Madagascar: the Red Island

Total Page:16

File Type:pdf, Size:1020Kb

Madagascar: the Red Island Andrea L. Baden & Rachel L. Jacobs Stony Brook University Taxonomic group Total species Endemic species % Endemism Plants 13,000 11,600 89.2 Mammals 155 144 92.9 Birds 310 181 58.4 Reptiles 384 367 95.6 Amphibians 230 229 99.6 Freshwater fish 164 97 59.1 *Recently extinct species: 45 (including birds, reptiles, and mammals) “The ecological state of being unique to a particular geographic location, such as a specific island…[Endemic species are] only found in that part of the world and nowhere else.” Taxonomic group Total species Endemic species % Endemism Plants 13,000 11,600 89.2 Mammals 155 144 92.9 Birds 310 181 58.4 Reptiles 384 367 95.6 Amphibians 230 229 99.6 Freshwater fish 164 97 59.1 *Recently extinct species: 45 (including birds, reptiles, and mammals) North & Central America . Phillippenes . California floristic province . Polynesia-Micronesia . Caribbean Islands . Southwest Australia . Madrean Pine Oak Woodlands . Sundaland . Mesoamerica . Wallaceae South America . Western Ghats & Sri Lanka . Atlantic Forest Europe & Central Asia . Cerrado . Caucasus . Chilean winter-Rainfall-Valdivian . Irano-Antalian forests . Mediterranean Basin . Tumbes-Choco-Magdalena . Mtns of Central Asia . Tropical Andes Africa Asia-Pacific . Cape Floristic region . E. Melanesian Islands . E. African coastal forests . Himalaya . Eastern afromontane . Indo-Burma . W. African Guinean forests . Japan . Horn of Africa . Mtns of SW China . Madagascar . New Caledonia . Maputaland-Pondoland-Albany . New Zealand . Succulent Karoo > 44% of the world’s plant species > 35% of the world’s terrestrial vertebrates Cover ~ 1.4% of the earth’s surface . was once 11%, but 88% of that has since been lost Madagascar contains 1 of 6 major radiations of primates . > 25% of the primates that are alive today High Mountains Eastern Central Western Domain Southern Domain High Mountains . Precipitation ▪ 4,000+ mm ▪ Extremely wet climate . Temperature ▪ Large seasonal variations . Seasonality ▪ No real dry season Eastern . Precipitation ▪ Up to 4,000 mm ▪ Extremely wet climate ▪ Annual monsoons . Temperature ▪ 25-30°C ▪ 77-86°F . Seasonality ▪ No real dry season Central . Precipitation ▪ <1,400 mm ▪ Lower precipitation than eastern domain . Temperature ▪ Relatively dry and cooler . Seasonality ▪ Dry from April to November Western Domain . Precipitation ▪ 500-1,500 mm ▪ Dry climate ▪ North-South gradient . Temperature ▪ High . Seasonality ▪ Dry from April to October Southern Domain . Precipitation ▪ < 400 mm ▪ Extremely dry climate . Temperatures ▪ Very high temperatures . Seasonality ▪ Long, pronounced dry season Tropical moist forests Southern & western Dry forests Secondary communities (man-made) Wetlands Coral reefs Coastal rainforests Elevation: Sea level "Rooted in sand, washed with salty air, battered by cyclones and bordering lagoons and marshes the coastal forest harbors a very unusual community. The architecture of the forest is similar to the more widespread lowland forest, but the plants here are different: they are salt-tolerant and highly efficient at extracting water and nutrients from, the shallow porous sand beneath them." - Hilardy Bradt Some of the rarest in Madagascar Comparable in structure to the white sands or blackwater forests of the Amazon basin or the heath forests of southeast Asia. Examples: forests north of Fort Dauphin and around Antalaha & Sambava Lowland rainforest Elevation: 0-800 m Lowland rainforests are the most biologically rich ecosystems in Madagascar. Characterized by warm temperatures, humidity that hovers around 100% year round, more than 2,000 mm (80 inches) of rain annually, and a well developed canopy. Examples: Masoala (including Nosy Mangabe), Makira, Mananara-Nord Montane rainforest Elevation: 800-1300 m Montane rainforest is cooler than lowland rainforest with a lower canopy (18-25 m) and abundant epiphyte growth (especially ferms and orchids), mosses and lichens. Many lemurs and chameleons are found in Madagascar's montane forests. Examples: Ranomafana, Andasibe-Mantadia , Montagne d' Ambre, Marojejy Cloud forest / High alt. montane forest Elevation: above 1,300 m These forests are cool and often enveloped in mist. Trees are typically shorter than those of lowland forest resulting in a less developed canopy at a height of 10 meters or less. The ground may be covered with a thick layer of mosses and lichens and epiphytes like orchids and ferns thrive with the abundance of moisture from the passing fog. Characterized by rapid changes in temperature and humidity. Examples: Marojejy, Andringitra High elevation scrub Elevation: above 1300 m At the high elevations of Madagascar's tallest peaks, forests yield to a mosaic of stunted montane vegetation, lichens, peat bogs, and grasses, and rock exposures. In this zone you can may find orchids and minature palm trees. Examples: Marojejy, Andringitra Sambirano (transitional) forest Elevation: 0-1000 m Sambirano forest is found in the northwestern part of the island and serves as transition between the eastern moist forests and the western dry forests. These forests, especially at low elevations, are highly threatened. Examples: Lokobe, parts of the Tsarantanana Massif, region around Manangorivo Dry deciduous forest Elevation: 0-800 m These seasonal forests are found from northwestern Madagascar south to near Fort Dauphin. While less diverse than their eastern counterparts, the island's dry deciduous forests have high levels of endemicism and many species of lemurs. Deciduous trees lose their leaves during the 6-8 month dry season. When rains return these forests erupt in a sea of bright green leaves. Examples: Kirindy, Zombitse-Vohibasia, Berenty, Bemaraha Limestone tsingy formations Elevation: 100-200m Within the dry deciduous forests of Madagascar you can find the island's limestone pinnacle formations known locally as "tsingy." Because limestone is highly porous, these regions often wave well-developed caves and underground rivers. Similar formations can be found in China and Borneo. Examples: Ankarana, Bemaraha, Namoroka Tapia woodlands Elevation: 800-1600 m Visitors to Isalo will see groves of Tapia trees (Uapaca bojeri). These trees, resistant to the frequent grass fires of the Hauts Plateaux are known locally for their edible fruit and as habitat for a wild silkworm. Examples: Isalo Spiny forest Elevation: 0-600 m Spiny forests (or "spiny desert") are endemic to the arid southern tip of the island. Spiny forests are dominated by plants of the Didiereaceae family, which is unique to Madagascar as are 95% of the species found in this ecosystem. Didiereaceae closely resemble some forms of cacti but are not related. Unlike catci, Didiereaceae species produce small deciduous leaves which are protected by meanacing thorns and spines that grow directly out of the plant's many branches. Madagascar's spiny forests are being rapidly destroyed for use as charcoal and building material. Examples: Berenty, Bezaha Mahafaly, Ifaty, Cap Sainte Marie Grasslands of the Hauts Plateaux ("bosaka") The central of highlands of Madagascar once had significant forest cover but generations of clearing for Zebu cattle and agriculture have left most of the countryside a sea of grass. Lacking roots to anchor the soil, hillsides slide away (locally known as "lavaka") leaving deep red scars across the landscape and eroding massive amounts of topsoil into rivers and streams. In some areas the French planted Eucalyptus and pine plantations to help stem erosion and provide wood for timber. Examples: Central plateau outside Antananarivo Palm savanna In western Madagascar slash-and-burn clearing has left a landscape of grasses and scattered palm trees. Examples: Region around Isalo Secondary forest ("Savoka") Savoka is the local name for the secondary vegetation that grows back after rainforest is cleared and burned. Generally vegetation consists of a limited number of weedy species some of which are exotic. Many plants and animals typically found in primary forests cannot survive in fragmented and disturbed ecosystems. Examples: Much of the eastern rainforest has been replaced with secondary forest. You will find savoka around most national parks having moist forest. Western scrublands Dry deciduous forests in western Madagascar have been burned and replaced with scrub vegetation that is neither attractive nor supports much animal life. Exmaples: Bemaraha and Morondava, dry scrublands may have scattered surviving baobab trees. Cactus scrub In southern Madagascar cleared spiny forest gives way to introduced cacti. In the area around Berenty cactus is some abundant is some areas you would like it a local species. Lakes, marshes, swamps Madagascar has many wetland ecosystems including lakes, marshes, swamps and lagoons. Typically found in coastal regions, these habitats support a disproportionate amount of Madagascar's birdlife. Examples: Lake Alaotra, Bay de baly, Tsimanampetsotsa Mangrove forests Madagascar has the largest expanse of mangrove forests in the western Indian Ocean -- more than 300,000 ha. Mangrove forest is found in silt-rich, saline (brackish water) habitats, generally along large river deltas, estuaries, and coastal areas. It is characterized by low tree diversity, almost exclusively mangroves, with a low broken canopy. Mangroves are evergreen trees and shrubs that are well adapted to their salty and swampy habitat by having breathing roots (pneumatophores) that emerge from the oxygen-deficient mud to absorb oxygen. Examples:
Recommended publications
  • Extreme Miniaturization of a New Amniote Vertebrate and Insights Into the Evolution of Genital Size in Chameleons
    www.nature.com/scientificreports OPEN Extreme miniaturization of a new amniote vertebrate and insights into the evolution of genital size in chameleons Frank Glaw1*, Jörn Köhler2, Oliver Hawlitschek3, Fanomezana M. Ratsoavina4, Andolalao Rakotoarison4, Mark D. Scherz5 & Miguel Vences6 Evolutionary reduction of adult body size (miniaturization) has profound consequences for organismal biology and is an important subject of evolutionary research. Based on two individuals we describe a new, extremely miniaturized chameleon, which may be the world’s smallest reptile species. The male holotype of Brookesia nana sp. nov. has a snout–vent length of 13.5 mm (total length 21.6 mm) and has large, apparently fully developed hemipenes, making it apparently the smallest mature male amniote ever recorded. The female paratype measures 19.2 mm snout–vent length (total length 28.9 mm) and a micro-CT scan revealed developing eggs in the body cavity, likewise indicating sexual maturity. The new chameleon is only known from a degraded montane rainforest in northern Madagascar and might be threatened by extinction. Molecular phylogenetic analyses place it as sister to B. karchei, the largest species in the clade of miniaturized Brookesia species, for which we resurrect Evoluticauda Angel, 1942 as subgenus name. The genetic divergence of B. nana sp. nov. is rather strong (9.9‒14.9% to all other Evoluticauda species in the 16S rRNA gene). A comparative study of genital length in Malagasy chameleons revealed a tendency for the smallest chameleons to have the relatively largest hemipenes, which might be a consequence of a reversed sexual size dimorphism with males substantially smaller than females in the smallest species.
    [Show full text]
  • FAUNE DE MADAGASCAR Publiée Sous Les Auspices Du Gouvernement De La République Malgache
    FAUNE DE MADAGASCAR Publiée sous les auspices du Gouvernement de la République Malgache 47 REPTILES SAURIENS CHAMAELEONIDAE Genre Brookesia et complément pour le genre Chamae/eo par E.-R. BRYGûû (Mu.séUTn national dHistoire naturelle) Volume honoré d'une subvention de l'Agence de Coopération culturelle et technIque ÜR5TûM CNRS Paris 1978 FAUNE DE MADAGASCAR Collection fondée en 1956 par M. le Recteur Renaud PA LIAN Corre pondant de l'Institut Recteur de l'Académie de Bordeaux (alors Dirocteur adjoint de 1'1 RSM) Collection honorée d'une subvention de l'Académie des Scienoes (fonds Loutreuil) Comité de patronage M.le Dr RAIWTO RATSIMA~fANGA, membre correspondant de l'Institut, Paris.­ M.le Ministre de l1tducation nati nale, Tananarive. - M. le Président de l'Académie Malgache, Tananarive. - M. le Recteur de 1Université de Tananarive. - M. le Professeur de Zoologie de 1 niversité de Tananariv .- f. le DU'ecteur général du CNRS, Paris. - M. le Directeur général ct l üRSTüM, Pari. M. le Professeur Dr J. MILLOT, membre de l'ln titut, fondateur et ancien directeur de l'IRSM, Parjs. - M. Je Profe ur R. HEIM, fi mbre de lIn titut, Paris. MM. les Professeur J. DOR. T, membre de l'Institut, diJ'ecteul' du Muséum national, Paris; J.-M. PÉRÈS, membre de l'ln titut, Marseille; A. CILU3AUD, Paris; C. DELAMARE DEBouTTEVlLLE, Pari; P. LEHM ,Paris; M. RAKOTOMARIA, Tananarive. Comité de rédaction: M. R. PAlJLIA 1 Président; MM. C. DELAMARE DEBouTTEvILLE, P. DRACH, P. GRIVEA D, A. GRJEBINE, J.-J. PETTER, G. RAMANANTSOAVINA, P. ROEDERER, P. Vn:TTE ( ecrétaire). Les volumes de la «Faune de Madagascar », honorés d'une subvention de la République Malgache, sont publiés avec le concours financier du Centre National de la Recherche Scientifique et de l'Office de la Recherche Scientifique et Technique Outre-Mer.
    [Show full text]
  • Description of a New Pygmy Chameleon (Chamaeleonidae: Brookesia) from Central Madagascar
    Zootaxa 3490: 63–74 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:FF22F75B-4A07-40D9-9609-1B8D269A921C Description of a new pygmy chameleon (Chamaeleonidae: Brookesia) from central Madagascar ANGELICA CROTTINI1,2,5, AURÉLIEN MIRALLES2, FRANK GLAW3, D. JAMES HARRIS1, ALEXANDRA LIMA1,4 & MIGUEL VENCES2 1CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, R. Padre Armando Quintas, 4485-661 Vairão, Portugal. E-mail: [email protected] 2Zoological Institute, Division of Evolutionary Biology, Technical University of Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany 3Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany 4Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal 5Corresponding author Abstract We describe a new Brookesia species from a forest fragment located 13 km south of Ambalavao in the southern part of Madagascar's central high plateau. Brookesia brunoi sp. nov. is one of the few arid-adapted Brookesia species inhabiting deciduous forests on the western slope of the central high plateau of the island (around 950 m a.s.l.). So far the species has only been observed in the private Anja Reserve. The species belongs to the Brookesia decaryi group formed by arid-adapt- ed Brookesia species of western Madagascar: B. bonsi Ramanantsoa, B. perarmata (Angel), B. brygooi Raxworthy & Nussbaum and B. decaryi Angel. Brookesia brunoi differs from the other four species of the group by a genetic divergence of more than 17.6% in the mitochondrial ND2 gene, and by a combination of morphological characters: (1) nine pairs of laterovertebral pointed tubercles, (2) absence of enlarged pointed tubercles around the vent, (3) presence of poorly defined laterovertebral tubercles along the entire tail, (4) by the configuration of its cephalic crest, and (5) hemipenial morphology.
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • AC27 Doc. 12.5
    Original language: English AC27 Doc. 12.5 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-seventh meeting of the Animals Committee Veracruz (Mexico), 28 April – 3 May 2014 Interpretation and implementation of the Convention Review of Significant Trade in specimens of Appendix-II species [Resolution Conf. 12.8 (Rev. CoP13)] SELECTION OF SPECIES FOR TRADE REVIEWS FOLLOWING COP16 1. This document has been prepared by the Secretariat. 2. In Resolution Conf. 12.8 (Rev. CoP13) on Review of Significant Trade in specimens of Appendix-II species, the Conference of the Parties: DIRECTS the Animals and Plants Committees, in cooperation with the Secretariat and experts, and in consultation with range States, to review the biological, trade and other relevant information on Appendix-II species subject to significant levels of trade, to identify problems and solutions concerning the implementation of Article IV, paragraphs 2 (a), 3 and 6 (a)... 3. In accordance with paragraph a) of that Resolution under the section Regarding conduct of the Review of Significant Trade, the Secretariat requested UNEP-WCMC to produce a summary from the CITES Trade Database of annual report statistics showing the recorded net level of exports for Appendix-II species over the five most recent years. Its report is attached as Annex 1 (English only) to the present document. The raw data used to prepare this summary are available in document AC27 Inf. 2. 4. Paragraph b) of the same section directs the Animals Committee, on the basis of recorded trade levels and information available to it, the Secretariat, Parties or other relevant experts, to select species of priority concern for review (whether or not such species have been the subject of a previous review).
    [Show full text]
  • AC29 Doc13.3 A2
    AC29 Doc. 13.3 Annex 2 Selection of species for inclusion in the Review of Significant Trade following CoP17 To comply with Stage 1 a) of Resolution Conf. 12.8 (Rev. CoP17) and the Guidance regarding the selection of species/country combinations outlined in Annex 2 of the Resolution, the UN Environment World Conservation Monitoring Centre (UNEP-WCMC) has produced an extended analysis to assist the Animals Committee with their work in selecting species for inclusion in the Review of Significant Trade following CoP17. A summary output, providing trade in wild, ranched, source unknown and trade without a source specified over the five most recent years (2011-2015), to accompany this analysis is provided in AC29 Doc. 13.3, Annex 1. The methodology for the extended analysis was discussed by the 2nd meeting of the Advisory Working Group (AWG) of the Evaluation of the Review of Significant Trade (Shepherdstown, 2015). The AWG concluded that three criteria should be retained within the methodology (“high volume trade/high volume trade for globally threatened species”, “sharp increase in trade” and “endangered species in trade”), but that two previously used criteria added little value to the prioritisation exercise (“high variability in trade” and “overall increase/overall decrease in trade”). In addition, it was agreed to refine the methodology for “High Volume” trade to ensure that thresholds are set at a fine taxonomic resolution (order level) to ensure representation for all taxonomic orders. It was also agreed to include analysis of “Sharp Increase” in trade at the country level, as well as at the global level.
    [Show full text]
  • With Its Rolling Eyes and Changeable Colors, a Chameleon Is Like No Other Animal on Earth
    This jewel-colored panther chameleon looks like a neon rainbow! by Ellen Lambeth photos by Christian Ziegler With its rolling eyes and changeable colors, a chameleon is like no other animal on Earth. There are more than 200 different kinds of chameleons (kuh-MEE-lee-unz), and nearly all of them live in Africa. These reptiles Perched on a man’s come in lots of shapes, colors, and patterns. fingertip is the world’s smallest chameleon. They vary from about an inch in length to It’s known only by the size of a house cat. And many may have its scientific name: horny “helmets,” knobby snouts, or spiny crests. Brookesia micra (brook- But there are a number of things that make all EE-zee-uh MYE-kruh). chameleons the same. Read on! 6 7 Ą chameleon Chameleons blend in well, whether they hang out mostly can look forward in trees, on bare ground, or among dead leaves. GRIPPY TOES ĄND TĄIL and backward at Most chameleons live in trees, where the same time! they hang on to narrow branches. Each pincher-like foot is perfect for grip- ping, with two clawed toes on one side and three on the other. A chameleon’s tail works as a fifth foot. It can wrap around a branch to hang on, too. A tail that can grab and grip this way is called a prehensile (pree-HEN-sul) tail. giant Madagascar chameleon young panther chameleon O’Shaughnessy’s chameleon Parson’s chameleon canopy chameleon elongate leaf chameleon TRICKY EYES A chameleon has big eyes, mostly TĄLENTED twice as long as the cha- So, what does a chameleon covered by scaly lids.
    [Show full text]
  • No Longer Single! Description of Female Calumma Vatosoa (Squamata, Chamaeleonidae) Including a Review of the Species and Its Systematic Position
    Zoosyst. Evol. 92 (1) 2016, 13–21 | DOI 10.3897/zse.92.6464 museum für naturkunde No longer single! Description of female Calumma vatosoa (Squamata, Chamaeleonidae) including a review of the species and its systematic position David Prötzel1, Bernhard Ruthensteiner1, Frank Glaw1 1 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany http://zoobank.org/CFD64DFB-D085-4D1A-9AA9-1916DB6B4043 Corresponding author: David Prötzel ([email protected]) Abstract Received 3 September 2015 Calumma vatosoa is a Malagasy chameleon species that has until now been known only Accepted 26 November 2015 from the male holotype and a photograph of an additional male specimen. In this paper Published 8 January 2016 we describe females of the chameleon Calumma vatosoa for the first time, as well as the skull osteology of this species. The analysed females were collected many years before Academic editor: the description of C. vatosoa, and were originally described as female C. linotum. Ac- Johannes Penner cording to external morphology, osteology, and distribution these specimens are assigned to C. vatosoa. Furthermore we discuss the species group assignment of C. vatosoa and transfer it from the C. furcifer group to the C. nasutum group. A comparison of the exter- Key Words nal morphology of species of both groups revealed that C. vatosoa has a relatively shorter distance from the anterior margin of the orbit to the snout tip, more heterogeneous scala- Madagascar tion at the lower arm, a significantly lower number of supralabial and infralabial scales, chameleon and a relatively longer tail than the members of the C. furcifer group.
    [Show full text]
  • The Population Status of Chameleons Within Ranomafana National Park, Madagascar, and Recommendations for Future Monitoring
    The population status of chameleons within Ranomafana National Park, Madagascar, and recommendations for future monitoring Richard K. B. Jenkins, Lee D. Brady, Kieron Huston, Juliet L. D. Kauffmann, Jeanneney Rabearivony, Georges Raveloson and J. Marcus Rowcliffe Abstract Malagasy chameleons are threatened by the on distance sampling within an area of relatively relentless pace of habitat destruction. Their great popu- undisturbed rain forest at Ranomafana National larity amongst herpetoculturalists has also resulted in Park. In total 394 individuals from six species were collection for international animal markets. Most previ- recorded and population densities (+ SE) of 27.2 + ous fieldwork has focused on the compilation 5.4/ha Brookesia spp. and 21.4±4.0/ha Calumma of much needed species inventories, but little attention spp. were estimated using the computer program has been given to estimating chameleon popu- DISTANCE. The authors propose that monitoring of lation densities. This lack of information prevents a chameleons in areas subject to different threats should reliable assessment of the effects of habitat loss and begin immediately using the methods outlined in this direct exploitation on wild populations. A simple and paper. repeatable methodology for the monitoring of chameleon populations is therefore urgently required. Keywords Chameleon, Madagascar, population den- The present study developed survey techniques based sity, rain forest, trade. Introduction increased significantly and for some chameleon species increases of up to 400 per cent have been reported Although the degradation and destruction of forests are (World Conservation Monitoring Centre & IUCN/SSC undoubtedly the primary threat to Madagascar's fauna Trade Specialist Group, 1991; IUCN/SSC Trade Special- (Raxworthy, 1988), the additional pressure of exploi- ist Group et al, 1993).
    [Show full text]
  • Roost Site Characteristics of Sympatric Dwarf Chameleons (Genus Brookesia) from Western Madagascar
    Roost site characteristics of sympatric dwarf chameleons (genus Brookesia) from western Madagascar Joseph Christian Randrianantoandro1, Roma Randrianavelona1,2, Raphali Rodlis Andriantsimanarilafy,3 Hantalalaina Elisoa Fideline2, Daniel Rakotondravony2, Richard K.B. Jenkins1,4,∗ Abstract. Madagascar’s Brookesia dwarf chameleons are believed to require relatively intact forest for survival. Although they have featured in herpetological surveys, taxonomic reviews and trade assessments, very little is known about their microhabitat requirements or ecology. Over a 5 night period in a deciduous forest in western Madagascar we recorded the night roosting sites for three sympatric Brookesia species. We calculated the area and distance between successive night roost locations and described the characteristics of each roost. Distance between roosts and the area used were larger for B. brygooi and B. perarmata than B. exarmata. The distance between roosts was significantly greater for male than female B. brygooi and B. perarmata. Roost sites were generally in low vegetation (<0.75 m) with the animals located on stems or leaves. Roost height differed significantly between the species, with B. brygooi using the highest perches and B. exarmata the lowest. Keywords: Brookesia, chameleon, Madagascar, roost. Chameleons lend themselves well to field study at night. There are few available data on how because they can be readily located at night co-occurring dwarf chameleons use the forest whilst roosting and have distinct habitat prefer- habitat or whether there are gender-based dif- ences which often include intact forests. Some ferences in their ecology. Despite major mor- studies in Madagascar have reported differences phological and behavioral differences between in chameleon abundance or density between Brookesia and other Malagasy chameleons, different forest habitats (e.g.
    [Show full text]
  • Habitat Use and Abundance of a Low-Altitude Chameleon Assemblage in Eastern Madagascar
    HERPETOLOGICAL JOURNAL 17: 247–254, 2007 Habitat use and abundance of a low-altitude chameleon assemblage in eastern Madagascar Jeanneney Rabearivony1, Lee D. Brady2, Richard K.B. Jenkins3,4 & Olga R. Ravoahangimalala1 1Département de Biologie Animale, Université d’Antananarivo, Madagascar 2Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, UK 3School of Biological Sciences, University of Aberdeen, UK 4Madagasikara Voakajy, Antananarivo, Madagascar We studied the density and abundance of chameleons in a lowland Malagasy rainforest during the austral summer and winter. Nocturnal searches for chameleons were conducted along transects within relatively intact forest and vegetation on abandoned agricultural land adjacent to the forest. Four chameleon species were encountered during the study, Brookesia superciliaris, Calumma parsonii parsonii, Calumma nasutum and Furcifer pardalis. Brookesia superciliaris was most common inside relatively intact forest and the few individuals located in the regenerating forest on abandoned agricultural land were found in tiny, isolated patches of degraded rainforest next to rivers. Calumma p. parsonii was only encountered on three occasions in relatively intact forest and was a rare member of the community. The abundance of C. nasutum was highest in relatively intact forest but this species also occurred in vegetation on abandoned agricultural land. Furcifer pardalis was only found on the abandoned agricultural land, where it was observed laying eggs in sandy soil in August. The abundance of all species in habitats alongside rivers was higher in January than July–August, with the exception of C. p. parsonii, which was not detected during the former period. Additional investigations into habitat preference of chameleons and surveys in other forests in region are needed to establish whether the low abundance of C.
    [Show full text]
  • Proposal for Amendment of Appendix I Or II for CITES Cop16
    Idioma original: inglés CoP17 Prop. 27 CONVENCIÓN SOBRE EL COMERCIO INTERNACIONAL DE ESPECIES AMENAZADAS DE FAUNA Y FLORA SILVESTRES ____________________ Decimoséptima reunión de la Conferencia de las Partes Johannesburgo (Sudáfrica), 24 de septiembre – 5 de octubre de 2016 EXAMEN DE LAS PROPUESTAS DE ENMIENDA A LOS APÉNDICES I Y II A. Propuesta Incluir los géneros Rhampholeon spp. y Rieppeleon spp. en el Apéndice II. Esta propuesta de inclusión se formula con arreglo al Artículo II, párrafo 2 a) de la Convención, y en cumplimiento del Criterio B, Anexo 2 a) de la Res. Conf. 9.24 (Rev. CoP16), Una especie debería incluirse en el Apéndice II cuando, atendiendo a datos comerciales y a la información disponible sobre el estado y la tendencia de la(s) población(es) silvestre(s), cumpla al menos uno de los siguientes criterios: B. se sabe, o puede deducirse o preverse, que es preciso reglamentar el comercio de la especie para garantizar que la recolección de especímenes del medio silvestre no reduce la población silvestre a un nivel en el que su supervivencia se vería amenazada por la continua recolección u otros factores. Rhampholeon (Rhampholeon) spectrum (Buchholz, 1874) Rhampholeon (Rhampholeon) temporalis (Matschie, 1892) Rhampholeon (Rhampholeon) viridis (Mariaux and Tilbury, 2006) Rhampholeon (Rhinodigitum) acuminatus (Mariaux and Tilbury, 2006) Rhampholeon (Rhinodigitum) uluguruensis (Tilbury and Emmrich, 1996) Rieppeleon brevicaudatus (Matschie, 1892) Rieppeleon kerstenii (Peters, 1868) y de conformidad con el Artículo II, párrafo 2 b) de la Convención, en cumplimiento del Criterio A, Anexo 2 b) de la Res. Conf. 9.24 (Rev. CoP16). Una especie puede incluirse en el Apéndice II con arreglo al párrafo 2 b) del Artículo II si cumple uno de los siguientes criterios: A.
    [Show full text]