University of Florida Thesis Or Dissertation Formatting Template

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation Formatting Template BIOSYNTHESIS AND MECHANISM OF NATURAL PRODUCTS IN NEMATODES By LIKUI FENG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Likui Feng To my family ACKNOWLEDGMENTS I would like to dedicate my success in abtaining a PhD at the University of Florida to the many people who have given me support since I came to Gainesville, because without their considerate help, I do not believe that I would have obtained it. First of all, I would like to give the special thanks to my research advisor Dr. Rebecca Butcher. It was her who gave me the chance to transfer to this great university and program when I tried to transfer from Indiana University Bloomington. Most importantly, her knowledge, passion and confidence have helped me to become a successful scientist over the past five years. To be a great mentor, she also inspired me with new ideas in multiple perspectives. I would also like to thank my kind committee members, Dr. Steven Bruner, Dr. Nicole Horenstein, Dr. Keith Choe and Dr. Robert McKenna. These professors have provided me with valuable suggestions in many aspects of my work. They are also very nice to get along with and good friends. In addition, I would like to thank Dr. Ben Smith and Ms. Lori Clark, for their endless help in processing documents and my program transfer. Furthermore, I would like to thank Dr. Kari Basso and others in the mass spec facility for their help in running and analyzing samples. I am very glad and lucky to work with so many fantastic people in the Butcher lab. It is all of you who make our big lab family full of happiness. In particular, I would like to thank Dr. Qingyao Shou, who inspired me a lot in the nemamide project and has continued help me to figure out experimental problems even after he left our lab. Dr. Xinxing Zhang, full of academic thoughts, is a very good friend both in research and life, and provided me with a lot of fresh ideas and new techniques. I would like to thank Dr. Yue Zhou and Dr. Yuting Wang for their help in the lab and life. I would like to thank Dr. 4 Rouf Dar for synthesizing intermediates and Ying Liu for her collaborative work on metabolomics. In my last year of PhD, I am so lucky to work with Matthew Gordon, who is very helpful, funny and talented as a promising scientist. I thank all other current Butcher lab members, including Dr. Guohui Li, Prashant Singh, Subhradeep Bhar, Nasser Faghih, David Perez and previous group members Dr. Satya Chinta, Dr. Rachel Jones, Dr. Jungsoo Han, Asyegul Ozdogan, Mayra Tuiche, Jasmine Gonzalez, Priyanka Raichoudhury, and Lauren Suarez. I am also grateful to all Bruner lab members, including Dr. Kunhua Li, Dr. Wei- Hung Chen, Dr. Matthew Burg, Aleksandra Zagulyaeva, Brian Mctavish, Dr. Naga Sandhya Guntaka, Qiang Li, Prabhanshu Tripathi and Gengnan Li. I would also like to thank my dear friends in the Department of Microbiology and Cell Sciences, because they made my PhD life colorful and amazing. Finally, I would like to give my deepest gratitude to my family. My parents gave me the the life and continue supporting me to decorate my world in many aspects. Their endless love makes me go through lots of difficulties to further improve myself to be a better person and a successful scientist. I am very thankful to my younger brother for his effort to take care of our parents. Most importantly, I would like to thank my dear wife Yuanyuan Leng, who cheers me up and motivates me all along to make me succeed. She is always patient no matter how late and how long I work and she tries to bring me out of the lab to make me feel relaxed. I will do my best to make her proud and love her forever. 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 9 LIST OF FIGURES ........................................................................................................ 11 LIST OF ABBREVIATIONS ........................................................................................... 17 ABSTRACT ................................................................................................................... 20 CHAPTER 1 INTRODUCTION .................................................................................................... 22 1.1 Nematodes and Life Cycle of C. elegans .......................................................... 22 1.2 Polyketide and Nonribosomal Peptides ............................................................ 25 1.2.1 Initiation Module of PKSs and NRPSs ..................................................... 27 1.2.2 Mechanism of Extension in PKSs and NRPSs ........................................ 29 1.2.3 Accessory Enzymes Acting in trans or in cis ........................................... 31 1.3 Signaling Molecules in C. elegans .................................................................... 32 1.3.1 Dauer Pheromone Ascarosides ............................................................... 32 1.3.2 Discovery of the Nemamides ................................................................... 34 1.3.3 Other Signaling Molecules in Worms ....................................................... 39 1.4 Significance and Summary ............................................................................... 39 2 MECHANISM OF THE NEMAMIDES IN PROMOTING LARVAL SURVIVAL AND PATHOGEN RESISTANCE ........................................................................... 42 2.1 Insulin Signaling Pathway in Worm Development and Arrest ........................... 42 2.2 Experimental Methods ...................................................................................... 43 2.2.1 Methods for Roles of Nemamides in Larval Survival ............................... 43 2.2.2 Screen for Pathogen Resistance ............................................................. 49 2.2.3 Methods for PKS-1b Verification and Gene Cloning ................................ 51 2.3 Results .............................................................................................................. 52 2.3.1 Site of nrps-1 and pks-1 Expression in C. elegans .................................. 53 2.3.2 Nemamides Promoting Arrested Larval Survival ..................................... 54 2.3.3 Screening by Pathogen Avoidance Assay and Killing Assay ................... 68 2.3.4 Verification of the Presence of pks-1b ..................................................... 71 2.3.5 Gene Cloning of pks-1b ........................................................................... 72 2.4 Discussion and Future Work ............................................................................. 73 3 NONCANONICAL FEATURES IN BIOSYNTHESIS OF THE NEMAMIDES .......... 75 3.1 Proposed Nemamide Biosynthetic Pathway ..................................................... 75 6 3.2 Domain Properties of PKS-1 and NRPS-1 ........................................................ 76 3.2.1 Ketosynthase (KS) Domains ................................................................... 76 3.2.2 Carrier Protein (CP) Domain ................................................................... 77 3.2.3 Acyltransferase (AT) Domains ................................................................. 78 3.2.4 Dehydratase (DH) Domains .................................................................... 79 3.2.5 Ketoreductase (KR) Domains .................................................................. 80 3.2.6 Adenylation domain (A) Domains ............................................................ 82 3.2.7 Condensation (C) Domains ..................................................................... 86 3.2.8 Thioesterase (TE) Domains ..................................................................... 86 3.3 Experimental Methods ...................................................................................... 88 3.3.1 Strains and Transgenic Lines .................................................................. 88 3.3.2 Single Worm PCR and CRISPR-Cas9 .................................................... 93 3.3.3 Transgenic Line Construction .................................................................. 98 3.3.4 Plasmid Construction, Protein Overexpression and Purification .............. 99 3.3.5 Small Scale Worm Extraction and Intermediate Extractions .................. 102 3.3.6 LC-MS-based ACS and ACOX Activity Assay ....................................... 104 3.3.7 Profiling Ascaroside Production ............................................................. 105 3.4 Functional Analysis of Enzymatic Domains .................................................... 105 3.4.1 Ketosynthase (KS) Domain ................................................................... 106 3.4.2 Carrier Protein (CP) Domains ................................................................ 108 3.4.3 Condensation (C) Domains ................................................................... 111 3.4.4 Adenylation (A) Domains ....................................................................... 115 3.4.5 Thioesterase (TE) Domains ................................................................... 117 3.5 Genome Mining of Accessory Enzymes ......................................................... 122 3.6 Functional Analysis of Accessory Enzymes
Recommended publications
  • Incorporating Genomics Into the Toolkit of Nematology
    Journal of Nematology 44(2):191–205. 2012. Ó The Society of Nematologists 2012. Incorporating Genomics into the Toolkit of Nematology 1 2 1,* ADLER R. DILLMAN, ALI MORTAZAVI, PAUL W. STERNBERG Abstract: The study of nematode genomes over the last three decades has relied heavily on the model organism Caenorhabditis elegans, which remains the best-assembled and annotated metazoan genome. This is now changing as a rapidly expanding number of nematodes of medical and economic importance have been sequenced in recent years. The advent of sequencing technologies to achieve the equivalent of the $1000 human genome promises that every nematode genome of interest will eventually be sequenced at a reasonable cost. As the sequencing of species spanning the nematode phylum becomes a routine part of characterizing nematodes, the comparative approach and the increasing use of ecological context will help us to further understand the evolution and functional specializations of any given species by comparing its genome to that of other closely and more distantly related nematodes. We review the current state of nematode genomics and discuss some of the highlights that these genomes have revealed and the trend and benefits of ecological genomics, emphasizing the potential for new genomes and the exciting opportunities this provides for nematological studies. Key words: ecological genomics, evolution, genomics, nematodes, phylogenetics, proteomics, sequencing. Nematoda is one of the most expansive phyla docu- piece of knowledge we can currently obtain for any mented with free-living and parasitic species found in particular life form (Consortium, 1998). nearly every ecological niche(Yeates, 2004). Traditionally, As in many other fields of biology, the nematode C.
    [Show full text]
  • Small Organic Molecules As Tunable Tools for Biology
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Small Organic Molecules as Tunable Tools for Biology Unzue Lopez, Andrea Abstract: Drug discovery and development is a very challenging interdisciplinary endeavor that needs the contribution of medical doctors, biologists, chemists, X-ray crystallographers, and computer scientists, among many others, in order to be successful. The first part of this Ph. D. thesis focuses onthe development of EphB4 receptor tyrosine kinase inhibitors. EphB4 has been linked to angiogenesis, which involves the formation of new blood vessels supplying tumor cells with the necessary nutrients. Protein kinases play a key role in cell signaling by phosphorylating specific proteins and thus, the inhibition of their enzymatic activity by small organic molecules has been widely explored in drug design. In this work, the biological properties of an EphB4 inhibitor identified by computer simulations were improved bythe synthesis of several analogues. Their binding affinities were characterized by an array of biochemical and cell based assays, concluding with the validation of one of the most promising derivatives in an in vivo cancer xenograft model. The second part of the thesis deals with the development of novel bromodomain ligands starting from a micromolar potent in silico discovered hit. Bromodomain proteins are epigenetic readers that constitute an emerging topic in the field of drug discovery and are thus considered asvery attractive targets for the development of novel therapeutic drugs. A careful, structure-based design of analogues resulted in the discovery of nanomolar potent CREBBP ligands with an unprecedented selectivity profile among the bromodomain protein family.
    [Show full text]
  • In Caenorhabditis Elegans
    Identification of DVA Interneuron Regulatory Sequences in Caenorhabditis elegans Carmie Puckett Robinson1,2, Erich M. Schwarz1, Paul W. Sternberg1* 1 Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America, 2 Department of Neurology and VA Greater Los Angeles Healthcare System, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America Abstract Background: The identity of each neuron is determined by the expression of a distinct group of genes comprising its terminal gene battery. The regulatory sequences that control the expression of such terminal gene batteries in individual neurons is largely unknown. The existence of a complete genome sequence for C. elegans and draft genomes of other nematodes let us use comparative genomics to identify regulatory sequences directing expression in the DVA interneuron. Methodology/Principal Findings: Using phylogenetic comparisons of multiple Caenorhabditis species, we identified conserved non-coding sequences in 3 of 10 genes (fax-1, nmr-1, and twk-16) that direct expression of reporter transgenes in DVA and other neurons. The conserved region and flanking sequences in an 85-bp intronic region of the twk-16 gene directs highly restricted expression in DVA. Mutagenesis of this 85 bp region shows that it has at least four regions. The central 53 bp region contains a 29 bp region that represses expression and a 24 bp region that drives broad neuronal expression. Two short flanking regions restrict expression of the twk-16 gene to DVA. A shared GA-rich motif was identified in three of these genes but had opposite effects on expression when mutated in the nmr-1 and twk-16 DVA regulatory elements.
    [Show full text]
  • The Role of Carbon Dioxide in Nematode Behaviour and Physiology Cambridge.Org/Par
    Parasitology The role of carbon dioxide in nematode behaviour and physiology cambridge.org/par Navonil Banerjee and Elissa A. Hallem Review Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA Cite this article: Banerjee N, Hallem EA Abstract (2020). The role of carbon dioxide in nematode behaviour and physiology. Parasitology 147, Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic 841–854. https://doi.org/10.1017/ and free-living nematodes. Many nematodes show context-dependent, experience-dependent S0031182019001422 and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also Received: 11 July 2019 show a wide range of physiological responses to CO . Here, we review the diverse responses Revised: 4 September 2019 2 Accepted: 16 September 2019 of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and First published online: 11 October 2019 neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive con- text-dependent and experience-dependent responses of nematodes to CO2. Key words: Carbon dioxide; chemotaxis; C. elegans; hookworms; nematodes; parasitic nematodes; sensory behaviour; Strongyloides Introduction Author for correspondence: Carbon dioxide (CO2) is an important sensory cue for animals across diverse phyla, including Elissa A. Hallem, E-mail: [email protected] Nematoda (Lahiri and Forster, 2003; Shusterman and Avila, 2003; Bensafi et al., 2007; Smallegange et al., 2011; Carrillo and Hallem, 2015). While the CO2 concentration in ambient air is approximately 0.038% (Scott, 2011), many nematodes encounter much higher levels of CO2 in their microenvironment during the course of their life cycles.
    [Show full text]
  • FMB Ch05-Gerwick.Indd
    PB Marine Cyanobacteria Ramaswamy et al. 175 5 The Secondary Metabolites and Biosynthetic Gene Clusters of Marine Cyanobacteria. Applications in Biotechnology Aishwarya V. Ramaswamy, Patricia M. Flatt, Daniel J. Edwards, T. Luke Simmons, Bingnan Han and William H. Gerwick* Abstract Marine cyanobacteria have proven to be one of the most versatile marine producers of secondary metabolites. Many of these metabolites demonstrate antiproliferative activity (e.g. curacin A, dolastatins), acute cytotoxic activity (e.g. apratoxin, hectochlorin) or have specific neurotoxic activity (e.g. kalkitoxin, antillatoxin), making them invaluable as potential therapeutic leads or pharmacological tools. The predominant biogenetic theme in cyanobacterial natural products chemistry is the integration of polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) along with a variety of unusual tailoring or modifying enzymes, and accounts for the tremendous structural diversity of their metabolites. Only recently has the genetic architecture of several cyanobacterial biosynthetic gene clusters been determined, and studies to understand and exploit this biosynthentic machinery present an exciting new frontier. This chapter will summarize the properties of several notable metabolites from marine cyanobacteria that have clinical or pharmacological applications followed by a detailed account of their biosyntheses at the molecular genetic level and their potential applications in biotechnology. 1. Introduction Cyanobacteria, also known as blue-green algae, are ancient (ca. 2 x 109 years) photosynthetic prokaryotes which inhabit a wide diversity of habitats including *For correspondence email [email protected] 176 Marine Cyanobacteria Ramaswamy et al. 177 open oceans, tropical reefs, shallow water environments, terrestrial substrates, aerial environments such as in trees and rock faces, and fresh water ponds, streams and puddles (Whitton and Potts, 2000) .
    [Show full text]
  • The Distribution of Lectins Across the Phylum Nematoda: a Genome-Wide Search
    Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S1 of S12 Supplementary Materials: The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search Lander Bauters, Diana Naalden and Godelieve Gheysen Figure S1. Alignment of partial calreticulin/calnexin sequences. Amino acids are represented by one letter codes in different colors. Residues needed for carbohydrate binding are indicated in red boxes. Sequences containing all six necessary residues are indicated with an asterisk. Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S2 of S12 Figure S2. Alignment of partial legume lectin-like sequences. Amino acids are represented by one letter codes in different colors. EcorL is a legume lectin originating from Erythrina corallodenron, used in this alignment to compare carbohydrate binding sites. The residues necessary for carbohydrate interaction are shown in red boxes. Nematode lectin-like sequences containing at least four out of five key residues are indicated with an asterisk. Figure S3. Alignment of possible Ricin-B lectin-like domains. Amino acids are represented by one letter codes in different colors. The key amino acid residues (D-Q-W) involved in carbohydrate binding, which are repeated three times, are boxed in red. Sequences that have at least one complete D-Q-W triad are indicated with an asterisk. Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S3 of S12 Figure S4. Alignment of possible LysM lectins. Amino acids are represented by one letter codes in different colors. Conserved cysteine residues are marked with an asterisk under the alignment. The key residue involved in carbohydrate binding in an eukaryote is boxed in red [1].
    [Show full text]
  • Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae
    Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Vladislav Susoy aus Berezniki, Russland Tübingen 2015 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 5 November 2015 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Ralf J. Sommer 2. Berichterstatter: Prof. Dr. Heinz-R. Köhler 3. Berichterstatter: Prof. Dr. Hinrich Schulenburg Acknowledgements I am deeply appreciative of the many people who have supported my work. First and foremost, I would like to thank my advisors, Professor Ralf J. Sommer and Dr. Matthias Herrmann for giving me the opportunity to pursue various research projects as well as for their insightful scientific advice, support, and encouragement. I am also very grateful to Matthias for introducing me to nematology and for doing an excellent job of organizing fieldwork in Germany, Arizona and on La Réunion. I would like to thank the members of my examination committee: Professor Heinz-R. Köhler and Professor Hinrich Schulenburg for evaluating this dissertation and Dr. Felicity Jones, Professor Karl Forchhammer, and Professor Rolf Reuter for being my examiners. I consider myself fortunate for having had Dr. Erik J. Ragsdale as a colleague for several years, and more than that to count him as a friend. We have had exciting collaborations and great discussions and I would like to thank you, Erik, for your attention, inspiration, and thoughtful feedback. I also want to thank Erik and Orlando de Lange for reading over drafts of this dissertation and spelling out some nuances of English writing.
    [Show full text]
  • JOURNAL of NEMATOLOGY Cultivation of Caenorhabditis
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2021-036 e2021-36 | Vol. 53 Cultivation of Caenorhabditis elegans on new cheap monoxenic media without peptone Tho Son Le1,*, T. T. Hang Nguyen1, Bui Thi Mai Huong1, H. Gam Nguyen1, B. Hong Ha1, Van Sang Abstract 2 3 Nguyen , Minh Hung Nguyen , The study of species biodiversity within the Caenorhabditis genus of 4 Huy-Hoang Nguyen and nematodes would be facilitated by the isolation of as many species 5, John Wang * as possible. So far, over 50 species have been found, usually 1College of Forestry Biotechnology, associated with decaying vegetation or soil samples, with many Vietnam National University of from Africa, South America and Southeast Asia. Scientists based in Forestry, Hanoi, Vietnam. these regions can contribute to Caenorhabditis sampling and their proximity would allow intensive sampling, which would be useful 2Faculty of Biology, VNU University for understanding the natural history of these species. However, of Science, Vietnam National severely limited research budgets are often a constraint for these University, Hanoi, Vietnam. local scientists. In this study, we aimed to find a more economical, 3Center for Molecular Biology, alternative growth media to rear Caenorhabditis and related species. Institute of Research and We tested 25 media permutations using cheaper substitutes for the Development, Duy Tan University, reagents found in the standard nematode growth media (NGM) and Da Nang, Vietnam. found three media combinations that performed comparably to NGM with respect to the reproduction and longevity of C. elegans. These 4Institute of Genome Research, new media should facilitate the isolation and characterization of Vietnam Academy of Science and Caenorhabditis and other free-living nematodes for the researchers Technology, Hanoi, Vietnam.
    [Show full text]
  • Downloading the Zinc-Finger Motif from the Gag Protein Must Have Assembly Files and Executing the Ipython Notebook Cells Occurred Independently Multiple Times
    The evolution of tyrosine-recombinase elements in Nematoda Amir Szitenberg1, Georgios Koutsovoulos2, Mark L Blaxter2 and David H Lunt1 1Evolutionary Biology Group, School of Biological, Biomedical & Environmental Sciences, University of Hull, Hull, HU6 7RX, UK 2Institute of Evolutionary Biology, The University of Edinburgh, EH9 3JT, UK [email protected] Abstract phylogenetically-based classification scheme. Nematode Transposable elements can be categorised into DNA and model species do not represent the diversity of RNA elements based on their mechanism of transposable elements in the phylum. transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite Keywords: Nematoda; DIRS; PAT; transposable sharing characteristics with both DNA and RNA elements; phylogenetic classification; homoplasy; elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla Introduction but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. Transposable elements We explored the diversity of YREs in Nematoda by Transposable elements (TE) are mobile genetic elements sampling broadly across the phylum and including 34 capable of propagating within a genome and potentially genomes representing the three classes within transferring horizontally between organisms Nematoda. We developed a method to isolate and (Nakayashiki 2011). They typically constitute significant classify YREs based on both feature organization and proportions of bilaterian genomes, comprising 45% of phylogenetic relationships in an open and reproducible the human genome (Lander et al. 2001), 22% of the workflow. We also ensured that our phylogenetic Drosophila melanogaster genome (Kapitonov and Jurka approach to YRE classification identified truncated and 2003) and 12% of the Caenorhabditis elegans genome degenerate elements, informatively increasing the (Bessereau 2006).
    [Show full text]
  • Cloning and Biochemical Characterization of the Hectochlorin Biosynthetic Gene Cluster from the Marine Cyanobacteriumlyngbya Majuscula
    AN ABSTRACT OF THE DISSERTATION OF Aishwarya V. Ramaswamy for the degree of Doctor of Philosophy in Microbiology presented on June 02, 2005. Title: Cloning and Biochemical Characterization of the Hectochiorin Biosynthetic Gene Cluster from the Marine Cyanobacterium Lyngbya maluscula Abstract approved: Redacted for privacy William H. Gerwick Cyanobacteria are rich in biologically active secondary metabolites, many of which have potential application as anticancer or antimicrobial drugs or as useful probes in cell biology studies. A Jamaican isolate of the marine cyanobacterium, Lyngbya majuscula was the source of a novel antifungal and cytotoxic secondary metabolite, hectochlorin. The structure of hectochiorin suggested that it was derived from a hybid PKS/NIRPS system. Unique features of hectochlorin such as the presence of a gem dichloro functionality and two 2,3-dihydroxy isovaleric acid prompted efforts to clone and characterize the gene cluster involved in hectochiorin biosynthesis. Initial attempts to isolate the hectochlorin biosynthetic gene cluster led to the identification of a mixed PKS/NRPS gene cluster, LMcryl,whose genetic architecture did not substantiate its involvement in the biosynthesis of hectochlorin. This gene cluster was designated as a cryptic gene cluster because a corresponding metabolite remains as yet unidentified. The expression of thisgene cluster was successfully demonstrated using RT-PCR and these results form the basis for characterizing the metabolite using a novel interdisciplinary approach. A 38 kb region
    [Show full text]
  • Rapid Diversification Associated with a Macroevolutionary Pulse Of
    Caenorhabditis elegans Caenorhabditis elegans Pristionchus pacificus P. pacificus C. elegans C. elegans P Leptojacobus dorci P P P P P P P P P. pacificus • sensusensu sensu Mesorhabditis Mesorhabditis Caenorhabditis Rhabditis Rhabditoides inermis Poikilolaimus Dataset assembly. Inference methods. P.
    [Show full text]
  • The Evolution of Parasitism in Nematoda
    SUPPLEMENT ARTICLE S26 The evolution of parasitism in Nematoda MARK BLAXTER* and GEORGIOS KOUTSOVOULOS Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, UK (Received 19 February 2014; revised 16 April 2014; accepted 16 April 2014; first published online 25 June 2014) SUMMARY Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated. Key words: Nematoda, nematodes, parasitism, evolution, genome, symbiont, Wolbachia, phylogeny, horizontal gene transfer. THE DIVERSITY OF THE NEMATODA medical and veterinary science.
    [Show full text]