Clinical Significance of Anti-Filaggrin Antibody Recognizing Uncitrullinated Filaggrin in Rheumatoid Arthritis

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Significance of Anti-Filaggrin Antibody Recognizing Uncitrullinated Filaggrin in Rheumatoid Arthritis EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 37, No. 6, 546-552, December 2005 Clinical significance of anti-filaggrin antibody recognizing uncitrullinated filaggrin in rheumatoid arthritis Kyung-Ho Choi1*, Eun Bong Lee2*, patients with osteoarthritis, ankylosing spondylitis Chang Dal Yoo2, Han Joo Baek2, or systemic lupus erythematosus. IgG anti-filaggrin Seong Wook Kang2, Ki Chul Shin2, antibodies were more frequently found in patients with rheumatoid arthritis compared to normal Yun Jong Lee2, Hyun Ah Kim2, 1 1 controls (12.3% vs 1.4% respectively, P = 0.04). An Ju-Hong Jeon , Chai-Wan Kim , anti-filaggrin antibody titer was correlated with visual 1 1,3 Dong-Myung Shin , In-Gyu Kim analogue scale of pain, tender joint count, Ritchie and Yeong Wook Song2 articular index or C-reactive protein, but not with anti-nuclear antibody or rheumatoid factor. These 1Department of Biochemistry and Molecular Biology results suggest that anti-filaggrin antibody recog- Biology/Aging and Apoptosis Research Center (AARC) nizes the uncitrullinated filaggrin as an antigen and 2Department of Internal Medicine and Clinical Reasearch Institute its titer correlates with clinical parameters, explain- Seoul National University College of Medicine ing the variable sensitivity of anti-filaggrin antibody Seoul 110-799, Korea test. 3Corresponding author: Tel, 82-2-740-8248; Fax, 82-2-744-4534; E-mail, [email protected] Keywords: autoimmune; cyclin citrullinated peptide; *These authors contributed equally to this work. diseases; filaggrin; immunoenzyme techniques; rheu- matoid arthritis Accepted 29 September 2005 Abbreviations: ADL, activity of daily living; AFA, anti-filaggrin anti- Introduction body; AKA, anti-keratin antibody; ANA, anti-nuclear antibody; APF, anti-perinuclear factor; AS, ankylosing spondylitis; CRP, C-reactive Rheumatoid arthritis (RA) is a chronic inflammatory protein; ESR, erythrocyte sedimentation ratio; OA, osteoarthritis; joint disease affecting around 1% of the general RA, rheumatoid arthritis; RF, rheumatoid factor; SLE, systemic lupus population (Kellgren, 1996). Although rheumatoid erythematosus factor (RF) is helpful in diagnosis of RA (Arnett et al., 1998), it can be found in patients with other rheu- matic diseases or even healthy persons and is ne- gative in 20-30% of RA patients (Schrohenloher et Abstract al., 1997). Filaggrin is expressed in the cornified layer of Various serologic markers were suggested to overcome the low specificity of the RF, including Sa, epidermis and known to be one of the antigenic kalpastatin, antikeratin antibody (AKA) and antiperi- targets in rheumatoid arthritis. Although the citrul- nuclear factor (APF) (Menard et al., 1998). The AKA line residue in filaggrin is thought to be an antigenic and APF, which are the antibodies against the determinant recognized by autoantibodies, the cornified epithelium of rat esophagus and human diagnostic sensitivity of synthetic citrullinated pep- buccal mucosa respectively, are known to be tide is variable. To investigate the implication of specific for RA (Nienhuis et al., 1964; Young et al., anti-filaggrin antibodies recognizing uncitrullinated 1979). The antigen targets of both antibodies were filaggrin in rheumatoid arthritis, we assayed anti- suggested to be the same protein which is filaggrin body titers using unmodified recombinant filaggrin in the human epidermis (Hoet et al., 1991; Simon et in the sera from 73 patients with rheumatoid arthritis, al., 1993; Sebbag et al., 1995). Filaggrin is synthe- 150 patients with other connective tissue diseases sized in the stratum granulosum as a large repeated and 70 normal controls. We also performed the (10-12 repeat of filaggrin monomers) and heavily correlation analysis between antibody titers and the phosphorylated precursor, profilaggrin, which is clinical variables in patients with rheumatoid arthri- stored in the keratohyaline granules. After dephos- tis. Titers of IgG anti-filaggrin antibodies were signi- phorylation and proteolysis, filaggrin monomer is ficantly higher in rheumatoid arthritis patients released from profilaggrin and modified by peptidyl- compared to normal controls (P = 0.02), but not in arginine deiminase which converts the arginine resi- Antifilaggrin antibody in rheumatoid arthritis 547 dues found in filaggrin to the citrulline. Modified pET15b expression vector after digestion with Nde I filaggrin is thought to be interacted and aggregated and Xho I. The recombinant plasmid was introduced with the keratin intermediate filaments in keratino- into the expression host, BL21 (DE3). cytes, facilitating and guiding their alignment (Ber- The recombinant human filaggrin was prepared by thelot et al., 1995). pET bacterial expression system (Novagen, Ma- Since the molecular identity of target antigen was dison, WI). Induction and purification of the recom- elucidated, several approaches have been made to binant protein was performed according to manu- detect antifilaggrin antibody (AFA) using human facturer's instructions. Briefly, transformed cells were filaggrin. Immunoblot tests using the filaggrin extract cultured in LB medium plus 100 µg/ml ampicillin at from human epidermis showed variable sensitivity 37oC. Filaggrin production was induced in the ranging from 12.0-67.9%, with the specificity of presence of 1 mM isopropyl β-D-thiogalactopyrano- 92.0-95.4% (Vincent et al., 1998; Slack et al., 1998). side (IPTG). The washed cells from 1-liter culture ELISA using filaggrin purified from human epidermis were resuspended in 10 ml of binding buffer (20 mM detected IgG AFA in 47% of RA patients (Palosuo et Tris-Cl, 0.5 M NaCl, 5 mM imidazole, pH 7.9) and al., 1998). Recently, ELISA using a cyclic citrul- lysed by sonication. The suspension was centrifuged linated synthetic peptide derived from the sequence at 39,000 × g for 20 minutes at 4oC. The super- of human filaggrin showed a higher specificity than natant was filtered through a 0.45 µm membrane other methods (Schellekens et al., 2000; Girelli et and loaded on 6 ml HisBind metal chelation resin al., 2004). However, the heterogeneity of extracted (Novagen, Madison, WI) pre-charged with 50 mM filaggrin or synthesized peptide sequence makes it NiSO4 and equilibrated with binding buffer. The difficult to get consistent results, and thus to eval- column was washed with 60 ml binding buffer and uate the correlations between the presence of then with 30 ml each of washing buffer containing 60 autoantibody and clinical data related to RA activity. mM or 100 mM imidazole (20 mM Tris-Cl, 0.5 M In this study, we report that ELISA using unmodified NaCl, 60 mM or 100 mM imidazole, pH 7.9). The recombinant filaggrin showed a 12.3% diagnostic recombinant protein was eluted with 30 ml elution sensitivity at a specificity of 95% which was cor- buffer (20 mM Tris-Cl, 0.5 M NaCl, 1 M imidazole, related with visual analogue scale of pain, tender pH 7.9). The eluate was concentrated by ultrafiltra- joint count, Ritchie articular index or C-reactive tion (Ultrfree-15: Millipore, Bedford, MA). protein in RA patients. For the immunoblot analysis, protein samples were electrophoresed under denaturing condition, and transferred to a nitrocellulose membrane. The mem- Materials and Methods brane was blocked with 5% skim milk in Tris-buf- fered saline (TBS) for an hour and then incubated Serum samples with mouse antifilaggrin monoclonal antibody (Bio- Serum samples were obtained from 73 patients medical Technologies, Stoughton, MA) for an hour. diagnosed as RA according to the revised criteria by Peroxidase-labelled anti-mouse Ig antibody (Dako, American Rheumatism Association (Arnett et al., Glostrup, Denmark) was used as a secondary probe 1998), 70 healthy controls and 150 patients with and visualization was performed with enhanced che- other connective tissue diseases including osteoar- miluminescence (Amersham, Piscataway, NJ). thritis (OA), ankylosing spondylitis (AS) and sys- temic lupus erythematosus (SLE) at Rheumatology Immunoblotting with human sera Clinic, Seoul National University Hospital. Serum o One microgram of recombinant filaggrin was run on samples were stored at -70 C until assayed. SDS-polyacrylamide gel and transferred to a nitro- cellulose membrane. The membrane was cut into Expression and purification of the recombinant strips and blocked with 5% skim milk in TBS. The filaggrin monomer strips were incubated with the patient sera diluted 1:100 for an hour at room temperature. After wash- Human filaggrin monomer cDNA was obtained by ing several times, the strips were treated with pero- PCR amplification of the partial cDNA clone of xidase-labelled anti-human IgG antibody (Dako, Glo- λ profilaggrin ( HF11 provided by Dr. P. Steinert; Gan strup, Denmark) for an hour at room temperature. et al., 1990). PCR was performed with sense primer The color reaction was developed by 3,3-diamino- (FilP) 5'-CATATGTTCCTCTACCAGGTGAGC-3' and benzidine substrate (Sigma, St. Louis, MO). antisense primer (FilN) 5'-TCTGGACATTCAGGAT- CTTAACTCGAG-3'. The amplified product was veri- fied by sequencing (Sequenase kit; USB, Cleveland, ELISA OH) and subcloned into the corresponding sites of The recombinant filaggrin (1 µg/well) was coated on 548 Exp. Mol. Med. Vol. 37(6), 546-552, 2005 a 96-well immunoassay plate (Maxisorp; Nunc, knees, feet, cervical spine, lumbosacral spine and Rockside, Denmark) at 4oC, overnight. After washing pelvis in all patients. with phosphate buffered saline-0.05% Tween-20 (PBST), blocking was done with 1% bovine serum Statistical analysis
Recommended publications
  • In Situlocalization of Cytoskeletal Elements in the Human Trabecular
    Investigative Ophthalmology & Visual Science. Vol. 31. No. 9. September 1990 Cops right £• Association lor Research in Vision and Ophthalmology In Situ Localization of Cytoskeletal Elements in the Human Trabecular Meshwork and Cornea Robert N. Weinreb* and Mark I. Ryderf The authors compared cytoskeletal elements of the in situ human trabccular-mcshwork cell with in situ human corneal cells using indirect immunofluorcsccncc staining for tubulin and intermediate filaments (vimentin, cytokeratin, and desmin) and NBD-phallacidin staining for f-actin using both fixed frozen and unfixed frozen sections from postmortem eyes. Both f-actin and tubulin were found throughout the cell body of trabecular-meshwork cells, keratocytes, corneal endothelium, and corneal epithelium. The f-actin staining pattern was concentrated at the cell periphery of these four cell types. Vimentin stain was intensely localized in focal areas of the trabecular-meshwork cell, keratocytes, and throughout the corneal cndothelium. A general anticytokeratin antibody was intensely localized in corneal epithelium and endothelium. However, PKK-1 anticytokeratin antibody was seen only in superficial layers of corneal epithelium and not in corneal endothelium. The 4.62 anticytokeratin antibody was not observed in either corneal epithelium or endothelium. None of these three cytokera- tin antibodies were seen in trabccular-mcshwork cells or keratocytes. Desmin stain was not noted in any of these cell types. In general, cytoskeletal staining of unfixed frozen sections showed a similar staining pattern for f-actin and tubulin but a more uniform and intense staining pattern for vimentin and cytokcratin compared with fixed frozen material. The authors conclude that these cytoskclctal stains can differentiate human Irabeciilar-meshwork cells from cells of the cornea in situ.
    [Show full text]
  • Decreased Expression of Profilin 2 in Oral Squamous Cell Carcinoma and Its Clinicopathological Implications
    ONCOLOGY REPORTS 26: 813-823, 2011 Decreased expression of profilin 2 in oral squamous cell carcinoma and its clinicopathological implications C.Y. MA1,2, C.P. ZHANG1,2, L.P. ZHONG1,2, H.Y. PAN1,2, W.T. CHEN1,2, L.Z. WANG3, O.W. ANDREW4, T. JI1 and W. HAN1,2 1Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology; 2Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology; 3Department of Oral Pathology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China; 4Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore 119074, Singapore Received February 8, 2011; Accepted April 11, 2011 DOI: 10.3892/or.2011.1365 Abstract. Profilins are small proteins essential for many clinical and pathological significance. In conclusion, PFN2 normal cellular dynamics and constitute one of the crucial can be utilized as both a potential suppressor marker and a components of actin-based cellular motility. Several recent prognostic protein for OSCC. The function of PFN2 may be to studies have implicated a role for the profilin (PFN) family in regulate the N-WASP/Arp2/3 signaling pathway. cancer pathogenesis and progression. However, their expression and promising functions are largely unknown in oral squamous Introduction cell carcinoma (OSCC). In this study, we analyzed the correlation between PFN1 and PFN2 expression in vitro and Oral squamous cell carcinoma (OSCC) is a significant public in vivo. The protein expression levels were roughly compared health problem with >300,000 new cases being diagnosed between cell lines (HIOEC, HB96) with the employment of annually worldwide (1).
    [Show full text]
  • Epithelial to Mesenchymal Transition
    Epithelial Cells Cell Polarity TGF-b-Induced EMT MUC-1 O-glycosylation Epithelial Cells ZO-1 Occludin Apical Membrane Tight F-Actin Microvilli Junction Claudin F-Actin p120 β-Catenin Adherens F-Actin Ezrin TGF-β dimer Junction E-Cadherin α-Catenin Plakophilin Crumbs Complex PAR Complex Desmocollin Desmoplakin Desmosome PtdIns(4,5)P2 TGF-β RII TGF-β RI CRB Cdc42Par6 Desmoglein Cytokeratin Pals1 PatJ Tight Junction Plakoglobin aPKC Par3 Domain Smad7 Extracellular PTEN JNK ERK1/2 p38 SARA Smurf1 Cortical Actin Cytoskeleton Space Par3 ZO-1 Adherens Junction PI 3-K Domain Smad-independent Signaling (–) Smad7 Translocation Smad2/3 PtdIns(3,4,5)P3 Smad4 Smad4 NEDD4 Cytokeratin Intermediate Filaments Smad2 Smad4 Smad3 LLGL Proteasome SCRIB DLG Scribble Complex Fibronectin Twist Smad2/3 Vitronectin ZEB 1/2 Microtubule Network Smad4 N-Cadherin Snail Basolateral Membrane CoA, Collagen I Slug CoR MMPs DNA-binding (+) Claudin Desmoplakin Transcription Factor Occludin Cytokeratins E-Cadherin Plakoglobin Integrins β α Nidogen-1/Entactin Perlecan Laminin Collagen IV Transcriptional Repression Cell-Cell Adhesion Disassembly Actin Reorganization of E-Cadherin TGF-β dimer EGF TGF-β RII TGF-β RI IGF FGF Receptor TNF-α Tyrosine Kinase Par6 TNF RI Apical Focal Adhesion Constriction Actin Depolymerization F-Actin Smurf1 Occludin Wnt Frizzled Myosin II Ras RhoA α-Actinin Myosin II ROCK AxinCK1 Dishevelled GSK-3 PI 3-K Src Zyxin MLC Phosphatase APC Proteasome FAK Vinculin RhoA ILK Talin (Inactive) Hakai Talin FAK F-Actin E-Cadherin LIMK Akt Paxillin FAK Stress
    [Show full text]
  • Deimination, Intermediate Filaments and Associated Proteins
    International Journal of Molecular Sciences Review Deimination, Intermediate Filaments and Associated Proteins Julie Briot, Michel Simon and Marie-Claire Méchin * UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Université Fédérale de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France; [email protected] (J.B.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +33-5-6115-8425 Received: 27 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes. Keywords: citrullination; post-translational modification; cytoskeleton; keratin; filaggrin; peptidylarginine deiminase 1. Introduction Intermediate filaments (IF) constitute a unique macromolecular structure with a diameter (10 nm) intermediate between those of actin microfilaments (6 nm) and microtubules (25 nm). In humans, IF are found in all cell types and organize themselves into a complex network. They play an important role in the morphology of a cell (including the nucleus), are essential to its plasticity, its mobility, its adhesion and thus to its function.
    [Show full text]
  • Germline Variants in Driver Genes of Breast Cancer and Their Association with Familial and Early-Onset Breast Cancer Risk in a Chilean Population
    cancers Article Germline Variants in Driver Genes of Breast Cancer and Their Association with Familial and Early-Onset Breast Cancer Risk in a Chilean Population Alejandro Fernandez-Moya 1, Sebastian Morales 1,* , Trinidad Arancibia 1, Patricio Gonzalez-Hormazabal 1, Julio C. Tapia 2, Raul Godoy-Herrera 1, Jose Miguel Reyes 3, Fernando Gomez 4, Enrique Waugh 4 and Lilian Jara 1,* 1 Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; [email protected] (A.F.-M.); [email protected] (T.A.); [email protected] (P.G.-H.); [email protected] (R.G.-H.) 2 Laboratorio de Transformación Celular, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; [email protected] 3 Clínica Las Condes, Santiago 7591047, Chile; [email protected] 4 Clínica Santa María, Santiago 7520378, Chile; [email protected] (F.G.); [email protected] (E.W.) * Correspondence: [email protected] (S.M.); [email protected] (L.J.); Tel.: +56-9-98292094 (L.J.) Received: 11 September 2019; Accepted: 19 November 2019; Published: 20 January 2020 Abstract: The genetic variations responsible for tumorigenesis are called driver mutations. In breast cancer (BC), two studies have demonstrated that germline mutations in driver genes linked to sporadic tumors may also influence BC risk. The present study evaluates the association between SNPs and SNP-SNP interaction in driver genes TTN (rs10497520), TBX3 (rs2242442), KMT2D (rs11168827), and MAP3K1 (rs702688 and rs702689) with BC risk in BRCA1/2-negative Chilean families. The SNPs were genotyped in 489 BC cases and 1078 controls by TaqMan Assay.
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]
  • Mutant‑Allele Tumor Heterogeneity in Malignant Glioma Effectively Predicts Neoplastic Recurrence
    6108 ONCOLOGY LETTERS 18: 6108-6116, 2019 Mutant‑allele tumor heterogeneity in malignant glioma effectively predicts neoplastic recurrence PENGFEI WU, WEI YANG, JIANXING MA, JINGYU ZHANG, MAOJUN LIAO, LUNSHAN XU, MINHUI XU and LIANG YI Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing 400042, P.R. China Received March 13, 2019; Accepted September 6, 2019 DOI: 10.3892/ol.2019.10978 Abstract. Intra-tumor heterogeneity (ITH) is one of the most RFS of patients with glioma. In conclusion, the MATH value important causes of therapy resistance, which eventually of a patient may be an independent predictor that influences leads to the poor outcomes observed in patients with glioma. glioma recurrence. The nomogram model presented in the Mutant-allele tumor heterogeneity (MATH) values are based current study was an appropriate method to predict 1-, 2- and on whole‑exon sequencing and precisely reflect genetic ITH. 5-year RFS probabilities in patients with glioma. However, the significance of MATH values in predicting glioma recurrence remains unclear. Information of patients Introduction with glioma was obtained from The Cancer Genome Atlas database. The present study calculated the MATH value for Glioma is the most common primary malignant tumor in each patient, analyzed the distributions of MATH values the central nervous system (1). Despite surgery and radio- in different subtypes and investigated the rates of clinical therapy, chemotherapy and targeted therapy, the majority of recurrence in patients with different MATH values. Gene malignant gliomas still recur (2,3), which is primarily due enrichment and Cox regression analyses were performed to to chemo-radiotherapy resistance (4).
    [Show full text]
  • Cutaneous Manifestations of Systemic Disease
    Updates on Canine Atopic Dermatitis Karen L. Campbell, DVM, MS, DACVIM, DACVD Professor Emerita, University of Illinois Clinical Professor of Dermatology, University of Missouri Allergies in dogs Atopic Dermatitis • Affects 10-15% of dogs • Pathogenesis – Genetics – Immunological – Structural • Risk factors – Breed – Environment – Birthdate Implications: not a homogenous disease—many factors involved Genetics of Atopic Dermatitis • Breeds predisposed • Terriers, setters, beagles, boxers, Lhaso Apso, pug, bulldogs, miniature schnauzer, retrievers, Dalmatian, GSD, others • Breeding study (labs, retrievers) • 2 atopic parents: 65% offspring atopic • 1 atopic 1 normal: 57% offspring atopic • 2 normal parents: 11% offspring atopic Implication – ideal not to breed affected dogs Gene Mutations & AD • Filaggrin • Plakophilin 2 • SPINK5 • PPARγ • IgA deficiency (GSD) • Pro-inflammatory • S100A8 • INPPL1 • DPP4 Marsella R et al: TEM studies in experimental model of K9 AD. Vet Derm 21:81-88, 2010. Implications: not a homogenous disease, many targets for treatment, effectiveness of treatment may vary depending on cause in the individual dog Skin Barrier Dysfunction in AD Immunology of Atopy • Allergen exposure • Predominantly percutaneous • Increased absorption of allergens in dogs with defective skin barrier function • Antigen Processing Cells: • Langerhans cells and keratinocytes in skin • Present antigens to T- helper and B-cells to stimulate Ig production • Sites of Ig production • regional lymph nodes Immunological Imbalances in Atopy • Increased
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Damage of Hair Follicle Stem Cells and Alteration of Keratin Expression in External Radiation-Induced Acute Alopecia
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 30: 579-584, 2012 Damage of hair follicle stem cells and alteration of keratin expression in external radiation-induced acute alopecia NAOKI NANASHIMA, KOICHI ITO, TAKASHI ISHIKAWA, MANABU NAKANO and TOSHIYA NAKAMURA Department of Biomedical Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan Received April 4, 2012; Accepted May 28, 2012 DOI: 10.3892/ijmm.2012.1018 Abstract. Alopecia is known as a symptom of acute radia- disturbances and blood and bone marrow disorders are known tion, yet little is known concerning the mechanism of this to occur within several hours to several weeks after 1-6 Gy of phenomenon and the alteration of hair protein profiles. To radiation exposure (4,6). examine this, 6-week-old male C57/BL6 mice were exposed Hair loss is also an effect of ARS, but little is known to 6 Gy of X-ray irradiation, which caused acute alopecia. about the mechanism underlying radiation-induced hair loss. Their hair and skin were collected, and hair proteins were In humans, hair loss is caused by radiation of more than analyzed with liquid chromatography/electrospray-ionization 3 Gy, and almost complete hair loss occurs within weeks of mass spectrometry and immunohistochemistry. No change exposure to 6 Gy (4,6). Since blood stem cells are sensitive to was observed in the composition of major hair keratins, such radiation (7), hair loss is thought to be caused by irradiation- as Krt81, Krt83 and Krt86. However, cytokeratin Krt15 and induced stem cell damage, yet no studies have investigated CD34, which are known as hair follicle stem cell markers, this hypothesis.
    [Show full text]
  • Cytoskeletal Remodeling in Cancer
    biology Review Cytoskeletal Remodeling in Cancer Jaya Aseervatham Department of Ophthalmology, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; [email protected]; Tel.: +146-9767-0166 Received: 15 October 2020; Accepted: 4 November 2020; Published: 7 November 2020 Simple Summary: Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract: Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site.
    [Show full text]
  • Biological Functions of Cytokeratin 18 in Cancer
    Published OnlineFirst March 27, 2012; DOI: 10.1158/1541-7786.MCR-11-0222 Molecular Cancer Review Research Biological Functions of Cytokeratin 18 in Cancer Yu-Rong Weng1,2, Yun Cui1,2, and Jing-Yuan Fang1,2,3 Abstract The structural proteins cytokeratin 18 (CK18) and its coexpressed complementary partner CK8 are expressed in a variety of adult epithelial organs and may play a role in carcinogenesis. In this study, we focused on the biological functions of CK18, which is thought to modulate intracellular signaling and operates in conjunction with various related proteins. CK18 may affect carcinogenesis through several signaling pathways, including the phosphoinosi- tide 3-kinase (PI3K)/Akt, Wnt, and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathways. CK18 acts as an identical target of Akt in the PI3K/Akt pathway and of ERK1/2 in the ERK MAPK pathway, and regulation of CK18 by Wnt is involved in Akt activation. Finally, we discuss the importance of gaining a more complete understanding of the expression of CK18 during carcinogenesis, and suggest potential clinical applications of that understanding. Mol Cancer Res; 10(4); 1–9. Ó2012 AACR. Introduction epithelial organs, such as the liver, lung, kidney, pancreas, The intermediate filaments consist of a large number of gastrointestinal tract, and mammary gland, and are also nuclear and cytoplasmic proteins that are expressed in a expressed by cancers that arise from these tissues (7). In the tissue- and differentiation-dependent manner. The compo- absence of CK8, the CK18 protein is degraded and keratin fi intermediate filaments are not formed (8).
    [Show full text]