Dr. Lucio Gelmini Room 5-132A [email protected] 497-5813

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Lucio Gelmini Room 5-132A Gelminil@Macewan.Ca 497-5813 Chemistry 101 Dr. Lucio Gelmini Room 5-132A [email protected] 497-5813 http://academic.macewan.ca/gelminil Nuclear Atom Components of matter • Element – simplest type of substance with a unique identity (physical and chemical properties) – one type of atom – may be single atoms or molecules Components of matter • Compound – two or more different types of atoms – behave as a unit – chemically combined – unique physical and chemical identity • Mixture – two or more different types of elements and/or compounds physically intermingled Example of element vs. compound • Some properties of sodium, chlorine, and sodium chloride Elements combine by • Transferring electrons from an atom of one element to an atom of a different element TYPE OF COMPOUND FORMED? (ionic compound formation). • Sharing electrons between atoms TYPE OF COMPOUND FORMED? (covalent compound formation). Bonding Electrons involved (outer) not the nuclei in bonding Atom Identity • Atom identity is determined by #p+ in the nucleus (Z) • Isotope identity is determined by #n0 (A = Z + N) – Charge based on number of electrons e- Ion formation – ionic compounds • Atoms can gain or lose electrons – Lose: + ion = cation #p+ > #e- – Gain: − ion = anion #p+ > #e - • If an atom forms an ion… – Metals typically form cations (lose e-) – Nonmetals typically form anions (gain e-) Ion formation – ionic compounds Metals: lose #e- = A column number - Nonmetals: gain #e = 8 − A column number Example ions • What monatomic ions would the following elements most likely form? – sodium (column 1) → Na+ – chlorine (column 17) → Cl- – barium (column 2) → Ba2+ – nitrogen (column 15) → N3- Electron transfer • Electron transfer involves – loss and gain of e- – called oxidation and reduction, respectively (“redox”) Ionic bonding and ionic compounds NaCl = Na+Cl- • Oppositely charged ions: – attract each other – pair up in whole number ratios NaCl →zero overall charge – compounds are “ionic” • Examples: 2+ - CaF2 Ca F → 1(+2) + 2(−1) = 0 2+ 3- Ba3N2 Ba N → 3(+2) + 2(−3) = 0 + 2- K2OK O → 2(+1) + 1(−2) = 0 Differences between ionic and covalent bonding • Ionic substances are not molecular. – Exist as arrays of oppositely charge ions stabilized by ionic bonding (crystalline lattice) – No discrete units – ions are attracted to oppositely charged counterparts – “Formula unit” – lowest whole-number ratio that balances charges to zero • Covalent substances are molecular. – Discrete “units” of bonded atoms exist (“molecules”) H H C H H H C H H H Differences in compound formation Example compounds – row 3 combinations Covalent bonds • Covalent compounds form when atoms share e- • Usually among nonmetals • Attractive forces directional (between atoms) – Diatomic – 2 atoms O2, N2, CO,… – Tri atomic – 3 atoms O3, NO 2,H 2O… – Poly atomic – > 2 or 3 atoms CH4, H 2O2,C 4H 10,… – Diatomic and polyatomic ions exist - - + 2- OH , NO3 , NH4 , SO4 ,… − covalent bonds join atoms − group has gained or lost electrons Some nonmetal elements exist as molecules (1) (13)(2) (14) (15) (16)(18) (17) H2 N2 O2 F2 P4 S8 Cl2 Se8 Br2 I2 diatomic molecules mictetrato molecules ctatomico molecules Polyatomic ions • Polyatomic ions (learn them) – Contain covalently bonded atoms – Carry an overall charge – Act like ions (as a group) – Form ionic compounds • Example 2- – Carbonate ion, CO3 – Acts like ion with −2 charge – Calcium carbonate, CaCO3 2+ 2- cation = Ca ; anion = CO3 Compounds: formulas, names, masses • To effectively communicate in chemical terms, a chemical language is needed • Chemical symbols: “alphabet” • Specific combinations: “words” – Nickname = chemical formula – Full name = chemical name • Ionic and covalent compounds have different naming rules Binary Ionic (I) compound naming • Cation named first, followed by anion name – Cation same as the name of the parent metal • sodium metal → sodium ion Na → Na+ • calcium metal → calcium ion Ca → Ca2+ – Anion uses root of the nonmetal name and adds the suffix –ide • chlorine atom → chloride ion Cl → Cl− • oxygen atom → oxide ion O → O2− Compound examples (overall electrically neutral): NaCl sodium chloride CaO calcium oxide Na2Osodium oxide CaCl2 calcium chloride CN- cyanide OH- hydroxide Ionic (type II) naming with metals forming more than 1 ion • Hint: anion helps determine charge on metal overall, charges must add up to zero • Example. Name ions formula 4+ − tin(IV) fluoride Sn , F SnF4 + 2− copper(I) sulfide Cu , S Cu2S 3+ 2- iron(III) oxide Fe , O Fe2O3 Binary Ionic naming with metals forming more than 1 ion Example. Name ions formula 2+ − MnBr2 Mn , Br manganese(II) bromide 2+ 2 − PbS Pb , S lead(II) sulfide 2+ − CuI2 Cu , I copper(II) iodide Need to look at polyatomic ions To do that we need to know about naming acids Naming –Hydrates and Binary Covalent Compounds • Numerical (Greek) prefixes are used • Indicate number of each type of atom (or waters) Number Prefix Number Prefix Number Prefix 1 mono 4 tetra 8 octa 2 di 5 penta 9 nona 3 tri 6 hexa 10 deca 7 hepta • Examples: CO carbon monoxide CO2 carbon dioxide N2O dinitrogen monoxide P2O5 diphosphorous pentoxide SF6 sulfur hexafluoride IF5 iodine pentafluoride Naming Molecular Compounds • Similar to Binary ionic • More electropositive considered metal, and more electronegative atom = non metal • Various oxidation states, however, do not use roman numerals, use Greek prefix to identify number of each atoms • Only if there one “metal”atom do we drop the prefix, “non-metal”atoms always uses prefix Molecular compound naming • For example: N2O5 • More electropositive element named first, Nitrogen • Place Greek prefix in from of it (unless only one) Dinitrogen • More electronegative element named second, Oxygen • Place Greek prefix in from of it (unless only one) Pentoxygen • Finally to designate it is a binary compound, add “ide”ending Pentoxide OVERALL: Dinitrogen Pentoxide Hydrates contain bound water • copper(II) sulfate pentahydrate, CuSO4•5H2O Heating drives off waters blue CuSO4•5H2O → white anhydrous CuSO4 • Binary acids (Hn-X) – two groups to know Formula Pure In water Loss of H+ HF hydrogen fluoride Hydro fluoric F- fluoride ion acid HCl hydrogen chloride Hydro chloric Cl- chloride ion acid HBr hydrogen bromide Hydro bromic Br- bromide ion acid HI hydrogen iodide Hydro iodic l- iodide ion acid HCN hydrogen cyanide Hydro cyanic CN- cyanide ion acid 2- H2S hydrogen sulfide Hydro sulfuric S sulfide ion acid 2- H2Se hydrogen selenide Hydro selenic Se selenide ion acid 2- H2Te hydrogen telluride Hydro telluric Te telluride ion acid • OXY ACIDS (H-O-X) Look at X = halogen (group 17) X = S, Se or Te X = N or P,As X = C Organic acids (R-COOH) Other acids Oxoacids of Cl, Br and I Acid Name Ion(loss H+) Name - HClO4 perchloric acid ClO4 perchlorate anion - HClO3 chloric acid ClO3 chlorate anion - HClO2 chlorous acid ClO2 chlorite anion HClO hypochlorous acid ClO- hypochlorite anion NOTE: acidic hydrogens are generally listed 1st, not necessarily the way they bond (no H-Cl bond) Remember: Oxoacids must have a H-O bond HClO3 chloric acid = parent acid (often with three hydrogens) One less oxygen →“ous” ending acid. Hence, HClO2 chlorous acid “ic” ending acid→“ate” ending anion “ous” ending acid→“ite” ending anion Oxoacids of Cl, Br and I Acid Name Ion(loss H+) Name - HClO4 perchloric acid ClO4 perchlorate ion - HClO3 chloric acid ClO3 chlorate ion - HClO2 chlorous acid ClO2 chlorite acid HClO hypochlorous acid ClO- hypochlorite acid Acid Name Ion(loss H+) Name - HlO4 BrO4 - HBrO3 lO3 - HIO2 BrO2 HBrO IO- Oxoacids of Nitrogen • Only two: HNO3 and HNO2 parent acid higher oxidations state HNO3 has N(5+) and HNO2 has N(3+) - HNO3 Nitric acid → NO3 Nitrate anion - HNO2 Nitrous acid → NO2 Nitrite anion Oxoacids of P and As • Only two:H3PO4 and H3PO3 parent acid higher oxidations state H3PO4 3 has P(5+) and H3PO3 has P(3+) 3- H3PO4 Phosphoric acid → PO4 Phosphate anion 3- H3PO3 Phosphorous acid → PO3 Phosphite anion 3- H3AsO4 Arsenic acid → AsO4 Arsenate anion 3- H3AsO 3 Arsenous acid → AsO3 arsenite anion Oxoacids of P and As • Loss of only 1 or 2 hydrogen ions – List number of hydrogens - H2PO4 dihydrogen phosphate anion 2- HPO4 monohydrogen phosphate anion - H2PO3 dihydrogen phosphite anion 2- HPO3 monohydrogen phosphite anion - H2AsO4 dihydrogen arsenate anion 2- HAsO 4 monohydrogen arsenate anion - H2AsO3 dihydrogen arsenite anion 2- HAsO 3 monohydrogen arsenite anion Oxoacids of S, Se and Te • Only two:H2SO4 and H2SO3 parent acid higher oxidations state H2SO4 has S(6+) and H2SO3 has S(4+) 2- H2SO4 Sulfuric acid → SO4 Sulfate anion 2- H2SO 3 Sulfurous acid → SO3 Sulfite anion 2- H2SeO4 Selenic acid → SeO4 Selenate anion 2- H2SeO 3 Selenous acid → SeO3 Selenite anion 2- H2TeO4 Telluric acid → TeO4 Tellurate anion 2- H2TeO 3 Tellurous acid → TeO3 Tellurite anion Oxoacids of S, Se and Te • Loss of one hydrogen, may list number (mono) or omit - HSO4 (mono)hydrogen sulfate anion (bisulfate) - HSO3 (mono)hydrogen sulfite anion (bisulfite) - HSeO4 (mono)hydrogen selenate anion - HSeO3 (mono)hydrogen selenite anion - HTeO4 (mono)hydrogen tellurate anion - HTeO3 (mono)hydrogen tellurite anion Oxoacids of C • Only one important acid: H2CO3 = carbonic acid 2- Forms carbonate anion CO3 • Loss of one hydrogen, may list number (mono) or omit - HCO3 (mono)hydrogen carbonate anion (bicarbonate) Some consider carbonic acid as a hydrate of CO2 • Hence, H2CO3 is H2O CO2 and it is very unstable at room temperature breaking down → H2O(l) + CO2(g) Organic Acids • Sometimes difficult to tell • Organic acids have R –COOH Acetic acid is
Recommended publications
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Synthesis of 4-Phosphono Β-Lactams and Related Azaheterocyclic Phosphonates
    SYNTHESIS OF 4-PHOSPHONO β-LACTAMS AND RELATED AZAHETEROCYCLIC PHOSPHONATES IR . KRISTOF MOONEN To Elza Vercauteren Promotor: Prof. dr. ir. C. Stevens Department of Organic Chemistry, Research Group SynBioC Members of the Examination Committee: Prof. dr. ir. N. De Pauw (Chairman) Prof. dr. J. Marchand-Brynaert Prof. dr. A. Haemers Prof. dr. S. Van Calenbergh Prof. dr. ir. E. Vandamme Prof. dr. ir. R. Verhé Prof. dr. ir. N. De Kimpe Dean: Prof. dr. ir. H. Van Langenhove Rector: Prof. dr. P. Van Cauwenberge IR . KRISTOF MOONEN SYNTHESIS OF 4-PHOSPHONO β-LACTAMS AND RELATED AZAHETEROCYCLIC PHOSPHONATES Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences: Chemistry Dutch translation of the title: Synthese van 4-fosfono-β-lactamen en aanverwante azaheterocyclische fosfonaten ISBN-Number: 90-5989-129-5 The author and the promotor give the authorisation to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Woord Vooraf Toen ik op een hete dag in de voorbije zomer dit woord vooraf schreef, stond ik voor één van de laatste horden te nemen in de weg naar het “doctoraat”. Het ideale moment voor een nostalgische terugblik op een zeer fijne periode, hoewel het onzinnig zou zijn te beweren dat alles rozegeur en maneschijn was. En op het einde van de rit komt dan ook het moment waarop je eindelijk een aantal mensen kunt bedanken, omwille van sterk uiteenlopende redenen.
    [Show full text]
  • Industrial Hydrocarbon Processes
    Handbook of INDUSTRIAL HYDROCARBON PROCESSES JAMES G. SPEIGHT PhD, DSc AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Gulf Professional Publishing is an imprint of Elsevier Gulf Professional Publishing is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition 2011 Copyright Ó 2011 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/ permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made British Library Cataloguing in Publication Data
    [Show full text]
  • Phosphite Sensitivity of Phytophthora Cinnamomi and Methods for Quantifying Phosphite from Avocado Roots
    PHOSPHITE SENSITIVITY OF PHYTOPHTHORA CINNAMOMI AND METHODS FOR QUANTIFYING PHOSPHITE FROM AVOCADO ROOTS by Jing Ma Thesis presented in partial fulfilment of the requirements for the degree Master of Science in AgriSciences at Stellenbosch University Supervisor: Prof. Adéle McLeod March 2016 I Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2016 Copyright © 2016 Stellenbosch University All rights reserved II Stellenbosch University https://scholar.sun.ac.za SUMMARY Phytophthora root rot caused by Phytophthora cinnamomi threatens the production of avocado worldwide, but the disease can be effectively managed using phosphonates. The mode of action of phosphonates is controversial and can include a direct fungistatic action and/or an indirect action involving host defence responses. In South Africa, in vitro radial growth inhibition studies, which can be indicative of a direct mode of action, have only been conducted on isolates collected in one orchard in previous studies, more than a decade ago. In in vitro studies, phosphate in the test medium can influence the in vitro toxicity of phosphite - (H2PO3 ), but this has not been studied in large P. cinnamomi populations. The in vivo phosphite sensitivity of P. cinnamomi isolates in avocado, which is indicative of host defence responses, has only been investigated in two non-peer reviewed studies in South Africa.
    [Show full text]
  • Study of the Preparation of Telluric Acid and Its Application in Analytical
    A STUDY OF THE PRI-PARATION OP TELLURIC ACID A: r US APPLICATION IN ANALYTICAL CHE by . !£N HORNER B« S«, Franklin and Marshall College, 1949 A THESIS submitted in partial fulfillment of the requirements for the degree MAST Department of Chemistry KANSAS STA GB OF AGRICULTU L AND APPLIED SC 1951 &0<LUl~ ii ^1*8 T4 \<V$I Hlol TABLE OP CONTENTS I Oo i INTRODUCTION ft* 1 EXPERIMENTAL 5 Volumetric Determination of Tellurium Dioxide 5 Purification of Tellurium Dioxide . 13 Determination of the Solubility of Telluric Acid and Tellurixim Dioxide in Concentrated Ammonium Hydroxide ..... 13 Preparation of Telluric Acid ... 14 Determination of the Purity of Telluric Acid 20 The Determination of Barium by Homogeneous Precipitation as Barium Tollurate . 21 DISCUSSION 25 SUMMARY 27 ACK 29 LITERATURE CITED 30 INTRODUCTION The studies reported upon In this paper were directed towards (1) The preparation of telluric acid, and (2) the homogeneous precipitation of barium and similar Ions as tellurates. A review of the literature shows that there have been several methods of preparing telluric acid. Meyer and Franke (4) oxidized the elementary tellurium with a mixture of barium chlorate and sulfuric acid. Krepelka and Kubik (2) oxidized the elementary tellurium with 30 percent hydrogen peroxide, but their method necessitated using a 10-15 fold excess of the oxidizing agent. Staundenmaier (9) reacted a mixture of nitric and chromic acids with tellurium dioxide to effect oxidation to telluric acid. The procedure as developed by Mathers et al. (3) is the most widely used. Crude tellurium dioxide is purified and then oxidized by a slight excess of permanganate in a hot solution of about five molar nitric acid.
    [Show full text]
  • Phosphite As Phosphorus Source to Grain Yield Of
    PHOSPHITE AS PHOSPHORUSPhosphite as SOURCEphosphorus source TO toGRAIN grain... YIELD OF COMMON639 BEAN PLANTS GROWN IN SOILS UNDER LOW OR ADEQUATE PHOSPHATE AVAILABILITY Fosfito como fonte de fósforo para produção de grãos em feijoeiro cultivado em solos sob baixa ou adequada disponibilidade de fosfato Fabricio William Ávila1, Valdemar Faquin2, Douglas Ramos Guelfi Silva2, Carla Elisa Alves Bastos3, Nilma Portela Oliveira2, Danilo Araújo Soares2 ABSTRACT The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm-3 soil), 7 soil P levels supplied as phosphite (0-100 mg P dm-3 soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm-3 soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability.
    [Show full text]
  • WATER CHEMISTRY CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 1St Edition
    WATER CHEMISTRY CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 1st Edition 2 Water Chemistry 1st Edition 2015 © TLC Printing and Saving Instructions The best thing to do is to download this pdf document to your computer desktop and open it with Adobe Acrobat DC reader. Adobe Acrobat DC reader is a free computer software program and you can find it at Adobe Acrobat’s website. You can complete the course by viewing the course materials on your computer or you can print it out. Once you’ve paid for the course, we’ll give you permission to print this document. Printing Instructions: If you are going to print this document, this document is designed to be printed double-sided or duplexed but can be single-sided. This course booklet does not have the assignment. Please visit our website and download the assignment also. You can obtain a printed version from TLC for an additional $69.95 plus shipping charges. All downloads are electronically tracked and monitored for security purposes. 3 Water Chemistry 1st Edition 2015 © TLC We require the final exam to be proctored. Do not solely depend on TLC’s Approval list for it may be outdated. A second certificate of completion for a second State Agency $25 processing fee. Most of our students prefer to do the assignment in Word and e-mail or fax the assignment back to us. We also teach this course in a conventional hands-on class. Call us and schedule a class today. Responsibility This course contains EPA’s federal rule requirements. Please be aware that each state implements drinking water/wastewater/safety regulations may be more stringent than EPA’s or OSHA’s regulations.
    [Show full text]
  • P-C Bond Formation in Reactions of Morita-Baylis-Hillman Adducts with Phosphorus Nucleophiles
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2017 , part ii, 324-344 Organic Chemistry P-C bond formation in reactions of Morita-Baylis-Hillman adducts with phosphorus nucleophiles Michał Talma and Artur Mucha* Department of Bioorganic Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland Email: [email protected] Dedicated to Prof. Jacek Młochowski on the occasion of his 80 th anniversary Received 07-07-2016 Accepted 09-09-2016 Published on line 10-11-2016 Abstract Morita-Baylis-Hillman adducts (e.g., activated allyl acetates or bromides) are an unprecedented trifunctional synthetic platform for diverse types of nucleophilic displacements, additions and rearrangements. These reactions can proceed in an inter- or intramolecular manner, and with stereoselective induction. Accordingly, they contribute, as the key steps, to numerous synthetic pathways, including the total syntheses of natural products of various classes and to novel strategies leading to medicinally relevant compounds and commercialized drugs. The synthetic feasibility of the Morita-Baylis-Hillman adducts in organophosphorus chemistry has been explored to a relatively low extent. In this review, we summarize the current state of the art on the formation of the C-P bond by means of the title reactions. The scope of the processes, the stereochemistry of the products and their further synthetic relevance to obtain multifunctional compounds, including those that are biologically active, are summarized. HO O OAc COOH O P COOH HO O COOAlk EtO OH R P OH P O P EtO O HO O OH O OH MHB acetate HO P-nucleophile + or OH O P COOEt NH O OH P N 2 COOAlk H OEt HO O O R N P O H O O OEt O O OEt Br MBH bromide P OEt Keywords: Nucleophilic substitution, allyl acetates and bromides, organophosphorus chemistry, multifunctional compounds DOI: http://dx.doi.org/10.3998/ark.5550190.p009.787 Page 324 ©ARKAT USA, Inc Arkivoc 2017 , ( ii ), 324-344 Talma, M and Mucha, A Table of Contents 1.
    [Show full text]
  • Effect of Phosphite Fertilization on Growth, Yield and Fruit Composition of Strawberries
    Scientia Horticulturae 119 (2009) 264–269 Contents lists available at ScienceDirect Scientia Horticulturae journal homepage: www.elsevier.com/locate/scihorti Effect of phosphite fertilization on growth, yield and fruit composition of strawberries Ulvi Moor *, Priit Po˜ldma, To˜nu To˜nutare, Kadri Karp, Marge Starast, Ele Vool Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, EE51014 Tartu, Estonia ARTICLE INFO ABSTRACT Article history: Traditionally, phosphates (Pi, salts of phosphoric acid, H3PO4) have been used for plant fertilization, and Received 3 April 2008 phosphites (Phi, salts of phosphorous acid, H3PO3) have been used as fungicides. Nowadays several Phi Received in revised form 11 August 2008 fertilizers are available in the EU market despite the fact that in research trials Phi has often had a Accepted 12 August 2008 negative influence on plant growth. The objective of this study was to elucidate the effect of a Phi fertilizer on plant growth, yield and fruit composition of strawberries (Fragaria  ananassa Duch.). Experiments Keywords: were carried out with ‘Polka’ frigo plants in South Estonia in 2005 and 2006. The number of leaves per Fragaria  ananassa plant, total and marketable yields, fruit size, fruit ascorbic acid content (AAC), soluble solids content Ascorbic acid Soluble solids (SSC), titratable acidity (TA), anthocyanins (ACY) and total antioxidant activity (TAA) were recorded. Titratable acidity The results indicate that Phi fertilization does not affect plant growth. Phi fertilization had no Anthocyanins advantages in terms of yield increase, compared to traditional Pi fertilization. Fruit acidity increased and Antioxidant activity TSS decreased due to foliar fertilization with Phi in 2006.
    [Show full text]
  • Chemistry of Telluric Acid
    View metadata, citation and similar papers at core.ac.ukbrought to you by CORE provided by K-State Research Exchange THE CHEMISTRY OF TELLURIC ACID by ROBERT WESLEY HMBX B. A., Adams State College, 1953 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Chemistry KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE 1955 LP l°<^ S ii Oocu^vwH. TABLE OF CONTENTS INTRODUCTION ! EXPERIMENTAL £ Apparatus ( 5 Chemicals £ Pre aration of Telluric cid 6 Quantitative Analysis of Telluric Acid 7 RESULTS AND DISCUSSION 8 COaCLUSION # 19 AGKNOWLfiOfflisliT 21 BIBLIOGRAPHY 22 IHTEODUCTION Telluric acid, although not a new compound, has not been exten- sively studied. Several preparations for the compound have been in- vestigated which are based on the oxidation of either the free element, or one of the compounds of a lower oxidation state. The methods for a quantitative analysis are not comprehensive and are usually rather long and tedious. Probably the most widely accepted preparation is that of Mathers and co-workers, which is based on the action of potassium permanganate in a acid medium, on tellurium dioxide (10). This method gives a very good yield of the crude product, but some of the impurities which are inherent in the preparation must be eliminated by further chemical ac- tion on the product. The method of Meyer and Franke (11) of oxidiz- ing the free element with chloric acid, has given yields of ninety to ninety-five percent. However, the number of reaction products formed leads to a large number of impurities which must be eliminated.
    [Show full text]
  • Encyclopedia-Of-Toxicology-Vol-4.Pdf
    Seveso Disaster, and the Seveso and Seveso II Directives 1 Seveso Disaster, and the Seveso and Seveso II Directives Pertti J Hakkinen but possibly other toxic substances as well.’’ They & 2005 Elsevier Inc. All rights reserved. requested the authorities to warn the population, and samples were sent by courier for examination to a company, Givaudan SA, in Switzerland. Givaudan SA, once one of ICMESA’s main customers, had tak- The Seveso Disaster en over ICMESA as a subsidiary in 1969. The Seveso disaster began on July 10, 1976 at Two days after the disaster, nearby residents were the Industrie Chimiche Meda Societa` Azionaria warned not to eat any vegetables from their gardens. (ICMESA) chemical plant in Meda, Italy. This event Four days after the disaster, the Technical Director of became internationally known as the Seveso disaster, Givaudan in Geneva informed the Technical Director after the name of the most severely affected commu- of ICMESA that the samples contained traces of nity. An increase in pressure due to an exothermic TCDD. Authorities were told much later about the reaction in a 2,4,5-trichlorophenol-production reac- TCDD. The Seveso disaster resulted in the highest tor caused the rupture disk of the safety valve to known TCDD exposure to residential populations, burst. About 3000 kg of chemicals were released into and has possibly been the most systematically studied the air. The release included 2,4,5-trichlorophenol, dioxin contamination incident in history. used in the manufacture of herbicides, and possibly The first sign of human health problems was burn- up to 30 kg of the dioxin TCDD (2,3,7,8-tetrachloro- like skin lesions, appearing on children after the ac- dibenzo-p-dioxin).
    [Show full text]
  • A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIA VIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.0116.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB------- VIII ------ IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B - 1B 2B 26.98 28.09 30.9732.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.8850.94 52.00 54.94 55.85 58.47 58.6963.5565.39 69.72 72.59 74.9278.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh Pd AgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.2292.91 95.94 (98) 101.1 102.9 106.4107.9112.4 114.8 118.7 121.8127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5180.9 183.9 186.2 190.2 190.2 195.1197.0200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~ Rf Db Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://periodic.lanl.gov/default.htm (1 of 3) [10/24/2001 5:40:02 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd Tb DyHo Er Tm Yb Lu 140.1 140.9144.2 (147) 150.4 152.0 157.3 158.9162.5164.9 167.3 168.9 173.0175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]