Mount Siple Volcano, Marie Byrd Land (<\C:)

Total Page:16

File Type:pdf, Size:1020Kb

Mount Siple Volcano, Marie Byrd Land (<\C:) assessment of Gondwana reconstructions. Earth and Planetary Science Cambrian volcanics of the Bowers Supergroup and implications for Letters, 57, 152-158. the Early Paleozoic tectonic evolution of northern Victoria Land, Weaver, S.D., J.D. Bradshaw, and M.G. Laird. 1984. Geochemistry of Antarctica. Earth and Planetary Science Letters, 68, 128-140. Mount Siple volcano, Marie Byrd Land USCGC Polar Sea. The initial landing was made at Lovill Bluff (figure 1) by helicopter, piloted by LCDR Rick McLean and crewed by AM2 Robert OConner. The scientific party included Pamela Ellerman (on her birthday), David Johnson, William W. E. LEMASURIER McIntosh, and me. We spent a full day visiting Lovill Bluff and two other western flank localities before steaming north to the Geology Department vicinity of Maher Island (figure 1). Because of poor weather University of Colorado at Denver conditions, we were forced to examine the northern flank ex- Denver, Colorado 80202 posures with binoculars over the next 4 days and finally left the area on the morning of 27 February to maintain the ships Mount Siple, one of the largest volcanoes in Antarctica, was schedule. A very useful series of close-up photographs along visited for the first time on 22 February 1984 during cruise II of the north flank of the volcano was taken by Seaman A.R. Sul- Limit of fast ice - Maher (February 1965) Island - 125000W 126° 1280 (<\c:) 73°00S -1-- Lauff I Island Burtis C_; C^l \ 0 Island I ri?- 0 Cape Dart Recely Bluff MOUNT SIPLE 3110 I KEY Possible source Trachyte Lovill of felsic beach U° C— — .- cobbles ¼ Bluff ._® c. Felsic bea' Basalt ch .j I — .. fflJ cobbles P cha n k r a t z I I F r1 Hyaloclastite L_J Bay (hydroclastic tuff) ) +d 73°30S Inferred limit of / q summit caldera I •i._ —ID I Scale 1:500,000 , . 10 0 10 20 30 i—a i—a i—i 1 km Figure 1. Preliminary geologic map of Mount Siple. Base map is from U.S. Geological Survey (1965). Revised geographic coordinates based on Polar Sea cruise ii data were not available at the time of writing. However, shipboard estimates place the true position of Mount Siple approximately 40 kilometers west of the position shown In this figure. Localities A, C, D, and J are field designations used for unnamed rock exposures. ("km" denotes kilometer.) 1984 REVIEW 33 and consists of a 30-meter thickness of horizontal basalt flows. The relative ages of the tuff cones and the section of flows could not be determined in the field, but samples from each locality have been submitted for potassium-argon dating. On the north side of the volcano it is clear from shipboard observation and Seaman Sullivans photographs that Maher Island and Lauff Island are tuff cones, but the nature of the onshore exposures is less certain. Sullivans excellent close-up photo of a near-sea level exposure north of Recely Bluff (locality I) shows a cliff of light and dark brown stratified rock that is likely to be another tuff cone, like Lovill Bluff. Cape Dart ex- posures at similar or slightly higher elevations appear, from a distance of 15-20 kilometers, to be composed of ledgy irregular flows or flows interbedded with tephra. The available evidence suggests that volcanic ash is not abun- dant at Mount Siple, except at localities very close to sea level where it was evidently produced by the explosive interaction of Figure 2. View southward of Cape Dart coastal exposures at the sea water and lava in coastal vents. The rock at higher elevations mouth of a well developed glacial valley. The 3,110 meter summit of may be predominantly flow rock (like the cobbles) with little or Mount Siple is in the background. This photo by A.R. Sullivan, from a no volcanic ash, neither the kind produced by explosive exsolu- distance of 15-20 kilometers without telephoto lens, records a brief tion of dissolved magmatic water nor the kind produced by interval of clear weather at the summit that was not visible from the explosive interaction of lava and thick glacial ice (hyaloclastite). ship. Once again, analogy is helpful here. The 17 other large vol- canoes in Marie Byrd Land are either felsic-shield volcanoes, composed mainly of flow rock, or else they are composed main- livan during a helicopter reconnaissance of ice conditions just ly of hyaloclastite (LeMasurier 1972-a). Taking the analogy one prior to our departure. step further, it is reasonable to infer that the major volcanic cone Our objectives on this first visit were to find the answers to at Mount Siple consists of a felsic shield volcano overlying a some very basic questions about the volcano, much like prepar- basal succession of basalt flows, like the relations seen at Toney ing the scientific objectives of a lunar or martian space mission Mountain (75°48S 115°52W), 400 kilometers to the southeast (there have, in fact, been more landings on the Moon than on (LeMasurier 1972-b). Locality C may represent the basal succes- Mount Siple): sion, and the felsic cobbles suggest a felsic-shield volcano. It • Is it composed of felsic rock (e.g., trachyte, phonolite, remains to be seen, from the potassium-argon results, whether rhyolite), and if so, what does this tell us about melting and Lovill Bluff and locality A represent the earliest stages of vol- crystallization processes in the crust and mantle beneath the canic activity, preceeding the construction of the main shield, or volcano? a terminal stage of basaltic parasitic cones, like those found on • Is there evidence that water played a part in the origin of the many of the Executive Committee Range volcanoes 350 kilo- rocks that make up the volcano, either as water dissolved in meters south of Mount Siple. the magma, or as surface water that interacted with the lava at Our party estimates that roughly 80 percent of the accessible the time of eruption? exposures at Mount Siple remain to be visited. Another visit to • What are the major structural characteristics of the volcano? Mount Siple, with more time and better weather, will be needed For example, is it a shield volcano, a composite cone, or (1) to confirm these inferences about the structure of the vol- composed almost entirely of hyaloclastite tuff breccias, as are cano, (2) to determine the amount and compositional range of several other Marie Byrd Land volcanoes? felsic rock, and (3) to determine the ages and total amounts of It is apparent from our field work that there is indeed felsic hyaloclastite at Mount Siple and the implications of these de- rock at Mount Siple, but it is probably found mainly on the posits with regard to glacial history. It appears, for example, upper slopes of the mountain. The localities we were able to that Mount Siple has formed at, or just beyond, the margin of visit were at the base and were composed of basaltic tuffs or flow the continental ice sheet. It would be interesting to know the rock. However, a collection of beach cobbles recovered from range in the age of lavas that were erupted while Mount Siple locality A (figure 1) by Bill McIntosh and members of the Polar occupied this position, and whether the volcano occupies a Sea crew was found to consist of 30 percent felsic lava cobbles, position that could represent a long-term limit to the advances suggesting a nearby upglacier source, as shown on the map. By of the ice sheet. analogy with all of the other large Marie Byrd Land volcanoes it This work is supported by National Science Foundation grant seems likely that the upper portion of the Mount Siple cone is DPP 80-20836. Our scientific party is grateful to the officers and composed predominantly of felsic rock. Compositional data on crew of USCGC Polar Sea, under the command of Captain Bruce the felsic samples are not yet available. Little, for their logistic support and overall congeniality and The base of Mount Siple is characterized by numerous tuff helpfulness during the cruise. We also offer our thanks to the cones at sea level and by horizontal flow rock immediately Coast Guard helicopter detachment, under the command of above sea level. On the west flank of the mountain, Lovill Bluff LCDR Rick McLean, for their interest and skillful support during and locality A (figure 1) are both tuff cones of basaltic composi- our all too brief periods of helicopter operation. We extend tion; that is, they are comparable to Diamond Head and Koko special thanks as well to CDR J.J. MacClelland for making avail- Craters on Oahu in structure and composition. Locality C, 6 able the crews collection of beach cobbles and to Seaman A.R. kilometers north of Lovill Bluff, is 150 meters above sea level Sullivan for generously donating his geologic photographs. 34 ANTARCTIC JOURNAL References LeMasurier, W.E. 1972-b. Volcanic record of Cenozoic glacial history of Marie Byrd Land. In R.J. Adie (Ed.), Antarctic Geology and Geophysics. LeMasurier, W.E. 1972-a. Volcanic record of Antarctic glacial history: Oslo: Universitetsforlaget. Implications with regard to Cenozoic sea levels. (Special publication U.S. Geological Survey. 1965. 1:500,000 Antarctica Sketch Map, Hobbs no. 4.) Institute of British Geographers. Coast Byrd Land. Reston Va.: U.S. Geological Survey. West Antarctica: Its tectonics and its during the 1980-1981 antarctic season with the object of elu- cidating West Antarcticas tectonics and relationship to the East relationship to East Antarctica Antarctic craton (Doake, Crabtree, and Daiziel 1983).
Recommended publications
  • Late Quaternary Volcanic Activity in Marie Byrd Land: Potential 40Ar/39Ar-Dated Time Horizons in West Antarctic Ice and Marine Cores
    Late Quaternary volcanic activity in Marie Byrd Land: Potential 40Ar/39Ar-dated time horizons in West Antarctic ice and marine cores T. I. Wilch* Department of Geological Sciences, Albion College, Albion, Michigan 49224 W. C. McIntosh Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, and New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801 N. W. Dunbar New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801 ABSTRACT More than 12 40Ar/39Ar-dated tephra lay- ies is to determine the basal age of the ice sheet. ers, exposed in bare ice on the summit ice cap The 1968 Byrd Station ice core in the West Late Quaternary volcanic activity at three of Mount Moulton, 30 km from their inferred Antarctic Ice Sheet has an inferred basal age of major alkaline composite volcanoes in Marie source at Mount Berlin, range in age from 492 only 74 ka (Hammer et al., 1994). The exten- Byrd Land, West Antarctica, is dominated by to 15 ka. These englacial tephra layers provide sive lateral flow of ice from the ice divide area explosive eruptions, many capable of deposit- a minimum age of 492 ka for the oldest iso- to Byrd Station may have removed or disturbed ing ash layers as regional time-stratigraphic topically dated ice in West Antarctica. This much of the basal ice record. Consequently, the horizons in the West Antarctic Ice Sheet and well-dated section of locally derived glacial ice 74 ka date of the Byrd core provides only a in Southern Ocean marine sediments.
    [Show full text]
  • Volcanoes at Antarctica
    ClimateChangeTheFacts.org.au FACT SHEET #4 FIRE AND ICE: VOLCANOES AT ANTARCTICA HOT TAKES Figure 1: Volcanoes of West Antarctica3 1 At West Antarctica, 91 newly discovered volcanoes lie buried kilometres beneath a thick ice sheet. Ronne-Filchner Ice Shelf 2 The ice sheet has co-existed with volcanism for millions 0 of years. 90 W Ellsworth Whitmore South Pole 3 Future volcanism is inevitable but fears it would Land Mountains destabilise the ice sheet and accelerate sea-level rise Mount Takahe are unfounded. Transantarctic Mount Sidley Mountains 135 Mount Cumming 0 E Marie Many people are concerned the (slight) global warming Amundsen Sea Byrd observed over the past 100 years is unnatural and caused Land 80 0 Mount Siple S Ross Ice Shelf by human activity. Some also believe this will accelerate melting of ice sheets and glaciers and cause rapid 0 W Mount Erebus catastrophic sea level rise. However this conclusion is 135 Ross Sea dependent on complex computer models containing many W 0 untested assumptions. A great many of the assumptions the 70 0 1000 km S models need to get right before they are of any use are only 180 very poorly understood. Visible volcanoes Volcanoes hidden beneath ice Some environmentalists believe volcanoes associated with the Not even the large inland volcanoes protruding through the West Antarctic Ice Sheet (WAIS) could magnify the ‘climate WAIS were known to exist before 1940 when first seen from change’ risk to the ice sheet. However close examination of the air. Mount Takahe is so remote it was not visited until the relationship between the volcanoes and the ice shows this 1957.
    [Show full text]
  • Mineral Resources of Antarctica
    GEOLOGICAL SURVEY CIRCULAR 705 Mineral Resources of Antarctica Mineral Resources of Antarctica Compiled ancl eclitecl &y N. A. Wright ancl P. L. Williams GEOLOGICAL SURVEY CIRCULAR 705 1974 United States Department of the Interior ROGERS C. B. MORTON, Secretary Geological Survey V. E. McKelvey, Director Free on application to the U.S. Geological Survey, National Center, Reston, Va. 22092 CONTENTS Page )Lbstract ---------------------------------------------------------------- 1 Introduction ------------------------------------------------------------ 1 ldineral occurrences ------------------------------------------------------ 3 Sand and gravel ---------------------------------------------------- 3 Other nonmetals ---------------------------------------------------- 3 Iron ---------------------------------------------------------------- 10 Copper --------_____ -.- ____ - __ - _________ - ___ - ___ - --__ ----------------- 11 Gold and silver ------------------------------------------------------ 11 ldolybdenum ___________________________________ ---_ -~- --------------- 11 Other metals -------------------------------------------------------- 11 Potential resources _--- _-_________ - ________ - ____ ---_----__ ---------------- 11 ldanganese nodules _____________________________ ---____ --------------- 11 Geothermal energy --------------------------------------------------- 12 VVater (as ice) ------------------------------------------------------ 15 Coal ---------------------------------------------------------------- 15 Oil and natural gas
    [Show full text]
  • 1 BC RECORD in a FIRN CORE from WEST ANTARCTICA 1 MARQUETTO ET AL. 2 VOL. 37, APRIL 2020, 1-10 3 4 Refractory Black Carbon Resul
    1 BC RECORD IN A FIRN CORE FROM WEST ANTARCTICA 2 MARQUETTO ET AL. 3 VOL. 37, APRIL 2020, 1-10 4 5 Refractory Black Carbon Results and a Method Comparison between Solid-state 6 Cutting and Continuous Melting Sampling of a West Antarctic Snow and Firn Core 7 Luciano MARQUETTO*1,2, Susan KASPARI1, Jefferson Cardia SIMÕES2, and Emil 8 BABIK1 9 1Department of Geological Sciences, Central Washington University, Ellensburg, 10 Washington 98926, USA 11 2Polar and Climatic Center, Federal University of Rio Grande do Sul, Porto Alegre, Rio 12 Grande do Sul, 91509-900, Brazil 13 (Received 12 July 2019; revised 4 September 2019; accepted 24 October 2019) 14 ABSTRACT 15 This work presents the refractory black carbon (rBC) results of a snow and firn core drilled 16 in West Antarctica (79°55'34.6"S, 94°21'13.3"W) during the 2014--15 austral summer, 17 collected by Brazilian researchers as part of the First Brazilian West Antarctic Ice Sheet 18 Traverse. The core was drilled to a depth of 20 m, and we present the results of the first 8 m by 19 comparing two subsampling methods---solid-state cutting and continuous melting---both with 20 discrete sampling. The core was analyzed at the Department of Geological Sciences, Central 21 Washington University (CWU), WA, USA, using a single particle soot photometer (SP2) 22 coupled to a CETAC Marin-5 nebulizer. The continuous melting system was recently * Corresponding author: Luciano MARQUETTO E-mail: [email protected] 1 23 assembled at CWU and these are its first results.
    [Show full text]
  • A 125-Year Record of Climate and Chemistry Variability at the Pine Island Glacier Ice Divide, Antarctica Franciele Schwanck1, Jefferson C
    The Cryosphere Discuss., doi:10.5194/tc-2016-242, 2016 Manuscript under review for journal The Cryosphere Published: 7 November 2016 c Author(s) 2016. CC-BY 3.0 License. A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica Franciele Schwanck1, Jefferson C. Simões1, Michael Handley2, Paul A. Mayewski2, Jeffrey D. Auger2, Ronaldo T. Bernardo1, Francisco E. Aquino1 5 1Centro Polar e Climático, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91540-000, Brazil 2Climate Change Institute, University of Maine, Orono, 04469, United States Correspondence to: Franciele Schwanck ([email protected]) Abstract. The Mount Johns (MJ) ice core (79º55'S; 94º23'W) was drilled near the Pine Island Glacier ice divide on the West Antarctic Ice Sheet during the 2008–2009 austral summer, to a depth of 92.26 m. The upper 45 m of the record covers 10 approximately 125 years (1883- 2008) showing marked seasonal variability. Trace element concentrations in 2,137 samples were determined using inductively coupled plasma mass spectrometry. In this study, we reconstruct mineral dust and sea salt aerosol transport and investigate the influence of climate variables on the elemental concentrations to the MJ site. The ice core record reflects changes in emissions as well as atmospheric circulation and transport processes. Our trajectory analysis shows distinct seasonality, with strong westerly transport in the winter months and a secondary northeasterly transport in the 15 summer. During summer months, the trajectories present slow-moving (short) transport and are more locally influenced than in other seasons. Finally, our reanalysis trace element correlations suggest that marine derived trace element concentrations are strongly influenced by sea ice concentration and sea surface temperature anomalies.
    [Show full text]
  • Mineral Dust Variability in Central West Antarctica Associated with Ozone Depletion” by M
    Atmos. Chem. Phys. Discuss., 12, C6550–C6562, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/C6550/2012/ Chemistry © Author(s) 2012. This work is distributed under and Physics the Creative Commons Attribute 3.0 License. Discussions Interactive comment on “Mineral dust variability in central West Antarctica associated with ozone depletion” by M. Cataldo et al. M. Cataldo et al. [email protected] Received and published: 4 September 2012 Reviewer’s comment: General Comments of the Reviewer: This is an interesting pa- per that provides a convincing analysis of microparticle concentration decreased by strengthening westerly winds while the size of the deposited particles is increased by stronger storms. Some issues do need attention however, and these are outlined be- low. 1. I would not term the Mount Jones site as being in central West Antarctica. Rather it is in the far eastern part of the West Antarctic Ice Sheet (see Fig. 6) if one excludes the Antarctic Peninsula. Authors : Probably the reviewer made a little confusion in the terminology between C6550 Mount Jones (77o 14’S;142o 04’W) and Mount Johns (79o 55’S;094o 23’W), the sec- ond one the coring site, both located at West Antarctica. Using an acceptable geo- graphical definition for West Antarctica as “ The portion of Antarctica on the west side of the Transantarctic Mountains bounded by the Ross and the Ronne Ice Shelves, the Antarctic Peninsula and the Pacific Ocean sector”, it is safe to say that Mount Johns do belong to the Central portion of West Antarctica (Fig. 1 helps clarify the difference of locations).
    [Show full text]
  • Paul Andrew Mayewski CV
    Paul Andrew Mayewski Biographical Data (Research) Academic Degrees Doctorate of Philosophy honoris causa (2000) University of Stockholm PhD (1973) Institute of Polar StuDies anD the Department of Geology anD Mineralogy, Ohio State University B.A. (1968) Department of Geological Sciences (Honors Program), State University of New York at Buffalo Current Position (University of Maine) Director, Climate Change Institute, DistinguisheD Professor School of Earth anD Climate Sciences, Cooperating Professor in School of Marine Sciences, School of Policy anD International Affairs, Maine Business School, Center for Oceans anD Coastal Law (Maine Law School). Academic, Research and Service Administrative Positions (selected) Science ADvisory BoarD, Khumbu Research Center, Phortse, Nepal (2020) National Geographic Society anD Rolex Perpetual Planet Mt. Everest ExpeDition Leader and Science LeaDer in aDDition to Senior ADvisor serving as a subject matter expert in support of Mt. Everest anD high mountain scientific sampling anD monitoring projects (2018-2020) Member, FrienDs of AcaDia BoarD (2018-) Member, ADvisory Council, SchooDic Institute at AcaDia National Park (2017-2019) Member, ADvisory BoarD JONAA (Journal of the North Atlantic anD Arctic) (2017-present) Co-PresiDent, Arctic Futures Institute (2018-present) Member, ADvisory BoarD, Maine Lakes Society (2016-2018) Member, Environmental Sustainability Committee, Boston Museum of Science (2014-2017) Member Maine Delegation to the Arctic Circle Meetings, Reykjavik, IcelanD (2014) ADvisory BoarD, Maine North Atlantic Development Office (2014-present) ADvisory BoarD, WorlD Ocean Observatory (W2O) (2014-present) BoarD Member, TiDal Energy Demonstration anD Evaluation Center, Maine Maritime AcaDemy (2009-2011) ADvisory BoarD, Marine Environmental Research Institute (MERI) Center for Marine StuDies (2009-present) BoarD of Cooperating Curators, HuDson Museum, University of Maine (2005-present) P.A.
    [Show full text]
  • A 125-Year Record of Climate and Chemistry Variability at the Pine Island Glacier Ice Divide, Antarctica
    The Cryosphere, 11, 1537–1552, 2017 https://doi.org/10.5194/tc-11-1537-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica Franciele Schwanck1, Jefferson C. Simões1, Michael Handley2, Paul A. Mayewski2, Jeffrey D. Auger2, Ronaldo T. Bernardo1, and Francisco E. Aquino1 1Centro Polar e Climático, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91540-000, Brazil 2Climate Change Institute, University of Maine, Orono, ME 04469, USA Correspondence to: Franciele Schwanck ([email protected]) Received: 19 October 2016 – Discussion started: 7 November 2016 Revised: 18 May 2017 – Accepted: 23 May 2017 – Published: 4 July 2017 Abstract. The Mount Johns (MJ) ice core (79◦550 S; 1 Introduction 94◦230 W) was drilled near the Pine Island Glacier ice di- vide on the West Antarctic Ice Sheet during the 2008–2009 The West Antarctic Ice Sheet (WAIS) is more susceptible to austral summer, to a depth of 92.26 m. The upper 45 m of the marine influences than the East Antarctica Ice Sheet (EAIS). record covers approximately 125 years (1883–2008), show- The lower average elevation of the WAIS compared to the ing marked seasonal variability. Trace element concentra- EAIS, 1100 and 3000 m, respectively (Bedmap 2 project tions in 2137 samples were determined using inductively data; Fretwell et al., 2013), facilitates the advection of air coupled plasma mass spectrometry. In this study, we recon- masses toward the interior of the continent, thereby directly struct mineral dust and sea salt aerosol transport and in- contributing to the ice sheet’s surface mass balance through vestigate the influence of climate variables on the elemen- precipitation (Nicolas and Bromwich, 2011).
    [Show full text]
  • US Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and Their Postal Cachets: US Navy (1946–48, 1954–60), International
    Prepared in cooperation with United States Antarctic Program, National Science Foundation U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and their Postal Cachets: U.S. Navy (1946–48, 1954–60), International Geophysical Year (1957–58), and USGS (1960–2006) By Tony K. Meunier Richard S. Williams, Jr., and Jane G. Ferrigno, Editors Open-File Report 2006–1116 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Cover: 2006 postal cachet commemorating sixty years of USGS scientific innovation in Antarctica (designed by Kenneth W. Murphy and Tony K. Meunier, art work by Kenneth W. Murphy). ii Table of Contents Introduction......................................................................................................................................................................1 Selected.References.........................................................................................................................................................2
    [Show full text]
  • Activity Report 2010
    Activity Report 2010 Simões, J.C. Brazilian National Institute of Cryospheric Science and Technology - Acitivity Report 2010 / Jefferson C. Simões (ed.), Carlos E.G.R. Schaefer, Heitor Evangelista, Jandyr M. Travassos, Maurício M. Mata, Ilana Wainer, Ronald B. de Souza, Jorge Arigony-Neto, 2010, 42 p. 2 Brazilian National Institute of Cryospheric Science and Technology A joint research centre with headquarters at the Polar and Climatic Centre - CPC Institute of Geosciences Federal University of Rio Grande do Sul - UFRGS Porto Alegre, RS and laboratories at the Institute of Oceanography Federal University of Rio Grande (FURG) Rio Grande, RS Southern Regional Centre for Space Research (CRS) National Institute for Space Research (INPE) Santa Maria, RS Oceanographic Institute University of São Paulo (USP) São Paulo, SP Institute of Biology Roberto Alcântara Gomes University of the Rio de Janeiro State (UERJ) Rio de Janeiro, RJ National Observatory (ON) Rio de Janeiro, RJ Centre of Agrarian Sciences Federal University of Viçosa (UFV) Viçosa, MG Sponsored by the Brazilian National Council for Scientific and Technological Development - CNPq Brazilian Ministry of Science of Technology - MCT Brazilian Federal Agency for Support and Evaluation of Graduate Education - CAPES Brazilian Antarctic Program - PROANTAR Secretary of the Interministerial Commission for the Resources of the Sea- SECIRM 3 Our mission To deliver an international-class scientific research programme that investigates the role of the cryospheric processes on the South American
    [Show full text]
  • Answers and Explanations to All Detailed Questions and Annotations Raised by the Reviewers Are Provided in the Following
    Answers and explanations to all detailed questions and annotations raised by the reviewers are provided in the following. (RC: Reviewer comments; AC: Author comments). Major comments: RC2: ERA and NCEP data are notoriously unreliable over Antarctica, with huge biases compared to measurements. Especially the 1000m winds rely mostly on simulated model values, which are also notoriously wrong in Antarctica. Bracegirdle and Marshall (2012) may have determined that ERA-Interim data are the most accurate of the 6 reanalysis models, but that doesn’t make them correct or even close to reality. What’s the sensitivity of your results when using the other reanalysis datasets? How do the ERA data compare with climatology time series of monitoring stations close to MJ? AC: The observations in Polar Regions, such as Antarctica, are extremely scarce making reanalysis heavily simulated in these regions. Biases are to be expected where observations are scarce. Since the closest weather observation site is Byrd Station (over 550 km away and about 550 m lower in elevation), even a comparison between reanalysis models and Byrd Station would not give an accurate estimate of how reanalysis compare to atmospheric conditions at Mount Johns. We understand that biases, whether large or small, are to be expected over Mount Johns due to a lack of weather observations; however, reanalysis models are the best estimate of atmospheric states in this region and is necessary for studies such as this. Because there are several climate reanalysis datasets available for investigating climatological behavior we inter- compare our results between ERA-Interim and an ensemble average of the four leading third-generation reanalyzes models (Gen 3) (Auger et al., in review).
    [Show full text]
  • Mineral Dust Variability in Central West Antarctica Associated with Ozone Depletion” by M
    Atmos. Chem. Phys. Discuss., 12, C4514–C4522, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/C4514/2012/ Chemistry ACPD © Author(s) 2012. This work is distributed under and Physics 12, C4514–C4522, 2012 the Creative Commons Attribute 3.0 License. Discussions Interactive Comment Interactive comment on “Mineral dust variability in central West Antarctica associated with ozone depletion” by M. Cataldo et al. M. Cataldo et al. [email protected] Received and published: 10 July 2012 Answers to interactive comment on “Mineral dust variability in central West Antarctica associated with ozone depletion” by Heitor Evangelista and M. Cataldo. Anonymous Referee #1 Full Screen / Esc General remarks of the Referee: Printer-friendly Version 1. Pg. 12690. During this portion of the manuscript the authors fully discuss Patag- onian dust transport and deposition to Antarctica. While I agree that Patagonian dust Interactive Discussion transport is a dominant source of dust deposited to Antarctica, from the study by Li et al. [2008] (Fig. 10) it can be seen that Australian dust can contribute an equal frac- Discussion Paper tion (or even a majority fraction) of dust deposited to West Antarctica. While this will C4514 not change the results of this study, I feel the authors should add a short discussion, similar to the one focused on Patagonia, about Australian dust transport to Antarctica. ACPD Authors: We have added the following sentence in the “Introduction” section: “Quanti- 12, C4514–C4522, 2012 tatively the dust in Southern Hemisphere originates primarily from Australia (∼120 Tg a-1) followed by Patagonia (∼38 Tg a-1), (Li at al., 2008).
    [Show full text]