Identification and Forecasting of Emerging Technology Commercialization by Reverse Salient

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Forecasting of Emerging Technology Commercialization by Reverse Salient Journal of Advanced Management Science Vol. 1, No. 3, September 2013 Identification and Forecasting of Emerging Technology Commercialization by Reverse Salient Kyunam Han Korea Intellectual Property Strategy Institute/Department of business consulting, Teheran-ro, Gangnam-gu, Seoul [email protected] Juneseuk Shin Sungkyunkwan University/Department of Systems Management Engineering, Republic of Korea [email protected] Abstract—The identification and forecasting of reverse sustaining [5]. This is a serial process, meaning that the salients of emerging technology is becoming harder because success in previous phase cannot guarantee the success in technology is getting complex. This study presents a the next phase. In initial phases, technological problems systematic method of identifying and forecasting reverse are important, and economics become important in later salients. Experts evaluation, bibliometric analysis and phases. Therefore, for successful technology forecasting techniques are integrated to specify reverse salients, to figure out the gap between current and market commercialization, the first step is to overcome key required performance, and to forecast when a reverse salient technological obstacles. Despite its importance, is resolved. This study will contribute to practitioners with technological issues have been overlooked. regard to R&D investment of private sectors and From the methodological point of view, most were governments, planning and technology commercialization. A dependent on expert’s assessment [6]. Yet, there is no carbon nanotube biosensor technology was analyzed as an organized method to identify key technological obstacles. example. Furthermore, shortened technology lifecycle and growing technological complexity have made experts’ judgments Index Terms—bibliometrics, carbon nanotube biosensor, less reliable. As an alternative, bibliometric analysis commercialization, reverse salient technique was proposed but it lacks specificity compared to expert judgment and cannot specify obstacles in R&D I. INTRODUCTION practice [7]. We suggest a new systematic approach to figure out key It is essential for growth of entrepreneur as well as technological obstacles, and to forecast when they can be national economy to commercialize emerging technologies resolved. To make the concept of technological obstacles successfully [1]. Emerging technologies create new growth clear, reverse salience methodology is introduced. Reverse opportunities by changing competition rules and reshaping salient (RS) is a technological element, which restricts industry structure based on disruptive innovation [2]. performance of the entire technology system and hinder the However, commercialization of some emerging system advancement [8]. We define RS as technological technologies such as carbon nanotube has been slowed obstacles which impede the full market potential of a down than expected. technology. Technology commercialization can be divided into two Our research process consists of three phases. In the first, stages [3]. The first is a period of dynamic technical change judgments by multiple experts are converged through innovation. The second is a period of systematically through combination of QFD and reverse technological integration and standardization. In the first, salient theory. In the second phase, key performance expectation on the future value of an emerging technology indicators of top priority RSs are defined through is formed despite various potential obstacles including bibliometric analysis of papers and patents. Lastly, we technological feasibility. However, many companies drive identify the current performance gap of RS and forecast a business based on emerging technologies, meet with a when the RS can be settled using extrapolation techniques. difficulty, and thus fail in businesses [4]. Jolly suggested Our method can overcome subjective biases of experts’ technology commercialization procedure comprising judgments and the lack of specificity found in the existing imaging, incubating, demonstrating, promoting and bibliometric analysis technique. Furthermore, we can predict the possibility of solving future RS thereby increasing accuracy of decision making on research and Manuscript received June 4, 2013; revised August 3, 2013. development at the current time. ©2013 Engineering and Technology Publishing 282 doi: 10.12720/joams.1.3.282-287 Journal of Advanced Management Science Vol. 1, No. 3, September 2013 As an example, carbon nanotube (CNT) biosensor is There was other attempt to systemize RS identification studied. CNT is a typical emerging nanotechnology. It is by dividing a commercialization process [12]. However, 100 times stronger than steel and has excellent thermal and RS identification still depends on intuitive judgments. electrical conductivity. Its application area is very wide Their approach may have difficulty in identifying RS of including transparent conductive films, solar cells, sophisticated technological system. Our research is semiconductors, sensors and others. However, its designed to overcome such subjectivity and to study commercialization has been done mainly in the area of dynamics of RS in a sophisticated technology system high-strength products. Commercialization in other areas systematically. has been delayed due to various RSs. Nonetheless, R&D B. Nanotechnology Commercialization for CNT commercialization is still actively progressing in academia as well as industries. Since CNT has similarity Since Dr. Richard Feynman presented the concept of with other status-of-the-art nanomaterials such as nanotechnology in 1959, nanotechnology has influenced grapheme in terms of applied commercialization area and many areas including products, service, system innovation material characteristics, it gives a wide range of as well as society, economics and environment greatly [13]. implications for various cases for other nanotechnology This is because nanotechnology is interdisciplinary, commercialization. disruptive and widely applicable [14]. Most of nanotechnology advancements have come from II. LITERATURE REVIEW interdisciplinary R&D and technology fusion. Those are promoting innovations in many industries. This study focuses on technology commercialization Regardless of huge R&D investments in public and from a wide perspective view and more particularly, it private sectors over many years, nanotechnology deals with technical RSs. Thus, the previous studies on RS commercialization hasn’t met the initial expectations. and technology commercialization are reviewed. Because of this, many previous studies have discussed the A. Reverse Salient key factors of nanotechnology commercialization. US Department of Commerce in 2007 identified the core In contrast with a unitary view, which understands the causes of the stagnant commercialization including a long technology system integrally, a systemic view sees the period of research, large performance gap between the technology system as multiple interactive subsystems. The basic and applied science and lack of prototyping facilities RS concept is based on the systemic view. Technological [6]. Many other researchers added socio-economic factors elements, which restrict performance of the entire to this list such as a large scale capital investment, highly technology system and hinder the system advancement, are specialized R&D personnel, research infrastructure, and called reverse salient (RS). Therefore, RS must be solved network between universities and entrepreneurs [15], [16]. in order for the technology system to work as expected and There were also many studies on processes and paths for get back to the normal advancement path [9]. nanotechnology commercialization because Previous studies have used RS to investigate evolution nanotechnology can be commercialized into various of technology systems, and the role of RS. At first, Hughes industries and products. Many researchers have studied to used the concept of RS to analyze the development of a the co-evolution trajectories of nanotechnology, which direct-current electric system generator. Similarly, requires multi-disciplinary convergence, research trends Murmann and Frenken decomposed a technology system for nanotechnology through a quantitative bibliometric of vehicle into technological sub-elements such as a body analysis, and socio-technical scenario for the future of and engine in their study on dominant design and nanotechnology. innovation [10]. On the other hand, studies from a Most studies were based on macroscopic point of views socio-technical viewpoint understood RS by including not with regard to entire nanotechnology although some only technological elements but also other external research studied the advancement path of specific elements such as end consumers, manufacturers and nanoproducts. Huang analyzed possibility of related infrastructures [11]. commercialization for biosensors and application areas RS concept can also be useful to understand not only RS with regard to nanomaterials applied [17]. For practical of a current system but also dynamic changes in a implications, a microscopic approach is more appropriate technological system. For instance, Dedehayir and over macroscopic trend analysis on commercialization Mäkinen analyzed a changes of RS in PC game; hardware, process. the CPU and the GPU as a subsystem of a personal Many previous studies analyzed the core factors of computer. RS of PC game in the past was the CPU but soon success and failure of commercialization,
Recommended publications
  • Forecasting Innovation Pathways for New & Emerging
    Forecasting Innovation Pathways: The Case of Nano-enhanced Solar Cells Alan L. Porter,i Ying Guo,ii Lu Huang,iii Douglas K. R. Robinsoniv ABSTRACT We have recently devised a 10-step framework to extend research profiling to help identify promising commercialization routes for a target emerging technology. Our approach combines empirical and expert analyses. We herein illustrate this framework for the case of nano-enhanced solar cells. INTRODUCTION Our endeavors should be considered within the context of Future-oriented Technology Analyses (“FTA” – see http://foresight.jrc.ec.europa.eu/). Over the years, FTA tools have expanded from technology forecasting of incrementally advancing technologies (for example, consider Moore‟s Law describing some six decades of continual advances in semi-conductor capabilities). 1 Today, considerable interest is directed toward New & Emerging Science & Technologies (“NESTs”) as increasingly, NESTs are anticipated to provide considerable wealth creation. These forms of technologies tend to be less predictable than incremental innovation processes; they are more dependent on discontinuous advances; and the anticipated (disruptive) impacts on markets and on society are difficult (although not impossible) to foresee. In our endeavor to grapple with this challenging situation, we seek to provide usable intelligence, not only to get a handle of the discontinuous development of NEST‟s, but also on the pertinent contextual forces and factors affecting possible technological innovation. However, technology opportunities analysis2 for NESTs poses notable challenges. Recently, we put forward our approach to Forecasting Innovation Pathways (“FIP”).3 That paper provides conceptual background for our endeavors to combine “Tech Mining” 4 and “Multi-path mapping.” 5 It explores the promise of this approach through its application to two illustrative innovation situations, for nano-biosensors and for deep brain stimulation.
    [Show full text]
  • Future Technologies Conference (FTC) 2017 #FTC2017 November 29-30, 2017, Vancouver, Canada
    Future Technologies Conference (FTC) 2017 #FTC2017 November 29-30, 2017, Vancouver, Canada SPONSORS AND PARTNERS CONFERENCE VENUE Pan Pacific Hotel Vancouver Suite 300-999 Canada Place, Vancouver British Columbia V6C 3B5, Canada IEEE VANCOUVER SECTION CONFERENCE AGENDA DAY 1 (29th November) DAY 2 (30th November) 7:30 am – 8:15 am Delegates Check-in 8:00 am Delegates Arrive 8:15 am – 10:30 am Conference Opening (Oceanview Suite) 8:30 am – 10:30 am KEYNOTE TALKS (Oceanview Suite) Mohammad S. Obaidat, Fordham University KEYNOTE TALKS Ann Cavoukian, Ryerson University John Martinis, Google Kevin Leyton-Brown, University of British Columbia Peter Mueller, IBM Research James Hendler, Rensselaer Polytechnic Institute (RPI) 10:30 am – 11:00 am Networking Break (Foyer) 10:30 am – 11:00 am POSTER PRESENTATIONS (Foyer) 11:00 am – 12:30 pm PAPER PRESENTATIONS Session 9 - Intelligent Systems 11:00 am – 12:30 pm PROJECT DEMONSTRATIONS (Oceanview Suite) Session 10 - Technology Trends Session 11 - Electronics 12:30 pm – 1:30 pm Lunch (Cypress Suite) 12:30 pm – 1:30 pm Lunch (Cypress Suite) 1:30 pm – 3:30 pm PAPER PRESENTATIONS 1:30 pm – 3:30 pm PAPER PRESENTATIONS Session 1 - Computing Session 12 - Blockchain Session 2 - Software Engineering Session 13 - Ambient Intelligence Session 3 - Intelligent Systems Session 14 - Healthcare Technologies Session 4 - e-Learning Session 15 - Security and Privacy 3:30 pm – 3:45 pm Networking Break (Foyer) 3:30 pm – 3:45 pm Networking Break (Foyer) 3:45 pm – 5:45 pm PAPER PRESENTATIONS 3:45 pm – 6:00 pm PAPER PRESENTATIONS
    [Show full text]
  • Technology and Engineering International Journal of Recent
    International Journal of Recent Technology and Engineering ISSN : 2277 - 3878 Website: www.ijrte.org Volume-8 Issue-2S6, JULY 2019 Published by: Blue Eyes Intelligence Engineering and Sciences Publication d E a n n g y i n g o e l e o r i n n h g c e T t n e c Ijrt e e E R X I N P n f L O I O t T R A o e I V N O l G N r IN n a a n r t i u o o n J a l www.ijrte.org Exploring Innovation Editor-In-Chief Chair Dr. Shiv Kumar Ph.D. (CSE), M.Tech. (IT, Honors), B.Tech. (IT), Senior Member of IEEE Blue Eyes Intelligence Engineering & Sciences Publication, Bhopal (M.P.), India. Associated Editor-In-Chief Chair Prof. MPS Chawla Member of IEEE, Professor-Incharge (head)-Library, Associate Professor in Electrical Engineering, G.S. Institute of Technology & Science Indore, Madhya Pradesh, India, Chairman, IEEE MP Sub-Section, India Dr. Vinod Kumar Singh Associate Professor and Head, Department of Electrical Engineering, S.R.Group of Institutions, Jhansi (U.P.), India Dr. Rachana Dubey Ph.D.(CSE), MTech(CSE), B.E(CSE) Professor & Head, Department of Computer Science & Engineering, Lakshmi Narain College of Technology Excellence (LNCTE), Bhopal (M.P.), India Associated Editor-In-Chief Members Dr. Hai Shanker Hota Ph.D. (CSE), MCA, MSc (Mathematics) Professor & Head, Department of CS, Bilaspur University, Bilaspur (C.G.), India Dr. Gamal Abd El-Nasser Ahmed Mohamed Said Ph.D(CSE), MS(CSE), BSc(EE) Department of Computer and Information Technology , Port Training Institute, Arab Academy for Science ,Technology and Maritime Transport, Egypt Dr.
    [Show full text]
  • Capitalism and Morality ______
    Capitalism and Morality _________________________ THE TEMPORAL DIMENSION OF TECHNOLOGY AND THE MOVING PICTURE OF THE GOOD Richard P. Mullin Professor Emeritus Wheeling Jesuit University Appeared in Wheeling Jesuit University’s Cardinal Perspectives Spring 1996 Picture of the Good One of the most urgent tasks of philosophy is to understand how ethical, social, and technological goods can be integrated in the midst of rapid change. The problem is to a large extent caused by moral myopia and tunnel vision.1 It is hard to get a clear focus when the viewer and the picture are moving so rapidly and irregularly. Technical advance and social change have a reciprocal relationship. This spawns a myriad of ethical problems which are distinctive to a technologically advancing society. Many of the social and ethical problems which involve technology result from the fact that technology does not advance evenly. When the technical aspect of social change combines with non-technical facets of life such as morality, legality, and politics, the unevenness becomes more pronounced and more troublesome. The Temporal Dimension Ethics must take account of the temporal dimension, i.e., the dimension of change. As the world and our interpretation of it change more and more rapidly, the past fades quickly out of sight while the future rushes on us ready-or-not. Past decisions were made without much of the information now available to us and within world-views which we can recapture only with great difficulty. The decisions which we make today will affect a future of which we are largely ignorant in ways at which we can only guess.
    [Show full text]
  • Energy Research & Social Science
    Energy Research & Social Science 70 (2020) 101617 Contents lists available at ScienceDirect Energy Research & Social Science journal homepage: www.elsevier.com/locate/erss Review Sociotechnical agendas: Reviewing future directions for energy and climate T research ⁎ Benjamin K. Sovacoola, , David J. Hessb, Sulfikar Amirc, Frank W. Geelsd, Richard Hirshe, Leandro Rodriguez Medinaf, Clark Millerg, Carla Alvial Palavicinoh, Roopali Phadkei, Marianne Ryghaugj, Johan Schoth, Antti Silvastj, Jennie Stephensk, Andy Stirlingl, Bruno Turnheimm, Erik van der Vleutenn, Harro van Lenteo, Steven Yearleyp a University of Sussex, United Kingdom and Aarhus University, Denmark b Vanderbilt University, United States c Nanyang Technological University, Singapore d The University of Manchester, United Kingdom e Virginia Polytechnic Institute and State University, United States f Universidad de las Americas Puebla, Mexico g Arizona State University, United States h Universiteit Utrecht, Netherlands i Macalester College, United States j Norwegian University of Science and Technology, Norway k Northeastern University, United States l University of Sussex, United Kingdom m Laboratoire Interdisciplinaire Sciences Innovations Sociétés, France n Eindhoven University of Technology, Netherlands o Universiteit Maastricht, Netherlands p The University of Edinburgh, United Kingdom ARTICLE INFO ABSTRACT Keywords: The field of science and technology studies (STS) has introduced and developed a “sociotechnical” perspective Science and technology studies that has been taken up by many disciplines and areas of inquiry. The aims and objectives of this study are Sociotechnical systems threefold: to interrogate which sociotechnical concepts or tools from STS are useful at better understanding Science technology and society energy-related social science, to reflect on prominent themes and topics within those approaches, and to identify Sociology of scientific knowledge current research gaps and directions for the future.
    [Show full text]
  • Science & Technology Studies
    ALEXANDRA HOFMÄNNER SCIENCE & TECHNOLOGY STUDIES ELSEWHERE A Postcolonial Programme SCIENCE & TECHNOLOGY STUDIES In April 2017, scientists took to the streets in a historically unprecedented Global March for Science. The event was seen as symbolic of a crisis in the relationship of science and society. This book considers the Global March ELSEWHERE for Science from a postcolonial perspective to inquire into the toolkit that the academic field of Science & Technology Studies (STS) has to offer. It HOFMÄNNER ALEXANDRA argues that new concepts and analytical approaches are necessary to in- A POSTCOLONIAL vestigate current global dynamics in science, technology and society, so as to deliver insights that the recent expansion of STS scholars beyond PROGRAMME Western Europe and North America alone is unlikely to provide. The book presents a Programme in Science Studies Elsewhere (SSE) to demonstrate the urgent need to carry postcolonial issues right into the centre of STS’s intellectual programme. Hofmänner possesses a potent antidote for the field’s inability to see science and technology outside of European or North American experiences. Rayvon Fouché, Professor and Director, American Studies, Purdue University, USA A compelling case for revisiting some of the traditional assumptions in the field of STS. Prof. Dr. Sabine Maasen, Director of the Munich Center for Technology in Society Alexandra Hofmänner is assistant professor in Science & Technology ELSEWHERE STUDIES TECHNOLOGY & SCIENCE Studies ( ST S) at the University of Basel, Switzerland. She received a PhD at the Swiss Federal Institute of Technology ( ETH Zürich ) and has carried out extensive research in Switzerland and South Africa. www.schwabeverlag.de Alexandra Hofmänner Science & Technology Studies Elsewhere A Postcolonial Programme Schwabe Verlag Published with the support of the Swiss National Science Foundation and the Freiwillige Akademische Gesellschaft.
    [Show full text]
  • Dedehayir Makinen Determining Reverse Salient Types
    Tampere University of Technology Author(s) Dedehayir, Ozgur; Mäkinen, Saku Title Determining reverse salient types and evolutionary dynamics of technology systems with performance disparities Citation Dedehayir, Ozgur; Mäkinen, Saku 2011. Determining reverse salient types and evolutionary dynamics of technology systems with performance disparities. Technology Analysis & Strategic Management vol. 23, num. 10, 1095-1114. Year 2011 DOI http://dx.doi.org/10.1080/09537325.2011.621308 Version Post-print URN http://URN.fi/URN:NBN:fi:tty-201311271475 Copyright This is an Author's Accepted Manuscript of an article published in Technology Analysis & Strategic Management, volume 23, issue 10, 01 Nov 2011. Copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/09537325.2011.621308. All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorized user. Determining reverse salient types and evolutionary dynamics of technology systems with performance disparities Ozgur Dedehayir∗ and Saku J. Mäkinen Department of Industrial Management, Tampere University of Technology, Tampere, Finland ∗ Corresponding author. Email: [email protected] ABSTRACT Technological system evolution is marked by the uneven evolution of constituent sub‐systems. Subsequently, system evolution is hampered by the resulting state of unevenness, or reverse salience, which results from the presence of the sub‐system that delivers the lowest level of performance with respect to other sub‐systems, namely, the reverse salient.
    [Show full text]
  • Policy Challenges of Accelerating Technological Change: Security Policy and Strategy Implications of Parallel Scientific Revolutions
    Policy Challenges of Accelerating Technological Change: Security Policy and Strategy Implications of Parallel Scientific Revolutions James Kadtke and Linton Wells II Center for Technology and National Security Policy (CTNSP) National Defense University (NDU) September 2014 Disclaimer: The views expressed in this paper are those of the author and do not reflect the official position of the National Defense University, the Department of Defense, or the U.S. Government. All information and sources in this paper were drawn from unclassified materials. Dr. James Kadtke is currently the Special Advisor on Converging Technologies at the Center for Technology and National Security Policy, National Defense University; he is also a consultant in the Washington, DC area focusing on emerging technologies, national security, organizational foresight, and innovation. Previously, he served as a Fellow in the Science and Technology Policy Institute under the White House OSTP, and as policy analyst on the Science Committee in the U.S. House of Representatives. He then served over three years on the staff of Senator John Warner of Virginia and as staff designee on the Senate Armed Services Committee. More recently, he has served as Executive Director of the Accelerating Innovation Foundation, and a research fellow at the National Defense University and George Mason University. From 2010 to 2012, he was the Industry and State Liaison at the National Nanotechnology Coordinating Office under the White House. Dr. Linton Wells II is a Visiting Distinguished Research Fellow in the Institute for National Strategic Studies at National Defense University. Previously he was the Director of the Center for Technology and National Security Policy at NDU.
    [Show full text]
  • Educational Technology Use in Neurodiagnostic Clinical Skills Training Margaret Ann Marsh-Nation Walden University
    Walden University ScholarWorks Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies Collection 2019 Educational Technology Use in Neurodiagnostic Clinical Skills Training Margaret Ann Marsh-Nation Walden University Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations Part of the Curriculum and Instruction Commons, Instructional Media Design Commons, and the Neuroscience and Neurobiology Commons This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please contact [email protected]. Walden University College of Education This is to certify that the doctoral dissertation by Margaret Ann Marsh-Nation has been found to be complete and satisfactory in all respects, and that any and all revisions required by the review committee have been made. Review Committee Dr. Carla Johnson, Committee Chairperson, Education Faculty Dr. Michael Marrapodi, Committee Member, Education Faculty Dr. Danielle Hedegard, University Reviewer, Education Faculty Chief Academic Officer Eric Riedel, Ph.D. Walden University 2019 Abstract Educational Technology Use in Neurodiagnostic Clinical Skills Training by Margaret Ann Marsh-Nation MS, Walden University, 2011 BS, Capella University, 2009 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Educational Technology Walden University February 2019 Abstract The current shortage of clinical sites for neurodiagnostic technology (NDT) students is limiting enrollments and subsequently limiting graduates from NDT schools in the U.S. A lack of knowledge or consensus concerning the use of educational technology in NDT clinical skills training prompted this investigation.
    [Show full text]
  • Improving the Army's Next Effort in Technology Forecasting
    Improving the Army’s Next Effort in Technology Forecasting John Lyons, Richard Chait, and Simone Erchov, Editors Center for Technology and National Security Policy National Defense University September 2010 The views expressed in this article are those of the authors and do not reflect the official policy or position of the National Defense University, the Department of Defense, or the U.S. Government. All information and sources for this paper were drawn from unclassified materials. Paul Bartone is a Senior Research Fellow in the CTNSP Life Sciences Directorate. He has conducted numerous field studies of stress, health and adaptation among military personnel and their families, covering deployments ranging from the Gulf War to Bosnia. He is a past-President of the Society for Military Psychology, Division 19 of the American Psychological Association. He is a charter member of the Association for Psychology Science, and a Fellow of the American Psychological Association. He earned a B.A. in Psychology, magna cum laude, from the University of Massachusetts and a Masters and PhD in Psychology and Human Development from the University of Chicago. Richard Chait is a Distinguished Research Fellow at CTNSP. He was previously Chief Scientist, Army Material Command, and Director, Army Research and Laboratory Management. Dr. Chait received his PhD in Solid State Science from Syracuse University and a BS degree from Rensselaer Polytechnic Institute. T.R. Govindan is the manager of the ARO Quantum Information Science Program, through which he co-manages several quantum information science programs for other agencies of the Federal Government. He also chairs a coordinating group of program managers involved in quantum information science programs.
    [Show full text]
  • New Technologies and Their Role in Australia's Security, Cultural, Democratic, Social A
    At last – a narrative for Australia For many years we have debated where we are heading as a nation. We have been fortunate to have had a relatively prosperous and happy existence and tend to think that this is a direct result of our abundance of minerals and our agricultural production. While our prosperity has been dependent on resources it has only worked because we have been world class in our production techniques and the technology and scientific research that sits behind them. Make no mistake, Australia is not alone in having huge quantities of iron ore: Brazil has just as much and it is generally higher grade. We compete against the world for our economic success. But what of the future? We seem to have no clear narrative other than that as a small nation we must compete against the rest of the world. And the future can be frightening when one notes the way technology is utterly changing the landscape. Some of the wilder predictions suggest that by 2030, 80% of all jobs will be in firms or institutions that don’t exist now. Aviva Rutkin writing in the MIT Technology Journal1 on the jobs of the future suggested that around half of all currently existing jobs in the USA would be automated by 2030. The good news of course is that while technology is destroying jobs it is also creating jobs. Our narrative then is clear: we must pursue innovation through technology as the main contributor to our future prosperity and happiness. The new jobs generated will allow us to compete with the world.
    [Show full text]
  • National Security Implications of Accelerating Technologies
    Policy Challenges of Accelerating Technological Change: Security Policy and Strategy Implications of Parallel Scientific Revolutions James Kadtke and Linton Wells II Center for Technology and National Security Policy (CTNSP) National Defense University (NDU) September 2014 Disclaimer: The views expressed in this paper are those of the author and do not reflect the official position of the National Defense University, the Department of Defense, or the U.S. Government. All information and sources in this paper were drawn from unclassified materials. Dr. James Kadtke is currently the Special Advisor on Converging Technologies at the Center for Technology and National Security Policy, National Defense University; he is also a consultant in the Washington, DC area focusing on emerging technologies, national security, organizational foresight, and innovation. Previously, he served as a Fellow in the Science and Technology Policy Institute under the White House OSTP, and as policy analyst on the Science Committee in the U.S. House of Representatives. He then served over three years on the staff of Senator John Warner of Virginia and as staff designee on the Senate Armed Services Committee. More recently, he has served as Executive Director of the Accelerating Innovation Foundation, and a research fellow at the National Defense University and George Mason University. From 2010 to 2012, he was the Industry and State Liaison at the National Nanotechnology Coordinating Office under the White House. Dr. Linton Wells II is a Visiting Distinguished Research Fellow in the Institute for National Strategic Studies at National Defense University. Previously he was the Director of the Center for Technology and National Security Policy at NDU.
    [Show full text]