Its Tectonics and Its Relationship to East Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Its Tectonics and Its Relationship to East Antarctica References LeMasurier, W.E. 1972-b. Volcanic record of Cenozoic glacial history of Marie Byrd Land. In R.J. Adie (Ed.), Antarctic Geology and Geophysics. LeMasurier, W.E. 1972-a. Volcanic record of Antarctic glacial history: Oslo: Universitetsforlaget. Implications with regard to Cenozoic sea levels. (Special publication U.S. Geological Survey. 1965. 1:500,000 Antarctica Sketch Map, Hobbs no. 4.) Institute of British Geographers. Coast Byrd Land. Reston Va.: U.S. Geological Survey. West Antarctica: Its tectonics and its during the 1980-1981 antarctic season with the object of elu- cidating West Antarcticas tectonics and relationship to the East relationship to East Antarctica Antarctic craton (Doake, Crabtree, and Daiziel 1983). During the period from December 1983 to March 1984, the first full season of work was undertaken in the area between the base of I. W. D. DALZIEL the Antarctic Peninsula and the Thiel Mountains (see figure). Aviation fuel was flown in by USARP to the Martin Hills, Lamont-Doherty Geological Observatory of Columbia University Ellsworth Mountains, Mount Smart, and Siple Station, addi- Palisades, New York 10964 tional fuel was made available at South Pole Station. Two Twin Otter aircraft for close support of the geology party and for R. J. PANKHURST airborne geophysics were provided by BAS. Members of the geologic party were: from USARP, Ian W.D. Dalziel, Columbia British Antarctic Survey University, New York; Anne M. Grunow, Columbia University, Cambridge CB3 OET, United Kingdom New York; and Walter R. Vennum, Sonoma State University, California; and from BAS Robert J. Pankhurst and Bryan F. Storey. The geophysical program was planned jointly and un- A joint U.S. Antarctic Research Program (USARP)/British Ant- dertaken in the field by BAS scientists Stephen Garrett, Myron arctic Survey (BAs) geology and geophysics project was initiated Maslanyj, and Howard Thompson. Detlef Damaske of the Bun- Map showing localities mentioned in text. ("HH" denotes Hart Hills; "MJ" denotes Mount Johns; "MM" denotes Mount Moore; "MW" denotes Mount Woollard; "NH" denotes Nash Hills: "PH" denotes Pirrit Hills; "PN" denotes Pagano Nunatak; "SH" denotes Stewart Hills; "SN" denotes Sonntag Nunatak.) 1984 REVIEW 35 desanstalt für Geowissenschaften und Rohstoffe (BGR), Hann- Mountains, Mount Smart, and Siple Station. BAS Twin Otters over, Federal Republic of Germany also participated in the will again be made available for close-support of the geological geophysical field work. The Twin Otters were piloted by Cap- party and for airborne geophysics. tains Carry Studd (chief pilot). Ed Murton, and Richard Hasler. Acknowledgments. The joint USARP/BAS program has benefited Geology. The geology program for 1983-1984 was concen- enormously from the enthusiastic support of Edward Todd trated on the Ellsworth Mountains/Thiel Mountains ridge (Director, Division of Polar Programs, National Science Founda- (Craddock, Webers, and Anderson 1982). Work was under- tion), Richard M. Laws (Director, BAS), Mort D. Turner (Program taken in the Thiel and Whitmore Mountains; Hart, Nash, Mar- Manager, Polar Earth Sciences, Division of Polar Programs), and tin, Pirrit, and Stewart Hills; Haag, Pagano, and Sonntag Charles W.M. Swithinbank (Head, Earth Science Division, BAS). Nunataks; and Mounts Johns, Moore, and Woollard. In addi- Price Lewis, Kenneth Moulton, David Bresnahan, and Erik tion, brief visits were made to the northern Ellsworth Moun- Chiang (Polar Operations Section, Division of Polar Programs) tains and to the southwestern Patuxent Mountains (see figure). and John Hall (BAS Field Operations Manager, Rothera) Basic field observations were undertaken by the whole party provided invaluable support. The Antarctic Development including detailed structural observations in the metasedimen- Squadron (VXE-6) of the U.S. Navy Antarctic Support Force tary rocks by Bryan Storey and Ian Daiziel. Extensive collec- provided the essential LC-130 support. Finally, the willingness tions were made for major and trace element geochemical anal- of Chuck Kroger (USARP) and of Ian Lovegrove and Paul Wood ysis by Walter Vennum and for isotope geochemical studies by (BAs) to help all of us in many aspects of logistics and safety in Robert Pankhurst. Anne Grunow and Ian Daiziel collected 608 the field is greatly appreciated. cores and 38 oriented hand samples constituting 126 sites for The U.S. part of the joint science program is supported by paleomagnetic studies. National Science Foundation grant DPP 82-13798 to Ian W.D. Airborne geophysics. The geophysical program involved flying Dalziel. British Antarctic Survey is a component institute of the aeromagnetic and simultaneous radio-echo sounding surveys Natural Environment Research Council. along two grids. One grid was located in a triangle between the Ellsworth, Thiel, and Whitmore Mountains; the other grid was References between the Ellsworth Mountains and the base of the Antarctic Peninsula (see figure). Approximately 14,000 on-line kilometers Craddock, C., G.E Webers, and J.J. Anderson. 1982. Geology of the of trace were flown. Ellsworth Mountains-Thiel Mountains Ridge. In C. Craddock (Ed.), program will continue during the The joint USARP/BAS Antarctic geoscience. Madison: University of Wisconsin Press. 1984-1985 season with geologic work in the Jones Mountains Doake, C.S.M., R.D. Crabtree, and I.W.D. Dalziel. 1983. Subglacial and Thurston Island/Eights Coast areas and airborne morphology between Ellsworth Mountains and Antarctic Peninsula: geophysics in the area between the Ellsworth Mountains, New data and tectonic significance. In R.L. Oliver, P.R. James, and Thurston Island, and the base of the Antarctic Peninsula (see J.B. Jago (Eds.), Antarctic Earth sciences. Canberra: Australian Acade- figure). Fuel has been made available by USARP at the Jones my of Science. 70o 680 56o Preliminary studies of a fossil flora 74 72o from the Orville Coast-eastern 7Olander-Tolletson WEDDELL SEA cHorner Nunataks Ellsworth Land, Antarctic Peninsula \ RONNE CE Sky-Hi Nunataks C. T. GEE EASTERN Merrick Mts Department of Botany (weeneT. University of Texas at Austin 06 J ames Morgan baseca p Austin, Texas 78713 Nunataks OWitte Nunataks , 0 ELLSWORTH Plant remains of a gymnospermous Jurassic flora were col- Nunatak lected by a U.S. Geological Survey field team led by P.D. Rowley during the 1977-1978 field season from the Orville Coast and 76 LAN: eastern Ellsworth Land regions of the southern Antarctic Penin- Cape sula. (See figure.) The area is underlain by Middle and Upper o 20 40 60 Jurassic volcaniclastic sedimentary rocks of the Latady Forma- F^-RONNE ICE SHELF KILOMETERS tion which interfinger with the caic-alkaline silicic volcanic rocks of the Mount Poster Formation (Rowley et al. in press). All Location map of the Orville Coast and eastern Ellsworth Land, of the rocks of the Latady Formation, which consists of dark- Antarctic Peninsula. 36 ANTARCTIC JOURNAL.
Recommended publications
  • Mapping Blue-Ice Areas and Crevasses in West Antarctica Using ASTER Images, GPS, and Radar Measurements
    CHAPTER 31 Mapping blue-ice areas and crevasses in West Antarctica using ASTER images, GPS, and radar measurements Andre´s Rivera, Fiona Cawkwell, Anja Wendt, and Rodrigo Zamora ABSTRACT from ASTER imagery, with the aim of identifying other landing sites for aircraft, as well as providing Before the satellite era, relatively little was known a detailed map for meteorite seekers. ASTER com- about the interior of the West Antarctic Ice Sheet posite images have also been used to map safe (WAIS). Of special interest are the rock outcrops routes for terrestrial traverses through crevasse associated with blue-ice areas (BIAs), which have zones. High-pass filters enhanced crevasse features, been exploited for logistical purposes as well as but visual analysis proved to be the most reliable being the subject of scientific research. The blue method of identifying all crevasses. ASTER images ice consists of relatively snow-free glacier ice that were superior to microwave imagery for crevasse is undergoing ablation. detection, as the latter can lack sufficient contrast; One of these BIAs is Patriot Hills (80180S, however, only Radarsat imagery provided coverage 81220W) where aircraft with conventional landing of higher latitude regions. Information gleaned gear have been landing for more than 20 years. This from visible imagery can be combined with that is now the main hub supporting large terrestrial of field-based radio-echo sounding and ground- expeditions conducted by Chilean scientists within penetrating radar profiles through the ice to map Antarctica. Kinematic GPS has been used to map internal layers and bedrock topography with the BIAs since 1996, with areas delineated on ASTER objective of enhancing our knowledge of this images since 2001 using both manual and auto- remote region.
    [Show full text]
  • Mem170-Bm.Pdf by Guest on 30 September 2021 452 Index
    Index [Italic page numbers indicate major references] acacamite, 437 anticlines, 21, 385 Bathyholcus sp., 135, 136, 137, 150 Acanthagnostus, 108 anticlinorium, 33, 377, 385, 396 Bathyuriscus, 113 accretion, 371 Antispira, 201 manchuriensis, 110 Acmarhachis sp., 133 apatite, 74, 298 Battus sp., 105, 107 Acrotretidae, 252 Aphelaspidinae, 140, 142 Bavaria, 72 actinolite, 13, 298, 299, 335, 336, 339, aphelaspidinids, 130 Beacon Supergroup, 33 346 Aphelaspis sp., 128, 130, 131, 132, Beardmore Glacier, 429 Actinopteris bengalensis, 288 140, 141, 142, 144, 145, 155, 168 beaverite, 440 Africa, southern, 52, 63, 72, 77, 402 Apoptopegma, 206, 207 bedrock, 4, 58, 296, 412, 416, 422, aggregates, 12, 342 craddocki sp., 185, 186, 206, 207, 429, 434, 440 Agnostidae, 104, 105, 109, 116, 122, 208, 210, 244 Bellingsella, 255 131, 132, 133 Appalachian Basin, 71 Bergeronites sp., 112 Angostinae, 130 Appalachian Province, 276 Bicyathus, 281 Agnostoidea, 105 Appalachian metamorphic belt, 343 Billingsella sp., 255, 256, 264 Agnostus, 131 aragonite, 438 Billingsia saratogensis, 201 cyclopyge, 133 Arberiella, 288 Bingham Peak, 86, 129, 185, 190, 194, e genus, 105 Archaeocyathidae, 5, 14, 86, 89, 104, 195, 204, 205, 244 nudus marginata, 105 128, 249, 257, 281 biogeography, 275 parvifrons, 106 Archaeocyathinae, 258 biomicrite, 13, 18 pisiformis, 131, 141 Archaeocyathus, 279, 280, 281, 283 biosparite, 18, 86 pisiformis obesus, 131 Archaeogastropoda, 199 biostratigraphy, 130, 275 punctuosus, 107 Archaeopharetra sp., 281 biotite, 14, 74, 300, 347 repandus, 108 Archaeophialia,
    [Show full text]
  • We Thank the Reviewers for Their Helpful Feedback, Which Has Improved Our Manuscript. in the Interactive Discussion, We Have Replied to Each Reviewer Directly
    Dear Dr. Stroeven (editor), We thank the reviewers for their helpful feedback, which has improved our manuscript. In the Interactive Discussion, we have replied to each Reviewer directly. Below are copies of the Reviewers' comments and our responses as well as the revised manuscript with changes tracked. We would also like to bring to your attention the fact that we have made some changes to the manuscript regarding issues that were not raised by the Review- ers. These changes are described below. In the last paragraph of Section 5.3, we have changed the sentence which read \Circulation of drilling fluid in the RB-1 borehole hydrofractured the basal ice...". The new sentence reads \An unexplained hydrofracture of the basal ice of the RB-1 borehole...". After our initial manuscript submission, we realized that the present-day ground- ing line in our ice-sheet simulation was located upstream of Robin Subglacial Basin in the Weddell Sea sector of the WAIS (compare to Fig. 1). This misfit affects the plots in Fig. 2e-s because, at sites upstream of this area, thinning during interglacial periods is underestimated and thickening during glacial pe- riods is overestimated. To address this, we have taken the following actions. (i) We have added a figure (Fig. 3 in the revised manuscript) showing the misfit between the modeled and the observed present-day ice sheet. This figure shows that the model does reasonably well in most areas, but very poorly in the region of Robin Subglacial Basin. (ii) We added a paragraph to the end of Section 3 explaining this misfit and its consequences.
    [Show full text]
  • REE Tetrad Effect and Sr-Nd Isotope Systematics of A-Type Pirrit Hills Granite from West Antarctica
    minerals Article REE Tetrad Effect and Sr-Nd Isotope Systematics of A-Type Pirrit Hills Granite from West Antarctica Hyo Min Lee 1, Seung-Gu Lee 2,* , Hyeoncheol Kim 2, Jong Ik Lee 3 and Mi Jung Lee 3 1 Geoscience Platform Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Korea; [email protected] 2 Geology Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Korea; [email protected] 3 Division of Polar Earth-System Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; [email protected] (J.I.L.); [email protected] (M.J.L.) * Correspondence: [email protected]; Tel.: +82-42-868-3376 Abstract: The Pirrit Hills are located in the Ellsworth–Whitmore Mountains of West Antarctica. The Pirrit Hills granite exhibits significant negative Eu anomalies (Eu/Eu* = 0.01~0.25) and a REE tetrad effect indicating intensive magmatic differentiation. Whole-rock Rb-Sr and Sm-Nd geochronologic analysis of the Pirrit Hills granite gave respective ages of 172.8 ± 2.4 Ma with initial 87Sr/86Sr = 0.7065 ± 0.0087 Ma and 169 ± 12 Ma with initial 144Nd/143Nd = 0.512207 ± 0.000017. The isotopic ratio data indicate that the Pirrit Hills granite formed by the remelting of Mesoproterozoic mantle- derived crustal materials. Both chondrite-normalized REE patterns and Sr-Nd isotopic data indicate that the Pirrit Hills granite has geochemical features of chondrite-normalized REE patterns indicating that REE tetrad effects and negative Eu anomalies in the highly fractionated granites were produced Citation: Lee, H.M.; Lee, S.-G.; Kim, from magmatic differentiation under the magmatic-hydrothermal transition system.
    [Show full text]
  • Ancient Pre-Glacial Erosion Surfaces Preserved Beneath the West
    Edinburgh Research Explorer Ancient pre-glacial erosion surfaces preserved beneath the West Antarctic Ice Sheet Citation for published version: Rose, KC, Ross, N, Jordan, TA, Bingham, RG, Corr, HFJ, Ferraccioli, F, Le Brocq, AM, Rippin, DM & Siegert, MJ 2015, 'Ancient pre-glacial erosion surfaces preserved beneath the West Antarctic Ice Sheet', Earth Surface Dynamcs, vol. 3, pp. 139-152. https://doi.org/10.5194/esurf-3-139-2015 Digital Object Identifier (DOI): 10.5194/esurf-3-139-2015 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Earth Surface Dynamcs Publisher Rights Statement: The copyright of any article is retained by the author(s). he article as well as associated published material is distributed under the Creative Commons Attribution 3.0 License General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Earth Surf. Dynam., 3, 139–152, 2015 www.earth-surf-dynam.net/3/139/2015/ doi:10.5194/esurf-3-139-2015 © Author(s) 2015.
    [Show full text]
  • AUTARKIC a NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
    AUTARKIC A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) One of Argentina's oldest Antarctic stations. Almirante Brown, which was destroyed by fire on April 12. Situated in picturesque Paradise Bay on the west coast of the Antarctic Peninsula, it was manned first in 1951 by an Argentine Navy detachment, and became a scientific Station in 1955. Pnoto by Colin Monteath w_i -f n M#i R Registered at Post Office Headquarters, VOI. IU, IMO. D Wellington. New Zealand, as a magazine June, 1984 • . SOUTH SANDWICH It SOUTH GEORGIA / SOU1H ORKNEY Is ' \ ^^^----. 6 S i g n y l u K , / ' o O r c a d a s a r g SOUTH AMERICA ,/ Boroa jSyowa%JAPAN \ «rf 7 s a 'Molodezhnaya v/' A S O U T H « 4 i \ T \ U S S R s \ ' E N D E R B Y \ ) > * \ f(f SHETLANO | JV, W/DD Hallev Bay^ DRONNING MAUD LAND / S E A u k v ? C O A T S I d | / LAND T)/ \ Druzhnaya ^General Belgrano arg \-[ • \ z'f/ "i Mawson AlVTARCTIC-\ MAC ROBERTSON LANd\ \ *usi /PENINSUtA'^ [set mjp below) Sobral arg " < X ^ . D a v i s A u s t _ Siple — USA ;. Amundsen-Scon QUEEN MARY LAND ELLSWORTH " q U S A ') LAND ° Vostok ussr / / R o , s \ \ MARIE BYRD fee She/ r*V\ L LAND WILKES LAND Scon A * ROSSI"2*? Vanda n 7 SEA IJ^r 'victoria TERRE . LAND \^„ ADELIE ,> GEORGE V LJ ■Oumout d'Urville iran< 1 L*ningradsfcaya Ar ■ SI USSR,-'' \ ---'•BALIENYU ANTARCTIC PENINSULA 1 Teniente Matienzo arg 2 Esperanza arg 3 Almirante Brown arg 4 Petrel arg 5 Decepcion arg 6 Vicecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat cm.le 8 Bernardo O'Higgms chile 9 Presidents Frei cmile 500 tOOOKiloflinnn 10 Stonington I.
    [Show full text]
  • Exposure History of West Antarctic Nunataks
    Exposure history of West Antarctic nunataks Perry Spector, John Stone, Howard Conway, Dale Winebrenner Department of Earth and Space Science University of Washington Cameron Lewis, John Paden, Prasad Gogineni Center for Remote Sensing of Ice Sheets University of Kansas There is strong evidence that the West Antarctic Ice Sheet has been thinner during the Pleistocene, however the timing, duration, and magnitude of past deglaciations are poorly known. Ice-sheet elevation changes over glacial and interglacial periods can be revealed by cosmogenic-nuclide measurements of bedrock surfaces. Whether ice was thinner during past warm climates can be tested by measuring cosmogenic nuclides in currently subglacial bedrock surfaces, provided that cold-based ice has protected the surfaces from erosion. During 2012-13, we visited three groups of small nunataks in West Antarctica with the intention of locating favorable drilling sites for the recovery of subglacial bedrock to look for evidence of thinner ice in the past. We traveled to the Whitmore Mountains, located near the ice-sheet divide, and the Pirrit and Nash Hills, nunatak groups located in the Weddell sector of West Antarctica at ~1300 and ~1500 m, respectively. At the Pirrit Hills, fresh glacial erratics are evidence of thicker ice during the last ice age and indicate that ice levels were at least ~350 m, but less than ~510 m, above the present level. Despite thicker ice, bedrock at all three sites, extending down to the present ice level, is weathered and exhibits delicate cavernous forms, evidence of prolonged subaerial weathering prior to the last ice age. The preservation of these features, along with the lack of evidence for wet-based glacial erosion, indicates that former ice cover was cold-based and protected the underlying bedrock.
    [Show full text]
  • 1 BC RECORD in a FIRN CORE from WEST ANTARCTICA 1 MARQUETTO ET AL. 2 VOL. 37, APRIL 2020, 1-10 3 4 Refractory Black Carbon Resul
    1 BC RECORD IN A FIRN CORE FROM WEST ANTARCTICA 2 MARQUETTO ET AL. 3 VOL. 37, APRIL 2020, 1-10 4 5 Refractory Black Carbon Results and a Method Comparison between Solid-state 6 Cutting and Continuous Melting Sampling of a West Antarctic Snow and Firn Core 7 Luciano MARQUETTO*1,2, Susan KASPARI1, Jefferson Cardia SIMÕES2, and Emil 8 BABIK1 9 1Department of Geological Sciences, Central Washington University, Ellensburg, 10 Washington 98926, USA 11 2Polar and Climatic Center, Federal University of Rio Grande do Sul, Porto Alegre, Rio 12 Grande do Sul, 91509-900, Brazil 13 (Received 12 July 2019; revised 4 September 2019; accepted 24 October 2019) 14 ABSTRACT 15 This work presents the refractory black carbon (rBC) results of a snow and firn core drilled 16 in West Antarctica (79°55'34.6"S, 94°21'13.3"W) during the 2014--15 austral summer, 17 collected by Brazilian researchers as part of the First Brazilian West Antarctic Ice Sheet 18 Traverse. The core was drilled to a depth of 20 m, and we present the results of the first 8 m by 19 comparing two subsampling methods---solid-state cutting and continuous melting---both with 20 discrete sampling. The core was analyzed at the Department of Geological Sciences, Central 21 Washington University (CWU), WA, USA, using a single particle soot photometer (SP2) 22 coupled to a CETAC Marin-5 nebulizer. The continuous melting system was recently * Corresponding author: Luciano MARQUETTO E-mail: [email protected] 1 23 assembled at CWU and these are its first results.
    [Show full text]
  • A 125-Year Record of Climate and Chemistry Variability at the Pine Island Glacier Ice Divide, Antarctica Franciele Schwanck1, Jefferson C
    The Cryosphere Discuss., doi:10.5194/tc-2016-242, 2016 Manuscript under review for journal The Cryosphere Published: 7 November 2016 c Author(s) 2016. CC-BY 3.0 License. A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica Franciele Schwanck1, Jefferson C. Simões1, Michael Handley2, Paul A. Mayewski2, Jeffrey D. Auger2, Ronaldo T. Bernardo1, Francisco E. Aquino1 5 1Centro Polar e Climático, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91540-000, Brazil 2Climate Change Institute, University of Maine, Orono, 04469, United States Correspondence to: Franciele Schwanck ([email protected]) Abstract. The Mount Johns (MJ) ice core (79º55'S; 94º23'W) was drilled near the Pine Island Glacier ice divide on the West Antarctic Ice Sheet during the 2008–2009 austral summer, to a depth of 92.26 m. The upper 45 m of the record covers 10 approximately 125 years (1883- 2008) showing marked seasonal variability. Trace element concentrations in 2,137 samples were determined using inductively coupled plasma mass spectrometry. In this study, we reconstruct mineral dust and sea salt aerosol transport and investigate the influence of climate variables on the elemental concentrations to the MJ site. The ice core record reflects changes in emissions as well as atmospheric circulation and transport processes. Our trajectory analysis shows distinct seasonality, with strong westerly transport in the winter months and a secondary northeasterly transport in the 15 summer. During summer months, the trajectories present slow-moving (short) transport and are more locally influenced than in other seasons. Finally, our reanalysis trace element correlations suggest that marine derived trace element concentrations are strongly influenced by sea ice concentration and sea surface temperature anomalies.
    [Show full text]
  • Ancient Pre-Glacial Erosion Surfaces Preserved Beneath the West Antarctic Ice Sheet
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Earth Surf. Dynam. Discuss., 2, 681–713, 2014 www.earth-surf-dynam-discuss.net/2/681/2014/ doi:10.5194/esurfd-2-681-2014 ESURFD © Author(s) 2014. CC Attribution 3.0 License. 2, 681–713, 2014 This discussion paper is/has been under review for the journal Earth Surface Dynamics (ESurfD). Ancient pre-glacial Please refer to the corresponding final paper in ESurf if available. erosion surfaces preserved beneath Ancient pre-glacial erosion surfaces the West Antarctic Ice Sheet preserved beneath the West Antarctic Ice K. C. Rose et al. Sheet K. C. Rose1, N. Ross2, R. G. Bingham3, H. F. J. Corr4, F. Ferraccioli4, Title Page 4 5 6 7 T. A. Jordan , A. M. Le Brocq , D. M. Rippin , and M. J. Siegert Abstract Introduction 1 Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Conclusions References Bristol, BS8 1SS, UK 2School of Geography, Politics & Sociology, Newcastle University, Tables Figures Newcastle upon Tyne, NE1 7RU, UK 3 School of GeoSciences, University of Edinburgh, Edinburgh, EH8 9XP, UK J I 4British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 5School of Geography, University of Exeter, Exeter, EX4 4RJ, UK J I 6 Environment Department, University of York, York, YO10 5DD, UK Back Close 7Grantham Institute and Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK Full Screen / Esc Printer-friendly Version Interactive Discussion 681 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Received: 16 June 2014 – Accepted: 29 June 2014 – Published: 15 July 2014 Correspondence to: K.
    [Show full text]
  • The Ellsworth Subglacial Mountains and the Early Glacial History of West
    1 The Ellsworth Subglacial Highlands: inception and retreat of the West Antarctic Ice 2 Sheet 3 4 Neil Ross1, Tom A. Jordan2, Robert G. Bingham3, Hugh F.J. Corr2, Fausto Ferraccioli2, 5 Anne Le Brocq4, David M. Rippin5, Andrew P. Wright4, and Martin J. Siegert6 6 7 1. School of Geography, Politics and Sociology, Newcastle University, Newcastle upon 8 Tyne, NE1 7RU, UK 9 2. British Antarctic Survey, Cambridge CB3 0ET, UK 10 3. School of Geosciences, University of Aberdeen, Aberdeen AB24 3UF, UK 11 4. School of Geography, University of Exeter, Exeter EX4 4RJ, UK 12 5. Environment Department, University of York, York YO10 5DD, UK 13 6. Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, 14 Bristol BS8 1SS 15 16 ABSTRACT 17 Antarctic subglacial highlands are where the Antarctic ice sheets first developed 18 and the ‘pinning points’ where retreat phases of the marine-based sectors of the 19 ice sheet are impeded. Due to low ice velocities and limited present-day change in 20 the ice sheet interior, West Antarctic subglacial highlands have been overlooked 21 for detailed study. These regions have considerable potential, however, for 22 establishing from where the West Antarctic Ice Sheet (WAIS) originated and grew, 23 and its likely response to warming climates. Here, we characterize the subglacial 24 morphology of the Ellsworth Subglacial Highlands (ESH), West Antarctica, from 25 ground-based and aerogeophysical radio-echo sounding (RES) surveys and the 26 MODIS Mosaic of Antarctica. We document well-preserved classic landforms 27 associated with restricted, dynamic, marine-proximal alpine glaciation, with 28 hanging tributary valleys feeding a significant overdeepened trough (the Ellsworth 29 Trough) cut by valley (tidewater) glaciers.
    [Show full text]
  • Mineral Dust Variability in Central West Antarctica Associated with Ozone Depletion” by M
    Atmos. Chem. Phys. Discuss., 12, C6550–C6562, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/C6550/2012/ Chemistry © Author(s) 2012. This work is distributed under and Physics the Creative Commons Attribute 3.0 License. Discussions Interactive comment on “Mineral dust variability in central West Antarctica associated with ozone depletion” by M. Cataldo et al. M. Cataldo et al. [email protected] Received and published: 4 September 2012 Reviewer’s comment: General Comments of the Reviewer: This is an interesting pa- per that provides a convincing analysis of microparticle concentration decreased by strengthening westerly winds while the size of the deposited particles is increased by stronger storms. Some issues do need attention however, and these are outlined be- low. 1. I would not term the Mount Jones site as being in central West Antarctica. Rather it is in the far eastern part of the West Antarctic Ice Sheet (see Fig. 6) if one excludes the Antarctic Peninsula. Authors : Probably the reviewer made a little confusion in the terminology between C6550 Mount Jones (77o 14’S;142o 04’W) and Mount Johns (79o 55’S;094o 23’W), the sec- ond one the coring site, both located at West Antarctica. Using an acceptable geo- graphical definition for West Antarctica as “ The portion of Antarctica on the west side of the Transantarctic Mountains bounded by the Ross and the Ronne Ice Shelves, the Antarctic Peninsula and the Pacific Ocean sector”, it is safe to say that Mount Johns do belong to the Central portion of West Antarctica (Fig. 1 helps clarify the difference of locations).
    [Show full text]