang estuary, the phenological trajectories (NDVI time series) of different mangrove species have great differences; (ii) the overall accuracy and Kappa confidence of the classification map is 84% and 0.84, respectively; and (iii) Months in late winter and early spring play critical roles in mangrove species mapping. -
Biology of Leaf Gall-Inducing Thlibothrips Manipurenis Muraleedharan, 1982 on Ardisia Sp
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Entomologie = Contributions to Entomology Jahr/Year: 2012 Band/Volume: 62 Autor(en)/Author(s): Taptamani Heishnam, Varatharajan Rameiyer, Raman A. Artikel/Article: Biology of leaf gall-inducing Thlibothrips manipurenis Muraleedharan, 1982 on Ardisia sp. (Myrsinaceae) in north-eastern India (Thysanoptera: Tubulifera: Phlaeothripidae). 69-76 ©www.senckenberg.de/; download www.contributions-to-entomology.org/ Beitr. Ent. Keltern ISSN 0005 - 805X 62 (2012) 1 S. 69 - 76 15.05.2012 Biology of leaf gall-inducingThlibothrips manipurenis Muraleedharan, 1982 onA rdisia sp. (Myrsinaceae) in north eastern India (Thysanoptera: Tubulifera: Phlaeothripidae) With 11 figures Heishnam Taptamani, Ramaiyer VAratharajan and A nantanarayanan Raman Summary Biology of the epiphyllous roll-gall-inducing Thlibothrips manipurensis was studied on Ardisia sp. under laboratory conditions. T manipurensis laid eggs linearly along the margins of tender leaves. Eggs hatched in 6.8 d and the larval duration was 3.4 and 8.2 d for larvae I and II, respectively. After 20.2 h as prepupa, T manipurensis grew into pupa; adult emergence occurred in 4 d. Each female laid 34±7 eggs and the mean longevity of the adult was 10.2 d. Increase in thrips numbers correlated with the age of the gall: 15 individ- uals/gall occurred in young (4—10 d) galls, whereas 28 occurred in mature (20 d) galls, and 36 in old (25 d) galls. Male-female ratio in old galls was 1:5. Mature galls included a homogeneous tissue structure, made of 12-15 layers of parenchyma cells with no distinction into spongy and palisade cells. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Ardisia Humilis Vahl.) Planting Condition Toward the Alpha-Glucosidase Inhibition Activity in Vitro
Pharmacogn J. 2020; 12(2): 377-385 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Research Article www.phcogj.com Study of the Effect of Lampeni (Ardisia humilis Vahl.) Planting Condition toward the Alpha-glucosidase Inhibition Activity In vitro Sri Ningsih1,*, Fifit Juniarti1, Idah Rosidah1, Adam Arditya Fajriawan1, Kurnia Agustini1, Syofi Rosmalawati2, Agung Eru Wibowo2, Erliana Sasikirana3, Wahono Sumaryono3 ABSTRACT Background: The quality of a medicinal plant is influenced by agronomic conditions and harvesting time. Objective: This study aimed to evaluate the effect of planting method (open- air (OA) and shedding house (SH)) and harvesting time (2, 4, 6 months) of Lampeni (Ardisia Sri Ningsih1,*, Fifit Juniarti1, humilis Vahl.) toward the inhibitory activity of alpha-glucosidase. Methods: The Lampeni Idah Rosidah1, Adam Arditya seedling were placed under controlled light conditions (SH) and on direct sun exposure (OA). Fajriawan1, Kurnia Agustini1, Harvesting of the leaves was carried out at the age of 2, 4, and 6 months after plantation Syofi Rosmalawati2, Agung Eru (2m, 4m, and 6m). Each leaves dry powder was refluxed with methanol 70% and followed Wibowo2, Erliana Sasikirana3, by liquid-liquid partition using n-hexane, ethyl acetate (EtOAc), and water. All samples were Wahono Sumaryono3 evaluated toward inhibition of the alpha-glucosidase enzyme in vitro. Total phenol levels were determined using Folin-Ciocalteu reagent. Results: The results showed that EtOAc fractions 1Center for Pharmaceutical and Medical Technology, Agency for the Assessment and of both plantation techniques exhibited the highest inhibition of alpha-glucosidase. The highest Application of Technology. Laptiab building, activity was demonstrated by the 4m-OA-EtOAc fraction (IC50, 93.50 ppm) and followed by Puspiptek Serpong Area, South Tangerang, the 6m-OA-EtOAc fraction (IC50, 98.13 ppm). -
Minireview Paper Golden Camellias
1 1 Minireview Paper 2 Golden Camellias: A Review 3 4 ABSTRACT 5 Golden camellias or yellow camellias are species belonging to genus Camellia L., family 6 Theaceae. Fifty two species were described in southern China and Vietnam. Active 7 ingredients such as polysaccharides, polyphenols, tea saponins, and flavonoids are well 8 known characteristics of golden camellias. Its leaves and flowers have been long 9 traditionally used for health improvement. It was found to be able to inhibit the 10 transplanted cancer, lower blood pressure, lower blood lipid, lower cholesterol, and 11 prevent atherosclerosis. Currently, it cost 320-700US$ per one kg of dry flowers. Such 12 price attracts many local ethnic people to plant golden camellias for poverty reduction. 13 This work reviews (1) species and natural distribution, (2) uses and healthcare values, (3) 14 techniques for seedling production, planting and tending, and (4) opportunities and 15 challenges for future development of golden camellias. 16 17 Keywords: Active ingredient; Camellia L.; poverty reduction; shade-tolerant species; yellow flower. 2 18 1. SPECIES AND NATURAL DISTRIBUTION 19 Golden camellias or yellow camellias are shrubs and small-sized trees belonging to genus 20 Camellia L [1], family Theaceae [2-8]. Golden camellias have light to heavy yellow 21 flowers (Fig. 1) and are 3-12 m tall at maturity in natural distribution conditions. The size 22 of flowers are different among species from 1 to 10 cm in diameter (Fig. 1). About 52 23 species (Table 1) of golden camellias have been described in southern China and Vietnam. 24 Of which, nearly 40 species have natural distribution in Vietnam. -
ACTINIDIACEAE 1. ACTINIDIA Lindley, Nat. Syst. Bot., Ed. 2, 439
ACTINIDIACEAE 猕猴桃科 mi hou tao ke Li Jianqiang (李建强)1, Li Xinwei (李新伟)1; Djaja Djendoel Soejarto2 Trees, shrubs, or woody vines. Leaves alternate, simple, shortly or long petiolate, not stipulate. Flowers bisexual or unisexual or plants polygamous or functionally dioecious, usually fascicled, cymose, or paniculate. Sepals (2 or 3 or)5, imbricate, rarely valvate. Petals (4 or)5, sometimes more, imbricate. Stamens 10 to numerous, distinct or adnate to base of petals, hypogynous; anthers 2- celled, versatile, dehiscing by apical pores or longitudinally. Ovary superior, disk absent, locules and carpels 3–5 or more; placentation axile; ovules anatropous with a single integument, 10 or more per locule; styles as many as carpels, distinct or connate (then only one style), generally persistent. Fruit a berry or leathery capsule. Seeds not arillate, with usually large embryos and abundant endosperm. Three genera and ca. 357 species: Asia and the Americas; three genera (one endemic) and 66 species (52 endemic) in China. Economically, kiwifruit (Actinidia chinensis var. deliciosa) is an important fruit, which originated in central China and is especially common along the Yangtze River (well known as yang-tao). Now, it is widely cultivated throughout the world. For additional information see the paper by X. W. Li, J. Q. Li, and D. D. Soejarto (Acta Phytotax. Sin. 45: 633–660. 2007). Liang Chou-fen, Chen Yong-chang & Wang Yu-sheng. 1984. Actinidiaceae (excluding Sladenia). In: Feng Kuo-mei, ed., Fl. Reipubl. Popularis Sin. 49(2): 195–301, 309–334. 1a. Trees or shrubs; flowers bisexual or plants functionally dioecious .................................................................................. 3. Saurauia 1b. -
From Guangxi, China
Phytotaxa 138 (1): 39–42 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.138.1.5 Ardisia rubricaulis sp. nov. (Primulaceae) from Guangxi, China SHI-ZHONG MAO1 & CHI-MING HU2,3 1Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China 2South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 3Author for correspondence. E-mail: [email protected] Abstract A new species of Ardisia (Primulaceae), A. rubricaulis S. Z. Mao & C. M. Hu from Guangxi, China is described and illustrated. The new species belongs to Ardisia subgen. Crispardisia which is characterised by leaves with marginal glands (vascularized nodules). Its affinity is with A. maculosa Mez, but can be easily distinguished from the latter by its lateral and glandular puberulent inflorescence and by the underside of leaves and corolla-lobes being densely black- punctate. Key words: Myrsinoideae, new species, taxonomy, southwestern China Introduction Ardisia Swartz (1788: 48) is a large genus in the Primulaceae comprising more than 500 pantropical species, of which about 400 are distributed in Asia. According to Hu & Vidal (2004), south China and Indochina is one of the main centres of species diversity for this genus. In the newly published “Flora of China”, Chen & Pipoly (1996) recorded 65 species, of which 38 occur in Guangxi Province. During recent field work undertaken in southern Guangxi, the first author collected many specimens of Ardisia. In the course of identifying these specimens based on herbarium vouchers and consulting the types of related species from IBSC, IBK, and photographs of the types from PE, KUN and NY, we found a plant differing from the already described species. -
Molluscicidal Activity of Camellia Oleifera Seed Meal
R ESEARCH ARTICLE ScienceAsia 40 (2014): 393–399 doi: 10.2306/scienceasia1513-1874.2014.40.393 Molluscicidal activity of Camellia oleifera seed meal Supunsa Kijprayoona, Vasana Toliengb, Amorn Petsoma, Chanya Chaicharoenpongb;∗ a Research Centre for Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chulalongkorn University, Bangkok 10330 Thailand b Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330 Thailand ∗Corresponding author, e-mail: [email protected] Received 6 Jul 2013 Accepted 1 Dec 2014 ABSTRACT: A mixture of molluscicidal saponin compounds was isolated from a methanolic extract of seed meal of Camellia oleifera and tested against Pomacea canaliculata. The most potent saponin fraction showed an LC50 value of 0.66 ppm. This was then used as a marker for quantitative analysis of active molluscicidal compounds in commercial oil- seed camellia meals on HPLC fractionation. The active saponin content was found to be 0.25–1.26% w/w. Methanol was the preferred extraction solvent for analysis of saponin compounds from oil-seed camellia meal. The effect of oil-seed camellia meal on P. canaliculata in a field experiment was determined for three doses: 12.50, 15.63, and 18.75 kg/ha in terms of numbers of dead snails. After one day, all treatments containing oil-seed camellia meal killed 100% of the snails in the sample compared with just 3.8% in the control without any chemical additive. No rice plant damage was detected from any treatments with oil-seed camellia meal, and the dry grain yield was comparable to that of niclosamide treatment. Thus oil-seed camellia meals may be a useful molluscicide for organic rice production. -
Differential Regulation of the Anthocyanin Profile in Purple Kiwifruit
Peng et al. Horticulture Research (2019) 6:3 Horticulture Research DOI 10.1038/s41438-018-0076-4 www.nature.com/hortres ARTICLE Open Access Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species) Yongyan Peng1,2,KuiLin-Wang2, Janine M. Cooney3, Tianchi Wang2, Richard V. Espley2 and Andrew C. Allan 1,2 Abstract Anthocyanins are a group of secondary metabolites that colour fruit and flowers orange, red, purple or blue depending on a number of factors, such as the basic structure, co-pigmentation, metal ion complexation and vacuolar pH. The biosynthesis of anthocyanin is regulated at the transcriptional level by a group of transcription factors, the MYB–bHLH–WD40 (MBW) complex. In this study, the purple colouration in several kiwifruit (Actinidia) species was identified and characterised as red cyanidin-based and blue delphinidin-based anthocyanins. The differential pigmentation in the skin and flesh can be attributed to the differential ratio of cyanidin and delphinidin derivatives accumulated in the total anthocyanin profile. The expression of anthocyanin biosynthetic genes chalcone synthase (CHS), flavonoid 3-O-glucosyltransferase (F3GT), flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′5′-hydroxylase (F3′5′H) is crucial for anthocyanin accumulation. However, the balance of expression of the F3′H and F3′5′H genes appears responsible for the ratio of cyanidin and delphinidin derivatives, while a lack of CHS, F3GT and MYB110 expression is responsible for a lack of total anthocyanins. The transcriptional regulation of the F3′H and F3′5′H promoters by the R2R3 MYB transcription factor MYB110 is markedly different in tobacco transient assays.