The Cryosphere, 11, 1537–1552, 2017 https://doi.org/10.5194/tc-11-1537-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica Franciele Schwanck1, Jefferson C. Simões1, Michael Handley2, Paul A. Mayewski2, Jeffrey D. Auger2, Ronaldo T. Bernardo1, and Francisco E. Aquino1 1Centro Polar e Climático, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91540-000, Brazil 2Climate Change Institute, University of Maine, Orono, ME 04469, USA Correspondence to: Franciele Schwanck (
[email protected]) Received: 19 October 2016 – Discussion started: 7 November 2016 Revised: 18 May 2017 – Accepted: 23 May 2017 – Published: 4 July 2017 Abstract. The Mount Johns (MJ) ice core (79◦550 S; 1 Introduction 94◦230 W) was drilled near the Pine Island Glacier ice di- vide on the West Antarctic Ice Sheet during the 2008–2009 The West Antarctic Ice Sheet (WAIS) is more susceptible to austral summer, to a depth of 92.26 m. The upper 45 m of the marine influences than the East Antarctica Ice Sheet (EAIS). record covers approximately 125 years (1883–2008), show- The lower average elevation of the WAIS compared to the ing marked seasonal variability. Trace element concentra- EAIS, 1100 and 3000 m, respectively (Bedmap 2 project tions in 2137 samples were determined using inductively data; Fretwell et al., 2013), facilitates the advection of air coupled plasma mass spectrometry. In this study, we recon- masses toward the interior of the continent, thereby directly struct mineral dust and sea salt aerosol transport and in- contributing to the ice sheet’s surface mass balance through vestigate the influence of climate variables on the elemen- precipitation (Nicolas and Bromwich, 2011).