Some Western American Cenozoic Gastropods of the Genus Nassarius

Total Page:16

File Type:pdf, Size:1020Kb

Some Western American Cenozoic Gastropods of the Genus Nassarius Some Western American Cenozoic Gastropods of the Genus Nassarius GEOLOGICAL SURVEY PROFESSIONAL PAPER 503-B Some Western American Cenozoic Gastropods of the Genus Nassarius By W. 0. ADDICOTT CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 503-B Pacific coast nassariids, usiful in biostratigraphic correlation of upper Cenozoic formations, are reviewed and classified subgenerically. One new subgenus is described, and one is newly named UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. -Geological Survey Library has cataloged this publication as follows: Addicott, Warren 0., 1930- Some western American Cenozoic gastropods of the genus Na.s-8arius, by W. 0. Addicott. Washington, U.S. Govt. Print. Off., 1965. 24 p. plates. 30 em. ( U.'S. Geological Survey. Professional paper 503-B) Contributions to paleontology. Bibliography : p. 19-21. 1. Gastropoda, Fossil. 2. Paleontology-Cenozoic. 3. Paleon­ tology-The West. I. Title. (Series) For sale by the Superintendent of Documents, Government Printing Office Washington, D.C., 20402 - Price 35 cents CONTENTS Page Page Abstract __________________________________________ _ B1 Systematic paleontology-Continued Introduction ______________________________________ _ 1 Subgenus Catilon Addicott, n. subgen _ _ _ _ _ _ _ _ _ _ _ _ _ B 11 Acknowledgments __________________________________ _ 2 Key to some western American Tertiary species Systematic paleontology ____________________________ _ 2 of Catilon________________________________ 11 Genus Nassarius DumeriL ______________________ _ 3 N assarius ( Catilon) churchi (Hertlein) _ _ _ _ _ _ _ _ _ 12 Key to some fossil western American subgenera N assarius ( Catilon) arnoldi (Anderson) _ _ _ _ _ _ _ _ 12 of N assarius ____________________________ _ 3 Nassarius (Catilon) smooti Addicott, n. sp______ 13 Subgenus Demondia Addicott, n. name ___________ _ 3 N assarius (Catilon?) antiselli (Anderson and Key to some western American species of Martin) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 13 Demondia _______________________________ _ 3 N assarius (Catilon) pabloensis (Clark)_________ 13 Nassarius (Demondia) californianus (Conrad) __ _ 3 N assarius ( Catilon) stocki Kanakoff _ _ _ _ _ _ _ _ _ _ _ 14 N assarius (Demondia) lincolnensis (Anderson Nassarius (Catilon) andersoni (Weaver)________ 14 and Martin) ____________________________ _ 5 N assarius ( Catilon) hamlini (Arnold)__________ 15 Subgenus Caesia H. and A. Adams _______________ _ 5 Nassarius (Catilon?) salinasensis Addicott, n. sp_ 15 Key to some western American species of Caesia_ 5 N assarius ( Catilon) hildegardae Kanakoff_______ 16 Nassarius (Caesia) grammatus (Dall) _________ _ 6 Nassarius (Catilon) iniquus (Stewart)_________ 16 Nassarius (Caesia) moranianus (Martin) ______ _ 8 Subgenus?_____________________________________ 16 N assarius ( Caesia) coalingensis (Arnold) ______ _ 9 N assarius ocoyanus (Anderson and Martin)____ 16 N assarius ( Caesia) whitneyi (Trask) __________ _ 9 Locality descriptions________________________________ 17 N assarius ( Caesia) delosi (Woodring) _________ _ 10 References_________________________________________ 19 N assarius ( Caesia) rhinetes Berry ____________ _ 10 Index_____________________________________________ 23 ILLUSTRATIONS [Plates follow index] PLATE 1. Late Cenozoic species of Demondia and Caesia. 2. Late Cenozoic species of Caesia. 3. Late Cenozoic species of Catilon, Caesia, and subgenus?. Page FIGURE 1. Stratigraphic occurrence and possible evolution of species of Caesia___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ B7 III CONTRIBUTIONS TO PALEONTOLOGY SOME WESTERN AMERICAN CENOZOIC GASTROPODS OF THE GENUS NASSAR/US By w. 0. AnDICOTI' ABSTRACT molluscan asse1nblages from central California.. Two The gastropod genus N assarius, characteristic .of late Ceno­ nassariids that characterize many of these assmnblages, zoic molluscan faunas of the Pacific Coast ~states, is among the N. californianus (Conrad) and N. grammatu8 (Dall), most useful molluscan taxa for stratigraphic correlation of ma­ appeared to be diagnostic of Pliocene strata. Yet their rine Tertiary ·and Quaternary formations of western North actual stratigraphic ranges were obscured because of America. It first appeared in California during the early Miocene and by middle Miocene time had diversified into at the identification of the species under other names and least three supraspecific groups, defined on apertural morphol­ the use of N. california:nus for a number of Pliocene to ogy. These groups, which have continued into Recent time as Recent nassariids belonging to three subgenera. At one the principal nassariid subgenera in the northeastern Pacific time N. granwnatu8 was commonly identified as N. cali­ Ocean, are: Demondia, new name for Schizopyga Conrad, 1856 fornianu8, and N. californianus presumably was iden­ (not Gravenhorst, 1829) (type: Schizopyga californiana Con­ rad); Oaesia (type: Nassa perpinguis Hinds); and Oatilon, tified as the Pleistocene to Recent species N. 1nendicu8. new subgenus (type: Nassa arnoldi Anderson). A systematic review of these and related species be­ Demondia, the smallest of the three subgenera, is first c.ame requisite to determining their actual stratigraphic represented in strata of middle Miocene age by Nassarius Un­ distribution. As a result, perhaps half of the named colnensis from the Astoria Formation of coastal Oregon and fossil species of Nas8arius were studied and compared Washington. Other taxa referable to this subgenus are: cali­ tornianus, mendicus, mendicus forma cooperi, and mendicus with these species. The resulting compilation empha­ forma indisputabilis. sized the potential usefulness of nassariids in strati­ Taxa included in the subgenus Oaesia are: whitneyi, gram­ graphic correlation of upper Cenozoic strata and thereby matns, grammatu,s n. subsp. ?, coalingensis, perpinguis, moran­ prompted expansion of the study to a general review ianus, delosi, tossatus, cerritensis, and rhinetes. An evolu­ of the known fossil western American species. tionary sequence useful in stratigraphic correlation in Cali­ fornia is formed by the species whitneyi, grammatus, and In terms of their known stratigraphic distribution moranianus. Nassarius whUneyi ranges from middle to late and an apparent evolutionary sequence within one sub­ ~Iiocene. N. gramm.atus (Dall, 1917), a poorly known species genus, the fossil nassariids can be ranked with the pec­ long treated as a synonym of N. moranianus (Martin, 1914), is tinids and turritellas as one of the more useful characteristic of Pliocene formations. It can be distinguished from the descendent late Pliocene to early Pleistocene species, molluscan genera in correlation of upper Cenozoic X. nwranianus, by its nonangulated, uniformly sculptured body strata of the Pacific coast. The genus first appeared in whorl. The modern species representing this lineage, N. fos­ southern California during the early Miocene and by satus, first appears in beds of early Pleistocene age. 1niddle Miocene time had diversified into several species Fossil species included in the subgenus Oatilon are: churchi, arnoldi, smooti, antiselli, andersoni, pabloensis, stocki, hamlini, of restricted stratigraphic distribution. The strati­ salinasensis, iniquus, and hildegardac. The subgenus first ap­ graphic utility of many of the nassariids is favored by pears in beds of early Miocene age in California. It becomes their intricate sculpture, which permits an unusual locally extinct after the PUocene but is well represented in the modern Panamic molluscan province of the tropical eastern degree of refinement in species recognition. Most Pacific Ocean. species also are sufficiently numerous, in at least a few N assarius ocoyanus, a middle Miocene species not referable collections, to give a reasonably good idea of the amount to any of the preceding subgenera, is tentatively placed in a of individual va.riation. fourth, unnamed subgenus. With but one exception-an unusual species from the INTRODUCTION middle Miocene of California., N a88ar·ius ocoyanus A review of some fossil species of N a88arirtt8 from the (Anderson and Martin) -the known fossil nassariids Pacific coast ·was undertaken as an adjunct to the iden­ from the Pacific coast can be classified in three taxo­ tification and biostratigraphic classification of Pliocene nomic units. These taxa, defined wholly on apertural B1 B2 CONTRIBUTIONS TO PALEONTOLOGY 1norphology, are recognized under the following sub­ and making available several specimens for figure illus­ generic names: Denwndia, new name, Ca,esla Adams, trations. L. G. Hertlein and A. M. Keen kindly pro­ and Oatilon, new subgenus. vided access to the collections of the California A cad­ Stratigraphic allocation of collections in which nas­ emy of Sciences and Stanford University, respectively. sariids occur is based primarily upon the Pacific coast "'\V. P. Popenoe, of the University of California, Los provincial n1etazoan chronology of Weaver and others Angeles, and G. P. Kanakoff, of the Los Angeles County ( 1944). Use of the epoch names Miocene, Pliocene, Museum, furnished specimens of N as8arius for figure and Pleistocene, and subdivisions thereof, is made in a illustrations. George Hughes, of the University of provincial sense, with explicit reference to the Weaver California, Santa Barbara, loaned specimens
Recommended publications
  • Bathymetry and Body Size in Marine Gastropods: a Shallow Water Perspective
    MARINE ECOLOGY PROGRESS SERIES Vol. 237: 143–149, 2002 Published July 18 Mar Ecol Prog Ser Bathymetry and body size in marine gastropods: a shallow water perspective Kaustuv Roy* Section of Ecology, Behavior and Evolution, Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA ABSTRACT: Spatial patterns of species body size across major environmental gradients are being quantified for terrestrial organisms, but similar efforts are largely lacking for marine invertebrates. Bathymetry represents a major environmental gradient in the oceans, and existing theoretical mod- els predict that species body size should decrease with increasing depth, especially for deep-sea spe- cies. Previous analyses of body size in deep-sea gastropods have shown size to increase with depth and hence contradict model predictions. In this study, I use data for 636 species of gastropods (in 10 major groups) living on the NE Pacific continental shelf to test hypotheses about processes that determine size-depth trends in marine gastropods. Results show that the gastropod family Turridae, a major component of both shallow-water and deep-sea biotas, shows similar size-depth trends in both environments but that predominantly shallow water families may show different patterns. In addition, size-depth trends may differ between clades and between different trophic groups. The implications of these results for better understanding the processes that underlie bathymetric trends in body size are discussed. KEY WORDS: Body size · Bathymetry · Gastropoda Resale or republication not permitted without written consent of the publisher INTRODUCTION relationships in the deep sea suggest that such trends may differ among taxa (see Rex & Etter 1998 for a Body size is considered to be one of the most impor- review).
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]
  • Appendix C - Invertebrate Population Attributes
    APPENDIX C - INVERTEBRATE POPULATION ATTRIBUTES C1. Taxonomic list of megabenthic invertebrate species collected C2. Percent area of megabenthic invertebrate species by subpopulation C3. Abundance of megabenthic invertebrate species by subpopulation C4. Biomass of megabenthic invertebrate species by subpopulation C- 1 C1. Taxonomic list of megabenthic invertebrate species collected on the southern California shelf and upper slope at depths of 2-476m, July-October 2003. Taxon/Species Author Common Name PORIFERA CALCEREA --SCYCETTIDA Amphoriscidae Leucilla nuttingi (Urban 1902) urn sponge HEXACTINELLIDA --HEXACTINOSA Aphrocallistidae Aphrocallistes vastus Schulze 1887 cloud sponge DEMOSPONGIAE Porifera sp SD2 "sponge" Porifera sp SD4 "sponge" Porifera sp SD5 "sponge" Porifera sp SD15 "sponge" Porifera sp SD16 "sponge" --SPIROPHORIDA Tetillidae Tetilla arb de Laubenfels 1930 gray puffball sponge --HADROMERIDA Suberitidae Suberites suberea (Johnson 1842) hermitcrab sponge Tethyidae Tethya californiana (= aurantium ) de Laubenfels 1932 orange ball sponge CNIDARIA HYDROZOA --ATHECATAE Tubulariidae Tubularia crocea (L. Agassiz 1862) pink-mouth hydroid --THECATAE Aglaopheniidae Aglaophenia sp "hydroid" Plumulariidae Plumularia sp "seabristle" Sertulariidae Abietinaria sp "hydroid" --SIPHONOPHORA Rhodaliidae Dromalia alexandri Bigelow 1911 sea dandelion ANTHOZOA --ALCYONACEA Clavulariidae Telesto californica Kükenthal 1913 "soft coral" Telesto nuttingi Kükenthal 1913 "anemone" Gorgoniidae Adelogorgia phyllosclera Bayer 1958 orange gorgonian Eugorgia
    [Show full text]
  • SCAMIT Newsletter Vol. 9 No. 2 1990 June
    A,FOR*M Southern California Association of Marine Invertebrate Taxonomists 3720 Stephen White Drive San Pedro, California 90731 June 1990 Vol. 9, NO.2 NEXT MEETING: Hydrozoa GUEST SPEAKER: John Ljubenkov MEC Analytical Systems Inc. DATE: Monday, July 9, 1990, 9:30 A.M. LOCATION: MEC Analytical Systems Inc. 2433 Impala Dr. Carlsbad, CA 92009 MINUTES FROM MEETING ON JUNE 11, 1990 Nassarius: Don Cadien, Sanitation Districts of Los Angeles County, hosted this months Nassarius meeting. Most of the meeting involved discussion of the characters available to differentiate the juvenile species of Nassarius. A discussion of the Nassariidae is included in this newsletter. Cladocarpus sp. A: John Ljubenkov, MEC Analytical Systems, provided a voucher sheet for Cladocarpus sp. A. It can be added to the revised key to the species of Cladocarpus that was included in the previous edition of the SCAMIT newsletter (Vol 9 no. 1). Next Meeting: A map to MEC is included in this newsletter. New Publications: Common and Scientific Names of Aquatic Invertebrates from the United States and Canada: DECAPOD CRUSTACEANS. An order form for this publication is included with this newsletter FUNDS FOR THIS PUBLICATION PROVIDED IN PART BY ARCO FOUNDATION, CHEVERON USA, AND TEXACO INC. SCAMIT newsletter is not deemed to be a valid publication for formal taxonomic purposes. Picnic Reminder: Remember to mark your calendars for the annual SCAMIT picnic to be held Saturday, August 18, 1990 at Doheny State Beach. We are planning to eat at about 1:00 so try to arrive early so you can avoid any traffic or parking problems, be there for fun and games, and best of all, you get the better pick of the eats! Also, if you are planning to attend, please let Larry Lovell at (619) 945-1608, know how many people there will be in your party and most of all, how you can help! Upcoming Meetings: December 27 - 30, 1990 Western Society of Naturalists, Monterey, CA For further information contact: Dr.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?
    Mar. Drugs 2015, 13, 5237-5275; doi:10.3390/md13085237 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds? Kirsten Benkendorff 1,*, David Rudd 2, Bijayalakshmi Devi Nongmaithem 1, Lei Liu 3, Fiona Young 4,5, Vicki Edwards 4,5, Cathy Avila 6 and Catherine A. Abbott 2,5 1 Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 2 School of Biological Sciences, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (D.R.); [email protected] (C.A.A.) 3 Southern Cross Plant Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 4 Medical Biotechnology, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (F.Y.); [email protected] (V.E.) 5 Flinders Centre for Innovation in Cancer, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia 6 School of Health Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-8201-3577. Academic Editor: Peer B. Jacobson Received: 2 July 2015 / Accepted: 7 August 2015 / Published: 18 August 2015 Abstract: Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • From the Late Neogene of Northwestern France
    Cainozoic Research, 15(1-2), pp. 75-122, October 2015 75 The family Nassariidae (Gastropoda: Buccinoidea) from the late Neogene of northwestern France Frank Van Dingenen1, Luc Ceulemans2, Bernard M. Landau3, 5& Carlos Marques da Silva4 1 Cambeenboslaan A 11, B-2960 Brecht, Belgium; email: [email protected] 2 Avenue Général Naessens de Loncin 1, B-1330 Rixensart, Belgium; email: [email protected] 3 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, Netherlands; Instituto Dom Luiz da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; and International Health Centres, Av. Infante de Henrique 7, Areias São João, P-8200 Albufeira, Portugal; email: [email protected] 4 Departamento de Geologia e Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; [email protected] 5 corresponding author Received 7 July 2015, revised version accepted 4 August 2015 In this paper we revise the nassariid Plio-Pleistocene assemblages of northwestern France. Twenty-eight species are recorded, of which eleven are described as new; Nassarius brebioni nov. sp., Nassarius landreauensis nov. sp., Nassarius merlei nov. sp., Nassarius pacaudi nov. sp., Nassarius palumbis nov. sp., Nassarius columbinus nov. sp., Nassarius turpis nov. sp., Nassarius poteriensis nov. sp., Nassarius plainei nov. sp., Nassarius martae nov. sp., Nassarius gendryi nov. sp., five are left in open nomenclature. Two nassariid genera are recognised (Nassarius and Demoulia). The ‘Redonian’ assemblages and localities are grouped in four assemblages (Assemblages I – IV) corresponding to the four major stratigraphic groups of deposits recognised in the post mid-Miocene sequences of northwestern France.
    [Show full text]
  • Review of the Nassarius Pauperus
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0275 Autor(en)/Author(s): Galindo Lee Ann, Kool Hugo H., Dekker Henk Artikel/Article: Review of the Nassarius pauperus (Gould, 1850) complex (Nassariidae): Part 3, reinstatement of the genus Reticunassa, with the description of six new species 1-43 European Journal of Taxonomy 275: 1–43 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.275 www.europeanjournaloftaxonomy.eu 2017 · Galindo L.A. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life, research article urn:lsid:zoobank.org:pub:FC663FAD-BCCB-4423-8952-87E93B14DEEA Review of the Nassarius pauperus (Gould, 1850) complex (Nassariidae): Part 3, reinstatement of the genus Reticunassa, with the description of six new species Lee Ann GALINDO 1*, Hugo H. KOOL 2 & Henk DEKKER 3 1 Muséum national d’Histoire naturelle, Département Systématique et Evolution, ISyEB Institut (UMR 7205 CNRS/UPMC/MNHN/EPHE), 43, Rue Cuvier, 75231 Paris, France. 2,3 Associate Mollusca Collection, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:B84DC387-F1A5-4FE4-80F2-5C93E41CEC15 2 urn:lsid:zoobank.org:author:5E718E5A-85C8-404C-84DC-6E53FD1D61D6 3 urn:lsid:zoobank.org:author:DA6A1E69-F70A-42CC-A702-FE0EC80D77FA Abstract. In this review (third part), several species within the Nassarius pauperus complex from the eastern Indian Ocean and western Pacifi c are treated, including a revised concept of Nassa paupera Gould, 1850, type species of the genus Reticunassa Iredale, 1936.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • The Evolution of Gigantism on Temperate Seashores
    bs_bs_banner Biological Journal of the Linnean Society, 2012, 106, 776–793. The evolution of gigantism on temperate seashores GEERAT J. VERMEIJ* University of California Davis, Department of Geology, One Shields Avenue, Davis, CA 95616 Received 10 January 2012; revised 22 February 2012; accepted for publication 22 February 2012bij_1897 776..793 The extent to which animal lineages achieve large body size, a trait with broad advantages in competition and defence, varies in space and time according to the supply of (and demand for) resources, as well as the magnitude and effects of extinction. Using the maximum sizes of shallow-water marine shell-bearing molluscs belonging to nineteen guilds (groups of species with similar habits and food sources) in seven temperate regions from the Early Miocene to the Recent, the present study examined the controls on productivity and predation that enable and compel large size to evolve. The North Pacific (especially its eastern sector) has been most favourable to large-bodied species from the Pliocene onward. Large productive kelps (Laminariales) evolved there in conjunction with herbivorous mammals, setting the stage through positive feedbacks between production and consumption for the evolution of large molluscan herbivores and suspension-feeders. The evolution of bottom-feeding predatory mammals together with other large predators created intense selection for large molluscan sizes. Very large molluscs in the Early Miocene were concentrated in the southern hemisphere, especially among metabolically passive species. Extinctions, which preferentially targeted the largest members of guilds in most regions, were more numerous in the southern hemisphere and the North Atlantic than in the North Pacific.
    [Show full text]